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Abstract. In our previous article, the connection between q–deformed harmonic oscillation
and Morse–like asymmetric potential is investigated. In present work, a possibility of the
connection between q-deformed harmonic oscillator and anharmonic symmetric potential is in
detail considered. For simplicity, we take the inverse square cosine–hyperbolic form of potential,
i.e Pöschl–Teller potential. The relation between the deformation parameter q and the set of
parameters of anharmonic symmetric potential was found. The correspondence of two types of
connections between q-deformed harmonic oscillator with asymmetric and symmetric potentials
are discussed.

1. Introduction
In the last twenty years, quantum group and deformed Heisenberg algebras with q-deformed
harmonic oscillator have been a subject of intensive investigation. This approach has found some
useful applications in various branches of physics and chemistry [1, 2, 3, 4, 5, 6, 7]. The method of
q–deformed quantum mechanics was developed on the base of Heisenberg commutation relation
(the Heisenberg algebra) within some typical generalizations. The main parameter of this
method is the deformation parameter q which is usually considered to variety in the range
0 < q < 1, and the models have been constructed that the behaviors of studying objects reduce
to theirs conventional counterparts as q → 1.

The Morse potential finds an important role in describing the interaction among atoms in
diatomic and even in polyatomic molecules [8, 9, 10, 11, 12, 14] of atomic and molecular physics.
Despite its quite simple form, the Morse potential describes very well the vibrations of diatomic
molecules. This is because that four–particle complex system (two heavy atomic nuclei with
positive charge and two light electrons with negative charge) can be reduced to relative motion
of two atomic nuclei in an effective potential which is average Coulomb interaction of nuclei and
electron clouds. The Morse–like potential models just work with a simple one-dimensional three-
parameter effective potential, and find many applications in condensed matter, bio–physics,
nano–science and quantum optics.

The Morse potential in algebraic approach can be written in terms of the generators of
SU(2). The quantum relation between q-deformed harmonic oscillator and the Morse potential
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was considered in [10], where then the anharmonic vibrations in the Morse potential have been
described as the levels of q-deformed harmonic oscillator. The extended SU(2) model (q-Morse
potential) has been also developed to compare with phenomenological Dunham expansion and
experimental data for numbers of diatomic molecules [10]. In this work, by considering deformed
algebra as mathematical object and atomic effective potential as physical model, we use this
relation in inverse way to investigate properties of q-deformed harmonic oscillator on the base
of the Morse potential.

In one hand, the potential of harmonic oscillation is parabolic with infinity equal–step levels.
In other hand, we show that the potential of q–deformed harmonic oscillator can be described
as Morse-like anharmonic potential with finite unequal–step levels. The relation between the
deformation parameter q and the set of parameters of Morse–like anharmonic potential was
found. We have also investigated the partition function and some thermodynamic properties of
q-deformed harmonic oscillator.

In the our previous work [14] we have shown that mathematical deformation properties can
be represented and understood in the language of physical object, which can be described by an
anharmonic potential.

The asymmetric representation of deformed harmonic oscillators was investigated in [14] with
the Morse potential. And as a further step, in this work we study the symmetric representation
of deformed harmonic oscillators with corresponding potential.

2. Harmonic oscillator and q–deformed harmonic oscillator
In q-deformed harmonic oscillator, creation a† and annihilation a operators of q–deformed
harmonic oscillator satisfy the commutation relation

[a, a†]q = aa† − qa†a = 1, (1)

where q is deformation parameter taking values in [0, 1].
In the second quantization representation, the Hamiltonian operator of q-deformed harmonic

oscillator is written as
H =

ω

2

(
aa† + a†a

)
. (2)

As the results of simple algebraic manipulations, energy spectrum of q-deformed harmonic
oscillator is obtained as follows

En =
ω

2

(
[n]q + [n+ 1]q

)
, (3)

where [n]q = 1−qn
1−q is the q-integer which differs from natural numbers. For very small derivation

from unity ε = 1 − q, the energy spectrum becomes quadratic if the higher order contribution
C = O

((
ε2
))

is neglected

En = ~ω
(
n+

1

2
− n2

2
ε+ C

)
. (4)

In result (4), the energy levels are represented by a system of parallel lines are not equidistant.
The extent depends on the deformation parameter q.

3. Physical model for q–deformed harmonic oscillator
In the case of q = 1(ε = 0), the energy levels return to non–deformed expression, i.e.

En = ~ω
(
n+

1

2

)
, (5)
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we obtained the energy levels of the harmonic oscillator, the gaps between the energy levels are
constant (Figure 1).

Figure 1. Energy spectrum has infinity equal-step levels form.

In the range of parameter values 0 < q < 1, the energy levels are represented by a system of
parallel lines are not equidistant.

In all previous work, we have studied the deformation parameter q through Morse potential,
which is the asymmetric anharmonic potential. In this ongoing one, the deformation parameter
q with symmetric anharmonic potential form (Figure 2) will be under consideration.

Figure 2. The potential is symmetric anharmonic.

To easily compare potential energy shapes, we observe their appearance on the same
coordinate system (Figure 3). The symmetric potential is anharmonic and energy spectrum
has finite unequal-step levels, for comparison also plotted harmonic spectrum of corresponding
parabolic potential.

4. Symmetric representations
The symmetric potential has an important role in describing the interaction of atoms in diatomic,
and even polyatomic molecules. In the case, the symmetric potential is anharmonic, energy
spectrum has finite unequal–step levels as presented in the Figure 4, where energy spectrum of
symmetric anharmonic and corresponding parabolic potentials are compared.

The symmetric anharmonic potential chosen in study is Pöschl – Teller potential

Vs(x) = − U0

cosh2(αx)
, (6)
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Figure 3. The harmonic potential, anharmonic potential and symmetric potential.

Figure 4. Energy Levels: a) Morse potential and Harmonic potential. b) Symmetric and
Harmonic potential.

which is an effective potential with a set of two parameters U0, α taken from experimental data.
The Schrödinger equation of symmetric anharmonic potential (6) has been exactly and

analytically solved [13]. The eigenvalues of this Hamiltonian read

Es = −α
2~2

8m

[
− (1 + 2n) +

√
1 +

8U0

α2~2

]2
. (7)

By introducing new quantity

ωs =
α2~
2m

√
1 +

8U0

α2~2
, (8)

the energy level of system under consideration can be expressed as

Es = ~ωs

[
n+

1

2
− ε

2

(
n+

1

2

)2

+ Cs

]
, (9)

where ωs is the frequency of symmetric oscillator.
Following the tasks presented in our last work [14], the deformation parameter qs of the given

potential is found as

qs = 1− 2√
1 + 8U0

α2~2

. (10)
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Figure 5. q-deformed symmetric representation depending parameters U0, α.

It is obvious that this system has a finite number of energy levels with maximum number
nS.max

nS.max =
[

1
(1−qS)

]
=

[
1
2

√
1 + 8U0

α2~2

]
,

(11)

where the notation [f ] is the integer part of the number f .
Using the above relationship, we propose the deformation model (SPD model), based on the

symmetric potential, for investigating the properties of q–deformed harmonic oscillator. The
main idea is that the role of parabolic potential for harmonic oscillator would be replaced by
the symmetric representation potential for q-deformed harmonic oscillation.

In above proposed model, every given value of deformation parameter qS in the interval
from zero to unity, qS ∈ [0, 1], can be described by a symmetric potential with the largest
number nS.max determined by the expression (11). Here, we note the well–defined one–to–one
correspondence between qS and nS.max. The values of largest number depending on deformation
parameter qS and on parameters of material system are plotted in figure 6 and in figure 7.

Figure 6. The values of largest number nS.max depending on deformation parameter qS .
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Figure 7. The values of largest number nS.max depending on given input parameters U0, α.

Figure 8. Dependence of number of energy levels on U0 while α is fixed (α = 1),
a) U0 = 5, b) U0 = 4.

Figure 9. Dependence of number of energy levels on α while U0 is fixed (U0 = 4),
a) α = 1.2, b) α = 1.8.

It is shown that the total number of energy levels rapidly grows up when q tends to unity. In
the limit of weak deformation q → 1, nmax →∞ . In contrast, when q tends to 0.5 only one level
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can be found, i.e. in the strong deformation limit q → 1/2, nmax → 1. The actual working range
of deformation parameter q is not to be in q ∈ [0, 1], but in more narrow half range 0.5 < q < 1,
where the physical system has more than one energy level.

The last but not least, the main parameters of harmonic, q–deformed harmonic, symmetric
and asymmetric potentials are compared in Table 1.

Harmonic q-deformed
Harmonic

Asymmetric Symmetric

Potential −1
2kx

2 D
(
1− e−k(x−x0)

)
− U0

cosh2(αx)

ε 0 1− q ~k√
2mD

2√
1+

8mU0
α2~2

Frequency
√
k/m ~ω ~

√
2D
mk2

α2~2
2m

√
1 + 8mU0

α2~2

q 1 1− ε 1− ~k√
2mD

1− 2α~√
α2~2+8mU0

nmax ∞
[

1
(1−q)

] [√
8Dk2

~2 − 1

] [
1
2

√
1 + 8mU0

α2~2

]
Table 1. Comparison of asymmetric and symmetric representations.

5. Discussion
Comparing the energy spectrum of q-deformed harmonic oscillator (4) and energy spectrum of
symmetric anharmonic potential (7) and neglecting the higher order contribution O

((
ε2
))

=

O
((

(1− q)2
))

, we realize the relations

ωs ↔ ω, (12)

2

N
↔ ε. (13)

This is the relation between q-deformed harmonic oscillator and symmetric anharmonic
vibrations, providing the analogy of q–deformation and symmetric anharmonicity. The change
of energy spectrum from linear to quadratic form is reasoned by deformations of commutation
relations in the mathematical algebraic approach, while in case of the symmetric potential by
appearance of periodic distribution of atoms or molecules.

The main results of this work are the consequences of the expression of energy levels (7),
on which we proposed a new symmetric potential deformation SPD model for investigating
properties of q-deformed harmonic oscillator via the symmetric potential (6). Instead of
parabolic potential for harmonic oscillation, the symmetric anharmonic potential is used to
study the q-deformed harmonic oscillation, and as it is expected, the mathematical deformation
properties now would be described and understood in the language of physical anharmonic
behaviors.

In our proposed SPD model, q-deformed harmonic oscillator can be described by the
corresponding symmetric Pöschl–Teller potential. With every given value of deformation
parameter in the interval qS ∈ [0, 1], we would determine the largest number nS.max and the
deformed energy spectrum Eq (n) of q–deformed harmonic oscillation.

In one hand, the asymmetric representation of deformed harmonic oscillators by using a
symmetric Morse potential [14] can be applied to describe interaction between two atoms
molecules, where the space among them is clearly non–symmetric. In other hand, the possible
applications of symmetric representation for deformed harmonic oscillators are atomic chain,
symmetric atoms, where the space is translationally symmetric. This models could be expanded
and generalized to investigate many other physical problems such as composite bosons with
deformation which is the topic of our ongoing research.
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