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Abstract. A model is presented utilizing a generic Hamiltonian with equal pairings in channels
based on quantum field theory and functional integral formalism, to show the correlation among
the order parameters which are described in multi-component Ginzburg-Landau functional.
In the vicinity of the phase transition, the further perturbative expansions of the functional
around the mean-field theory in the auxiliary fields are carried out with the aim of leading to
a possible solution for the coexistence of many phases. The work is motivated by the recent
theoretical researches and experimental evidences of the coexistence of superconductivity and
ferromagnetism in U and Ce compounds.

1. Introduction
Conventional superconductivity was discovered in 1911 but till 1957 it was transparently under-
stood thanks to appearance of BCS theory. Alternatively, this theory also caused a thought that
superconductivity was incompatible with ferromagnetism for a long time. The physical reason
for this incompatibility is the same as in the case of magnetic impurities in a superconductor[1].
Namely, in the framework of the standard BCS theory at low enough temperatures supercon-
ductivity is formed under condensation of singlet Cooper pairs. A singlet Cooper pair is a bound
state of two electrons having opposite momenta and spins and which is formed indirectly through
electron-phonon-electron interaction (an electron emits a phonon, an other electron absorbs this
phonon). While, in ferromagnetic ground state all electron spins align parallel to produce a
net spontaneous magnetization. Thus, when a standard ferromagnetic phase arises within a
conventional superconductor, the spontaneous magnetization M will break down singlet Cooper
pairs i.e., destroy conventional superconductivity.

In the background, the discovery of UGe2 in 2000, and after that, UIr, URhGe, and UCoGe
with coexistence of ferromagnetism (FM) and superconductivity (SC) came as a big surprise and
it appeared to require novel concepts to interpret. According to previous theories, ferromag-
netism is induced by spin moments of localized 4f electrons, whereas superconductivity comes
from Cooper pairs that formed by conduction electrons. Such discovery together with a number
of reliable experimental data about coherence length and superconducting gap [2, 3, 4, 5], is in
favor of the conclusion that 5f- electrons from U-atoms responsible for both FM and SC. Cooper
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pairs in these metallic compounds be long to spin-triplet and magnetic-fluctuation induced pair-
ing is a possible mechanism. In recent years, beside experimental investigations which examine
the dependence of the phase transition on the applied pressure and magnetic field, there are
also theoretical researches that concentrate on finding out phase transition mechanism, natures
of phases and the dependence of temperature of phase transition and spontaneous magnetiza-
tion moment on the parameters of materials. Different mechanisms have been proposed such
as: coupled charge density waves and spin density waves [7], magnon exchange [8], electron
interaction mediated by ferromagnetically aligned localized moments [9,10], screened phonon in-
teractions[11], d-electron exchange [12], M-trigger [13, 14]....However, there have been no reliable
answer for these important issues thus, we will confine our consideration to a phenomenological
level.

The above consideration motivates transforming the fermionic field theory to an effective one
based on the coupling fields which are expressed in terms of order parameter fields for different
channels. The main purpose of this paper is formulation of a multi-component G-L functional
which can describe the coexistence of many phases. In our research, through HS transformation,
a microscopic Hamiltonian will be split into possible channels, then we can get a functional
which only depends on order parameters. Thereby, we will arrive at a generic performance
of Ginzburg-Landau (G-L) functional for three order parameter system through calculations
based on Green function. Based on the specific problems of ferromagnetic superconductivity or
antiferromagnetic superconductivity, we will draw the formal performance for G-L functional
and create a graph showing the dependence of order parameters.

2. The model Hamiltonian of the system
2.1. The Hamiltonian
Our starting point is an interacting electron gas model [15]. In the terms of second quantization,
the Hamiltonian of the system can be written as:

H = H0 +H1, (1)

where,

H0 =
∑
σ

∑
k

εσ(k)ψ†σ(k)ψσ(k), (2)

H0 is unperturbed Hamiltonian describing the system of free electrons; ψσ(k) and ψ†σ(k) are the
annihilation and creation operators of the electrons with the spin projection σ =↑, ↓ respectively;
εσ(k) is the dispersion of the free electrons; and

H1 =
∑

σ1,σ2,σ′1,σ
′
2

∑
k,k′,q

Vσ1σ2σ′1σ′2(k,k′,q)ψ†σ1(k− q

2
)ψ†σ2(k′ +

q

2
)ψσ′2(k′ − q

2
)ψσ′1(k +

q

2
); (3)

H1 is a generic effective two-body interaction term of interacting electrons written in the normal
order, which may cover the contributions of other interactions in the system.

2.2. Grand partition function
In a previous short paper[15], the authors Nguyen Tri Lan and Nguyen Toan Thang have shown
that there are, at least, three inequivalent choices of pairing up the fermionic operators to
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construct the fermionic bilinear term of the generic two-body interaction. Those are pairings in
the direct channel (ψ†ψ)σσ′(k,−q, τ), in the exchange channel (ψ†ψ)σ2σ′1(k′,k,q, τ), and in the

cooper channel (ψψ)σ′2σ′1(k′,k,q) and (ψψ)†σ2σ1(k′,k,−q). Nevertheless, the ”right” choice of the
decoupling field should be only motivated by physical reasoning, i.e one has to proceed to derive
an effective theory based on the coupling field later. For this problem, the generic effective two-

body interaction term H1

[
ψ†, ψ

]
can be broken down to a summation of all possible fermionic

bilinear terms including all of three channels with arbitrary parameters {γi}, where i ∈ {d,ex,C}
as

H1

[
ψ†, ψ

]
= γ2dH

d
1

[
ψ†, ψ

]
− γ2exHex

1

[
ψ†, ψ

]
+ γ2CH

C
1

[
ψ†, ψ

]
. (4)

By introducing HS decoupling on the two-body interaction term,the authors are able to
express the grand partition function as a functional integral of the auxiliary fields {ϕi} as follow

Z =
1

W

∫
[Dϕ] [Dϕ∗] exp {−S0 [{ϕi}]} exp

{
ln det

(
1

2
[G0]−1

)}
. (5)

The logarithmic contributions in Eq.(5) can be expanded as if it is function (a consequence
trace operator), i.e.,

Tr ln
(
[G0]−1

)
= ln [Ge0]

−1 + ln
[
Gh0

]−1
+
∑
N≥1 Tr [G]N , (6)

where the trace operator is understood as spin, momentum and frequency diagonal operator
whose matrix elements give the free Green’s function of the free electrons.

Performing matrix multiplications, then totalizing elements on the main diagonal (see
Appendix A), in the energy-momentum space, we can write:

Tr [G]N = (−1)N−1 1
N

∑
σi=↑,↓

∑
αi=e,h

∑
pi,ωni

Gα1
σ1σ1(p1, ωn1)∆α1α2

σ1σ2 (p1, ωn1 ; p2, ωn2)×
Gα2
σ2σ2(p2, ωn2)∆α2α3

σ2σ3 (p2, ωn2 ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1
σNσ1

(pN, ωnN ; p1, ωn1),(7)

where

4αiαj
σiσj = δαiαjΦ

αiαj
σiσj +

(
1− δαiαj

)
Fαiαjσiσj . (8)

As it was discussed in [15], the independence of physical quantities on HS coupling’s
parameters {γi} can be expressed in mathematical language by all order zero-derivatives of
the grand thermodynamic potential, i.e., for any set of HS coupling’s parameters {γi} following
conditions must be satisfied

d

dγi
Ω = −β d

dγi
lnZ = −β

〈
d

dγi
ln det

(
1

2
[G0]−1

)〉
≡ 0. (9)

To avoid the complexity and the complication in further calculations, these parameters can
be presented, without the loss of generality, by two new independent parameters φ and θ as
follows
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γd = cosh θ sinφ,
γex = sinh θ,
γC = cosh θ cosφ.

. (10)

In the terms of parameters φ and θ, the equations (9) are rewritten as

〈
d

dφ
ln det

(
[G0]−1

)〉
= 0, (11)

and

〈
d

dθ
ln det

(
[G0]−1

)〉
= 0. (12)

In general, it is impossible to evaluate the self-consistent system of equations(11) and (12)
without some further approximation. A good and convenient idea of such approximation is some
mean-field theory obtained by seeking for solution to the set of saddle point equations of the
effective action in Eq. (5). We have

δ

δϕi

(
S0 [{ϕi}]− ln det

(
1

2
[G]−1

))
= 0. (13)

Eliminating parameters θ, φ from Eq. (11) , Eq. (12) and Eq. (13) (see Appendix B ), we
obtain the system of three equations

∑
σ2
σ′2

∑
p2.p

′
2

ωn2 , ω
′
n2

(ϕ1)
∗
σ2σ′2

(p2, ωn2 ; p′2, ω
′
n2

) (V1)
−1
σ2σ′2σlσk

(p′2, ω
′
n2

; pl, ωnl) =

=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl) δαlαk(−1)αli cosh θ sinφ︸ ︷︷ ︸
σl=σ1,σk=σ2

Gαkσkσk(pk, ωnk)∆αkα3
σkσ3

(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1
σNσ1

(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)

Gα2
σ2σ2(p2, ωn2)∆α2α3

σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl) δαlαk(−1)αli cosh θ sinφ︸ ︷︷ ︸
σl=σN ,σk=σ1

}
, (14)

∑
σ2
σ′1

∑
p2.p

′
1

ωn2 , ω
′
n1

(ϕ2)
∗
σ2σ′1

(p2, ωn2 ; p′1, ω
′
n1

) (V2)
−1
σ2σ′1σlσk

(p′1, ω
′
n1

; pl, ωnl) =
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=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl) δαlαk(−1)αl sinh θ︸ ︷︷ ︸
σl=σ1,σk=σ2

Gαkσkσk(pk, ωnk)∆αkα3
σkσ3

(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1
σNσ1

(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)

Gα2
σ2σ2(p2, ωn2)∆α2α3

σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl) δαlαk(−1)αl sinh θ︸ ︷︷ ︸
σl=σN ,σk=σ1

}
, (15)

∑
σ′1
σ′2

∑
p′1.p

′
2

ωn′1 , ω
′
n2

(ϕ3)
∗
σ2σ′2

(p′1, ωn′1 ; p′2, ω
′
n2

) (V3)
−1
σ′1σ
′
2σlσk

(p′2, ω
′
n2

; pl, ωnl) =

=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl) (1− δαlαk) (−2i cosh θ cosφ)︸ ︷︷ ︸
σl=σ1,σk=σ2

Gαkσkσk(pk, ωnk)∆αkα3
σkσ3

(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1
σNσ1

(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)

Gα2
σ2σ2(p2, ωn2)∆α2α3

σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl) (1− δαlαk) (−2i cosh θ cosφ)︸ ︷︷ ︸
σl=σN ,σk=σ1

}
. (16)

which describe many-body relations between the physical quantities of the system where many
kinds of fluctuations of corresponding order parameters are considered. Further analysis of
this self-consistent system of equations shows the concrete constraints of diagram cancellation
between diagram families generated by different HS couplings, which will be presented in a
forthcoming paper.

3. Three - component Ginzburg-Landau functional
Expanding effective action in the Hubbard-Stratonovich auxiliary fields {ϕi} to quartic one
which only includes terms allowed by symmetry of system and retains minimum numbers of
the simplest terms to get the results with multiple meanings, we will obtain G-L free energy
functional with the participation of several order parameters describing relationship of density
wave, spin wave and superconductivity phases.

fGL [{ϕi}] = a1 |ϕ1|2 + a2 |ϕ2|2 + a3 |ϕ3|2 + a4 (ϕ∗1ϕ2) + a5 (ϕ∗2ϕ1)

+b1 (ϕ∗1) |ϕ3|2 + b2 (ϕ1) |ϕ3|2 + b3 (ϕ∗2) |ϕ3|2 + b4 (ϕ2) |ϕ3|2

+c1 |ϕ1|4 + c2 |ϕ2|4 + c3 |ϕ3|4 + c4 |ϕ1|2 |ϕ2|2 + c5 |ϕ2|2 |ϕ3|2 + c6 |ϕ3|2 |ϕ1|2
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+
[
c7 |ϕ1|2 + c8 |ϕ2|2 + c9 |ϕ3|2

]
(ϕ∗1ϕ2)

+
[
c10 |ϕ1|2 + c11 |ϕ2|2 + c12 |ϕ3|2

]
(ϕ∗2ϕ1)

+c13 (ϕ∗1ϕ2) (ϕ∗1ϕ2) + c14 (ϕ∗2ϕ1) (ϕ∗2ϕ1) (17)

Here, all three quadratic terms |ϕ1|2 , |ϕ2|2 , |ϕ3|2 must be equivalent, and all three quartic
terms |ϕ1|4 , |ϕ2|4 , |ϕ3|4 too, they describe each special channel respectively. The other terms
describe interaction between channels that result in the coexistance of equilibrium phases.

Thanks to decoupling of two-body interaction terms using H-S transformations, we have
above functional in general manner. In fact, auxiliary fields {ϕi} are not any specific phases
because above spin indexes, σ, σ′ are common for all possible phases. In addition, above inversed
potential V −1 which is included in decoupling method in almost physical systems does not always
exist. Depending on how spin indexes are split, we will have singlet superconducting order or
triplet superconducting order, ferromagnetic order or antiferromagnetic order. If the order is
singlet, the system can fully exist an antiferromagnetic phase plus singlet superconducting phase
as in CehIn5 and CeIrIn5. If the order is triplet, the system can fully exist an ferromagnetic
phase plus triplet superconducting phase as in UGe2 without depending on whether electronic
is localized or not.

The remaining part of this paper will apply the model (17) to study the conditions causing
Meissner phase in the presence of ferromagnetic order. In addition, we will establish a phase
diagram corresponding to the ferromagnetic superconductor model when no external magnetic
field exists in UGe2.

4. Unconventional Superconductivity in UGe2
4.1. Experimental studies
The experimental researches about UGe2 [3, 16, 17, 18] show that at ambient pressure UGe2
is an itinerant ferromagnet having Curie temperature Tcurie = 52K, and the spontaneous
moment µs = 1.4µB/U − atom. An easy axis is the a-axis in orthorhombic crystal [7]. When
the pressure increases the system passes through two quantum phase transition, one is from
ferromagnetic phase to FS phase at P = 1GPa, and the other from ferromagnetic phase to
paramagnetic phase at higher pressure Pc = 1.6GPa. The superconducting phase exists entirely
within the ferromagnetic domain at low temperature and pressure interval between 1.0 ÷ 1.6
GPa with a maximum Tsc = 0.8K near 1.2 GPa. In ferromagnetic domain, there are two
distinct ferromagnetic phases usually denoted by FM2 (highly polarized phase) and FM1 (weakly
polarized phase). The line Tx separate two phases ends at Tx = Tsc and the pressure Px = 1.2
GPa. The order of transition from FM1 to paramagnetic changes from second to first at the
tricritical point Tcr on the T (P ) diagram, and at critical pressure Pc. The more P increases, the
more both TFM and TFS drop down to disappear almost simultaneously around P ∼ 1.7 GPa.

4.2. Theoretical studies
With the experimental evidences about UGe2, as presented above, people believe that the fer-
romagnetism and superconductivity are caused by itinerant 5f-electrons in the same band. The
Cooper pairs formed from the electrons to be of spin-triplet type, and magnetic-fluctuations
are responsible for inducing pairing. Driving from the general multi-components G-L functional
(17), we formulate specific functional which is capable of describing the coexistence of ferromag-
netism and superconductivity in UGe2. We know that, UGe2 is ferromagnet having orthorhom-
bic structure with the magnetic easy axis is the a-axis. The order parameters in orthorhombic
ferromagnet have general form as the same one allowed by symmetry given by Machida and
Ohmi [19], and others [20, 13, 14]. According to these authors the Ginzburg-Landau (GL) free
energy density part which describes the interaction between the ferromagnetic order parameter

IWTCP-3 & NCTP-40 IOP Publishing
Journal of Physics: Conference Series 726 (2016) 012016 doi:10.1088/1742-6596/726/1/012016

6



M and the superconducting order parameter ψ has to be coupled linearly and quadratically,
namely, iγM. (ψ × ψ∗) and M2.ψ.ψ∗ (corresponding to (ϕ∗2) |ϕ3|2 + (ϕ2) |ϕ3|2 and |ϕ2|2 |ϕ3|2
in the model (17)) respectively. If we choose a coordinate system with x//b, y//c, z//a where
a-axis direction is easy to be magnetized, then M = (0, 0,M) and ψ = (ψ1, ψ2, 0), implying that
the Cooper pair spin orientation points to the M direction. Therefor, we considerably decreased
complexity of analysis of the free energy in the below part.

Ignoring effects of anisotropy from both Cooper pairs and crystals, simultaneously restricting
in consideration of the uniform order parameters, i.e., neglecting the x-dependence of ψ and M ,
in the traditional approach, G-L energy functional of the triplet ferromagnetic superconductor
is split into a sum of three terms:

fGL(ψ,M) = fS(ψ) + fF (M) + fI(ψ,M),

(18)

where

fS(ψ) = as |ψ|2 + bs
2 |ψ|

4 , (19)

fF (M) = af |M|2 +
bf
2 |M|

4 , (20)

and

fI(ψ,M) = iγ0M. (ψ × ψ∗) + δ0 |ψ|2 |M|2 . (21)

In Eq. (18): The first term fS(ψ) given by Eq. (19), describes the superconductivity for
M = H = 0 (H is external magnetic field). ψ = (ψ1, ψ2, 0) is the complex vector order pa-
rameter with three-components which are complex numbers. The complex numbers ψ1, ψ2 will
be often expressed in terms of moduli and phase angles (ψ1 = ϕ1e

iθ1 , ψ2 = ϕ2e
iθ2), where

ϕ = (ϕ2
1 + ϕ2

2)
1/2 is magnitude of the complex vector order parameter ψ = (ψ1, ψ2, 0); The

second term fF (M) given by Eq. (20) is a part describing the free energy of a standard isotropic
ferromagnet, where M is the ferromagnetic order parameter; and finally the term fI(ψ,M)
given by Eq. (21) describes the interaction between the ferromagnetic order parameter M and
the superconducting order parameter ψ. Where δ0 > 0 and the parameter γ0 for ferromagnetic
superconductors may take both positive and negative values.

In Eq. (19), choose bs > 0 and as = αs(T−Ts), where αs is a positive material parameter and
Ts is the critical temperature of a standard second order phase transition in case there is no mag-
net field. In Eq. (20) bf > 0, Tf is critical temperature of the ferromagnet and af = αf (T −Tf )
depend on the material parameter αf > 0 and the temperature. In general, the values of the
material parameters (Ts, Tf , as, bs, af , bf , γ0, δ0) depends on selection of the concrete substance
and thermodynamic parameters as temperature T and pressure P .

We assume that only Tf significantly depends on the pressure P . Expanding Tf (P ) in a
Taylor series about the critical pressure point Pc at which it reach to zero. We keep only the
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first term, enough for get non-trivial result, yields Tf (P ) = T
′
f (Pc − P ) = Tf (0) (1− P/Pc)[20].

From (20) we find

M = (αf/bf )1/2 [Tf (P )− T ]1/2 . (22)

Setting M0 = [αfTf0/bf ]1/2 which is the value of the magnetization M corresponding to a
pure magnetic subsystem ψ = 0 at T = P = 0 and Tf0 = Tf (0). Dividing both sides of Eq.(18)
by
(
bfM

4
0

)
, then calculating the right hand side, we obtain

f = rφ2 + 1
2φ

4 + tm2 + 1
2m

4 + 2γmφ1φ2sinθ + δφ2m2, (23)

where f = fGL/
(
bfM

4
0

)
, m = M/M0 and φj = |ϕj | /

[
(bf/bs)

1/4M0

]
, φ = (φ21 + φ22)

1/2 and

θ = θ2 − θ1 is the phase angle between the complex ψ1 and ψ2.
The parameters t and r in Eq. (23) are given by

r = κ
(
T̃ − T̃s

)
; t = T̃ − T̃f (P ) = T̃ − 1 + P̃ , (24)

where κ = αsb
1/2
f /αfb

1/2
s , γ = γ0/ [αfTf0/bs]

1/2 , δ = δ0/ (bsbf )1/2 whereas T̃ = T/Tf0, T̃f (P ) =

Tf (P )/Tf0, T̃s = Ts/Tf0 and P̃ = P/Pc are the reduced temperatures and pressure.

Imposing the conditions of equilibrium and stable phases (the free energy has to have minima,
i.e, find out conditions in which multi-function has minima) on the system which has the free
energy given by Eq.(23), for r > 0, i.e., T > Ts there are three stable phases:

• the normal phase (N): it exists for φ = m = 0 and the stability conditions: t ≥ 0, r ≥ 0;

• the pure ferromagnetic phase (FM): it exists for φ = 0,m = (−t)1/2 > 0, where t < 0 and

is stable provided r ≥ 0 and r ≥ δt+ γ (−t)1/2;
• the phase of coexistence of ferromagnetic order and superconductivity (FS): given by

sin θ = −1 ( for sin θ = 1, we has other phase domain thermodynamically equivalent, so we
are not consideration here),φ1 = φ2 = φ/

√
2, where the conductivity parameter satisfy the

equation

φ2 = κ(T̃s − T̃ ) + γm− δm2 ≥ 0, (25)

and the magnetization m is root of the equation

2
(
1− δ2

)
m3 + 3γδm2 + 2(t− δr − γ2

2
)m+ γr = 0. (26)

The stability conditions for the FS phase domain given by Eqs. (25) and (26) are

κ(T̃s − T̃ ) + 2γm− δm2 ≥ 0,
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γm ≥ 0,

and (
3− δ2

)
m2 + γδm+ T̃ + t− δr ≥ 0.

From Eq.(25) and existence condition of FM phase, it is derived that the second order phase
transition line TFS(P ) separating the FM and FS phases is given by the solution of the equation

T̃FS(P̃ ) = T̃s + δ
κ t(T̃FS , P̃ ) + γ

κ

[
−t(T̃FS , P̃ )

]1/2
(27)

The coefficients of this equation are find out with the help of experimental data. TFS(P )
curve has a maximum at point (Tm, Pm) which we obtain by both derivative sides of Eq.(27)
with respect to P̃ . We have

∂T̃FS

∂P̃
=

∂T̃s
∂P̃

+ δ
κ
− γ

2κ [−t(T̃FS ,P̃ )]
−1/2

1− δ
κ
+ γ
κ [−t(T̃FS ,P̃ )]

−1/2 (28)

Setting ∂T̃FS
∂P̃

= 0, and note that ∂T̃s
∂P̃

= 0 since T̃s does not depend on P̃ we derive

t(T̃m, P̃m) = − γ2

4δ2
. Substituting this expression back in Eq.(27), we obtain coordinate of

maximum point of TFS(P ) curve as{
T̃m = T̃s + γ2

4κδ

P̃m = 1− T̃m − γ2

4δ2
.

. (29)

On the other hand, the TFS(P ) curve cut P̃ -axis at two points having coordinate:{
(P̃ = 1, T̃FS = 0)

(P̃ = 1− γ2

δ2
, T̃FS = 0).

. (30)

In order to outline a T − P diagram of UGe2 we need information about the values of
Pc, Tf0, Ts, γ/κ, δ/κ. From experimental phase diagrams [17,18,19,20], we have: Pc = 1.6GPa,
Tf0 = 52K, Tm ≈ 0.8K and Pm ≈ 1.2GPa. The experimental evidences show that it has
not pure superconducting phase coexisting with ferromagnetism in UGe2. This indicates that
critical temperature Ts of the pure superconductivity state is too small, and so considered as
Ts = 0. Using these given parameters, we plot the T − P diagram of UGe2 shown in Fig.C1.

5. Conclusions and Discussions
Through calculations based on quantum field theory and functional integral formalism, the
multi-component G-L functional is established. Based on the specific problem of ferromagnetic
superconductivity, we transform the correlation among the order parameters described in multi-
component Ginzburg-Landau functional into the correlation among order parameters T and P
(physical quantities can be obtained directly from the experimental phase diagrams). T − P
diagram of UGe2 outlined on the basis of theoretical calculations and shown in Fig.C1 has a
agreement with the main experimental findings, although Pm corresponding to the maximum
(found at ∼ 1.45 GPa ) is about 0.25 GPa higher than experimental data [3]. If the experimental
plots are accurate, this difference may result from not including contribution of anisotropy of the
spin-triplet Cooper pair and crystal or from any effect which is outside the scope of our current

IWTCP-3 & NCTP-40 IOP Publishing
Journal of Physics: Conference Series 726 (2016) 012016 doi:10.1088/1742-6596/726/1/012016

9



model. The relative importance of this effect on the phase diagram needs to be investigated.
However, in this context, the introduction of specific problem of ferromagnetic superconductivity
only aims to illustrate that the multi-component G-L functional (17) can describe the coexistence
of many phases in many-body system. Also, we obtain the system of three equations (14), (15)
and (16) which describes many-body relations between the physical quantities of the system
where many kinds of fluctuations of corresponding order parameters are considered. This self-
consistent system of equations provides a general framework, which may serve as starting points
for any further investigations considering the coexistence of many phases in many-body system
and will be presented in a forthcoming paper.

Appendix A. Trace of matrix whose matrix elements are free Green’s function of
the free electron

Tr ln
(
[G0]−1

)
= Tr ln

 [Ge0]
−1 − Φ F
F∗

[
Gh0

]−1
+ Φ


= ln [Ge0]

−1 + ln
[
Gh0

]−1
+ Tr

∑
n≥1

(−1)n−1
1

n

[(
Ge0 0
0 Gh0

)(
−Φ F
F∗ Φ

)]n
. (A.1)

Setting

[G]n = (−1)n−1 1
n

[(
Ge 0
0 Gh

)(
Φee Feh
Fhe Φhh

)]n
,

where

Φee = −Φ, Feh = F ,
Φhh = Φ, Fhe = F∗,
Ge = Ge0 Gh = Gh0 .

First-order expansion

[G]1 =

(
Ge 0
0 Gh

)(
Φee Feh
Fhe Φhh

)

=

(
GeΦee GeFeh
GhFhe GhΦhh

)
,

with

GeΦee =

(
[Ge]↑↑ 0

0 [Ge]↓↓

)(
Φee
↑↑ Φee

↑↓
Φee
↓↑ Φee

↓↓

)

=

(
[Ge]↑↑Φee

↑↑ [Ge]↑↑Φee
↑↓

[Ge]↓↓Φee
↓↑ [Ge]↓↓Φee

↓↓

)
;
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GhΦhh =


[
Gh
]
↑↑

0

0
[
Gh
]
↓↓

( Φhh
↑↑ Φhh

↑↓
Φhh
↓↑ Φhh

↓↓

)

=


[
Gh
]
↑↑

Φhh
↑↑

[
Gh
]
↑↑

Φhh
↑↓[

Gh
]
↓↓

Φhh
↓↑

[
Gh
]
↓↓

Φhh
↓↓

 .
Tracing matrix we obtain

Tr [G]1 = [Ge]↑↑Φee
↑↑ + [Ge]↓↓Φee

↓↓ +
[
Gh
]
↑↑

Φhh
↑↑ +

[
Gh
]
↓↓

Φhh
↓↓

=
∑
σ1

Geσ1σ1Φee
σ1σ1 +

∑
σ1

Ghσ1σ1Φhh
σ1σ1 =

∑
α1

∑
σ1

Gα1
σ1σ1Φα1α1

σ1σ1 =
∑
α1

∑
σ1

Gα1
σ1σ14

α1α1
σ1σ1 . (A.2)

In the same way, we also obtain:
quadratic expansion

Tr [G]2 = −1

2
{
∑
σ1σ2

(
Geσ1σ1Φee

σ1σ2G
e
σ2σ2Φee

σ2σ1

)
+
∑
σ1σ2

(
Ghσ1σ1Φhh

σ1σ2G
h
σ2σ2Φhh

σ2σ1

)
+
∑
σ1σ2

(
Geσ1σ1F

eh
σ1σ2G

h
σ2σ2F

he
σ2σ1

)
+
∑
σ1σ2

(
Ghσ1σ1F

he
σ1σ2G

e
σ2σ2F

eh
σ2σ1

)
}

= −1

2
{
∑
α1

∑
σ1σ2

(
Gα1
σ1σ1Φα1α1

σ1σ2G
α1
σ2σ2Φα1α1

σ2σ1

)
+

∑
α1, α2

α1 6= α2

∑
σ1σ2

(
Gα1
σ1σ1F

α1α2
σ1σ2 G

α2
σ2σ2F

α2α1
σ2σ1

)
} , (A.3)

cubic expansion

Tr [G]3 =
1

3

{∑
σi

Geσ1σ1Φee
σ1σ2G

e
σ2σ2Φee

σ2σ3G
e
σ3σ3Φee

σ3σ1 +
∑
σi

Ghσ1σ1Φhh
σ1σ2G

h
σ2σ2Φhh

σ2σ3G
h
σ3σ3Φhh

σ3σ1

+3
∑
σi

Geσ1σ1Φee
σ1σ2G

e
σ2σ2F

eh
σ2σ3G

h
σ3σ3F

he
σ3σ1 + 3

∑
σi

Ghσ1σ1Φhh
σ1σ2G

h
σ2σ2F

he
σ2σ3G

e
σ3σ3F

eh
σ3σ1

}
=

1

3

∑
σi=↑,↓

∑
αi=e,h

Gα1
σ1σ1∆α1α2

σ1σ2G
α2
σ2σ2∆α2α3

σ2σ3G
α3
σ3σ3∆α3α1

σ3σ1 ,(A.4)

quartic expansion

Tr [G]4 = −1

4

{
(GeΦee)4 + 4 (GeΦee)2

(
GeFehGhFhe

)
+ 4 (GeΦee)

(
GhΦhh

) (
GeFehGhFhe

)
+
(
GhΦhh

)4
+ 4

(
GhΦhh

)2 (
GhFheGeFeh

)
+ 2

(
GhFheGeFeh

)2}
= −1

4

{∑
σi

∑
α=e,h

Gασ1σ1Φαα
σ1σ2G

α
σ2σ2Φαα

σ2σ3G
α
σ3σ3Φαα

σ3σ4G
α
σ4σ4Φαα

σ4σ1

+4
∑
σi

∑
α, β = e, h
α 6= β

Gασ1σ1Φαα
σ1σ2G

α
σ2σ2Φαα

σ2σ3G
α
σ3σ3F

αβ
σ3σ4G

β
σ4σ4F

βα
σ4σ1
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+2
∑
σi

∑
α, β = e, h
α 6= β

Gασ1σ1Φαα
σ1σ2G

α
σ2σ2F

αβ
σ2σ3G

β
σ3σ3Φββ

σ3σ4G
β
σ4σ4F

βα
σ4σ1

+
∑
σi

∑
α, β = e, h
α 6= β

Gασ1σ1F
αβ
σ1σ2G

β
σ2σ2F

βα
σ2σ3G

α
σ3σ3F

αβ
σ3σ4G

β
σ4σ4F

βα
σ4σ1

}

= −1

4

∑
σi=↑,↓

∑
αi=e,h

Gα1
σ1σ1∆α1α2

σ1σ2G
α2
σ2σ2∆α2α3

σ2σ3G
α3
σ3σ3∆α3α4

σ3σ4G
α4
σ4σ4∆α4α1

σ4σ1 .(A.5)

By using inductive method, we get

Tr [G]N = (−1)N−1
1

N

∑
σi=↑,↓

∑
αi=e,h

∑
pi,ωni

Gα1
σ1σ1(p1, ωn1)∆α1α2

σ1σ2 (p1, ωn1 ; p2, ωn2)

Gα2
σ2σ2(p2, ωn2)∆α2α3

σ2σ3 (p2, ωn2 ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1
σNσ1

(pN, ωnN ; p1, ωn1)

= (−1)N−1
1

N

∑
σi=↑,↓

∑
αi=e,h

∑
ωn, ωνi
k,q

Gα1
σ1σ1(k, ωn)∆α1α2

σ1σ2 (q1, ων1)Gα2
σ2σ2(k− q1, ωn − ων1)

×∆α2α3
σ2σ3 (q2, ων2) . . . GαNσNσN (k− q1 − · · · − qN−1, ωn − ων1 − · · · − ωνN−1)

∆αNα1
σNσ1

(−q1 − · · · − qN−1,−ων1 − · · · − ωνN−1).

(A.6)

Appendix B. Eliminating parameters θ, φ
field equation (13) for ϕ1 can be written

∑
σ2
σ′2

∑
p2.p

′
2

ωn2 , ω
′
n2

(ϕ1)
∗
σ2σ′2

(p2, ωn2 ; p′2, ω
′
n2

) (V1)
−1
σ2σ′2σlσk

(p′2, ω
′
n2

; pl, ωnl) =

=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl)
∂

∂ (ϕ1)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σ1,σk=σ2

×Gαkσkσk(pk, ωnk)∆αkα3
σkσ3

(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1
σNσ1

(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)Gα2
σ2σ2(p2, ωn2)

×∆α2α3
σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl)

∂

∂ (ϕ1)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σN ,σk=σ1

}
.(B.1)

Multiplying both sides by tanh θ(Φ1)σlσk (pl, ωnl ; pk, ωnk), we have:
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∑
σ2
σ′2

∑
p2.p

′
2

ωn2 , ω
′
n2

(
(ϕ1)

∗
σ2σ′2

(p2, ωn2 ; p′2, ω
′
n2

) (V1)
−1
σ2σ′2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(Φ1)σlσk (pl, ωnl ; pk, ωnk)

)
tanh θ =

=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl)

×

tanh θ(Φ1)σlσk (pl, ωnl ; pk, ωnk)
∂

∂ (ϕ1)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σ1,σk=σ2

×
×Gαkσkσk(pk, ωnk)∆αkα3

σkσ3
(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1

σNσ1
(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)Gα2
σ2σ2(p2, ωn2)

×∆α2α3
σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl)

×

tanh θ(Φ1)σlσk (pl, ωnl ; pk, ωnk)
∂

∂ (ϕ1)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σN ,σk=σ1


}
. (B.2)

Similarly, multiplying both sides of the field equation (13) for ϕ2 by coth θ(Φ2)σlσk (pl, ωnl ; pk, ωnk),
and for ϕ3 by tanh θ(ϕ3)

αl
σlσk

(pl, ωnl ; pk, ωnk) we have:

∑
σ2
σ′1

∑
p2.p

′
1

ωn2 , ω
′
n1

(
(ϕ2)

∗
σ2σ′1

(p2, ωn2 ; p′1, ω
′
n1

) (V2)
−1
σ2σ′1σlσk

(p′1, ω
′
n1

; pl, ωnl)

(Φ2)σlσk (pl, ωnl ; pk, ωnk)

)
coth θ =

=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl)

×

coth θ(Φ2)σlσk (pl, ωnl ; pk, ωnk)
∂

∂ (ϕ2)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σ1,σk=σ2


×Gαkσkσk(pk, ωnk)∆αkα3

σkσ3
(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1

σNσ1
(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)Gα2
σ2σ2(p2, ωn2)
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×∆α2α3
σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl)

×

coth θ(Φ2)σlσk (pl, ωnl ; pk, ωnk)
∂

∂ (ϕ2)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σN ,σk=σ1


}
, (B.3)

and

∑
σ′1
σ′2

∑
p′1.p

′
2

ωn′1 , ω
′
n2

(
(ϕ3)

∗
σ2σ′2

(p′1, ωn′1 ; p′2, ω
′
n2

) (V3)
−1
σ′1σ
′
2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(ϕ3)
αl
σlσk

(pl, ωnl ; pk, ωnk)

)
tanh θ =

=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl)

×

tanh θ(ϕ3)
αl
σlσk

(pl, ωnl ; pk, ωnk)
∂

∂ (ϕ3)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σ1,σk=σ2

×
×Gαkσkσk(pk, ωnk)∆αkα3

σkσ3
(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1

σNσ1
(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)Gα2
σ2σ2(p2, ωn2)

×∆α2α3
σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl)

×

tanh θ(ϕ3)
αl
σlσk

(pl, ωnl ; pk, ωnk)
∂

∂ (ϕ3)σlσk
4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σN ,σk=σ1


}
. (B.4)

Adding respective sides together for three equations, we obtain:

∑
σ2
σ′2

∑
p2.p

′
2

ωn2 , ω
′
n2

(
(ϕ1)

∗
σ2σ′2

(p2, ωn2 ; p′2, ω
′
n2

) (V1)
−1
σ2σ′2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(Φ1)σlσk (pl, ωnl ; pk, ωnk)

)
tanh θ +

∑
σ2
σ′1

∑
p2.p

′
1

ωn2 , ω
′
n1

(
(ϕ2)

∗
σ2σ′1

(p2, ωn2 ; p′1, ω
′
n1

) (V2)
−1
σ2σ′1σlσk

(p′1, ω
′
n1

; pl, ωnl)

×(Φ2)σlσk (pl, ωnl ; pk, ωnk)

)
coth θ +

∑
σ′1
σ′2

∑
p′1.p

′
2

ωn′1 , ω
′
n2

(
(ϕ3)

∗
σ2σ′2

(p′1, ωn′1 ; p′2, ω
′
n2

) (V3)
−1
σ′1σ
′
2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(ϕ3)
αl
σlσk

(pl, ωnl ; pk, ωnk)

)
tanh θ =
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=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl)

×

tanh θ(Φ1)σlσk
∂4αlαk

σlσk

∂ (ϕ1)σlσk
+ coth θ(Φ2)σlσk

∂4αlαk
σlσk

∂ (ϕ2)σlσk
+ tanh θ(ϕ3)σlσk

∂4αlαk
σlσk

∂ (ϕ3)σlσk︸ ︷︷ ︸
∂
∂θ
4αlαkσlσk


×Gαkσkσk(pk, ωnk)∆αkα3

σkσ3
(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1

σNσ1
(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)

×Gα2
σ2σ2(p2, ωn2)∆α2α3

σ2σ3 (p2, ωn2 ; p3, ωn3) . . . . . . Gαlσlσl(pl, ωnl)

×

tanh θ(Φ1)σlσk
∂4αlαk

σlσk

∂ (ϕ1)σlσk
+ coth θ(Φ2)σlσk

∂4αlαk
σlσk

∂ (ϕ2)σlσk
+ tanh θ(ϕ3)σlσk

∂4αlαk
σlσk

∂ (ϕ3)σlσk︸ ︷︷ ︸
∂
∂θ
4αlαkσlσk


}

=
∑
N≥1

(−1)N−1
1

N

{ ∑
σ3
α3

∑
p3
ωn3

· · ·
∑
σN
αN

∑
pN
ωnN

Gαlσlσl(pl, ωnl)

 ∂∂θ4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σ1,σk=σ2


×Gαkσkσk(pk, ωnk)∆αkα3

σkσ3
(pk, ωnk ; p3, ωn3) . . . GαNσNσN (pN, ωnN )∆αNα1

σNσ1
(pN, ωnN ; p1, ωn1)

+ · · ·
+
∑
σ2
α2

∑
p2
ωn2

· · ·
∑
σN−1
αN−1

∑
pN−1
ωnN−1

Gαkσkσk(pk, ωnk)∆αkα2
σkσ2

(pk, ωnk ; p2, ωn2)

×Gα2
σ2σ2(p2, ωn2)∆α2α3

σ2σ3 (p2, ωn2 ; p3, ωn3) . . . Gαlσlσl(pl, ωnl)

 ∂∂θ4αlαk
σlσk

(pl, ωnl ; pk, ωnk)︸ ︷︷ ︸
σl=σN ,σk=σ1


}
. (B.5)

Taking the sum of both sides of equation (B.5) with respect to αl, αk;σl, σk; pl, pk;ωnl , ωnk (
short-hand notation a ≡ (αl, αk;σl, σk; pl, pk;ωnl , ωnk)), we obtain:

∑
a

∑
σ2
σ′2

∑
p2.p

′
2

ωn2 , ω
′
n2

(
(ϕ1)

∗
σ2σ′2

(p2, ωn2 ; p′2, ω
′
n2

) (V1)
−1
σ2σ′2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(Φ1)σlσk (pl, ωnl ; pk, ωnk)

)
tanh θ +

∑
a

∑
σ2
σ′1

∑
p2.p

′
1

ωn2 , ω
′
n1

(
(ϕ2)

∗
σ2σ′1

(p2, ωn2 ; p′1, ω
′
n1

) (V2)
−1
σ2σ′1σlσk

(p′1, ω
′
n1

; pl, ωnl)

×(Φ2)σlσk (pl, ωnl ; pk, ωnk)

)
coth θ +
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∑
a

∑
σ′1
σ′2

∑
p′1.p

′
2

ωn′1 , ω
′
n2

(
(ϕ3)

∗
σ2σ′2

(p′1, ωn′1 ; p′2, ω
′
n2

) (V3)
−1
σ′1σ
′
2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(ϕ3)
αl
σlσk

(pl, ωnl ; pk, ωnk)

)
tanh θ =

=
∑
N≥1

(−1)N−1
1

N

{
∑
σ1
α1

∑
p1
ωn1

· · ·
∑
σN
αN

∑
pN
ωnN

(
Gα1
σ1σ1(p1, ωn1) ∂∂θ4

α1α2
σ1σ2 (p1, ωn1 ; p2, ωn2)

. . .×GαNσNσN (pN, ωnN )∆αNα1
σNσ1

(pN, ωnN ; p1, ωn1)

)

+ · · ·

+
∑
σ1
α1

∑
p1
ωn1

· · ·
∑
σN
αN

∑
pN
ωnN

(
Gα1
σ1σ1(p1, ωn1)∆α1α2

σ1σ2 (p1, ωn1 ; p2, ωn2)

. . .×GαNσNσN (pN, ωnN ) ∂∂θ4
αNα1
σNσ1

(pN, ωnN ; p1, ωn1)

)}

=
∂

∂θ
ln det

(
1

2
[G0]−1

)
. (B.6)

Since
〈
∂
∂θ ln det

(
1
2 [G0]−1

)〉
= 0 and note that

〈
(ϕi)

∗
(
V −1i

)
(ϕi)

∗
〉

= 0, we derive:

〈
ϕ∗1V

−1
1 ϕ1

〉
tanh θ +

〈
ϕ∗2V

−1
2 ϕ2

〉
coth θ +

〈
ϕ∗3V

−1
2 ϕ3

〉
tanh θ = 0. (B.7)

Form above equation, we obtain:

sinh θ =

[
− 〈ϕ∗2V −1

2 ϕ2〉
〈ϕ∗1V −1

1 ϕ1〉+〈ϕ∗2V −1
2 ϕ2〉+〈ϕ∗3V −1

3 ϕ3〉

]1/2
, (B.8)

coth θ =

[
〈ϕ∗1V −1

1 ϕ1〉+〈ϕ∗3V −1
3 ϕ3〉

〈ϕ∗1V −1
1 ϕ1〉+〈ϕ∗2V −1

2 ϕ2〉+〈ϕ∗3V −1
3 ϕ3〉

]1/2
. (B.9)

Similar to calculations with parameter θ, for parameter φ we also have:

sinφ =

[
〈ϕ∗1V −1

1 ϕ1〉
〈ϕ∗1V −1

1 ϕ1〉+〈ϕ∗3V −1
3 ϕ3〉

]1/2
, (B.10)

cosφ =

[
〈ϕ∗3V −1

3 ϕ3〉
〈ϕ∗1V −1

1 ϕ1〉+〈ϕ∗3V −1
3 ϕ3〉

]1/2
. (B.11)

for convenience the following short-hand notations have been used

〈
ϕ∗1V

−1
1 ϕ1

〉
=

〈∑
a

∑
σ2, p2, ωn2

σ′2, p
′
2, ω
′
n2

(
(ϕ1)

∗
σ2σ′2

(p2, ωn2 ; p′2, ω
′
n2

) (V1)
−1
σ2σ′2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(ϕ1)σlσk (pl, ωnl ; pk, ωnk)

)〉
,
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〈
ϕ∗2V

−1
2 ϕ2

〉
=

〈∑
a

∑
σ2, p2, ωn2 .
σ′1, p

′
1, ω
′
n1

(
(ϕ2)

∗
σ2σ′1

(p2, ωn2 ; p′1, ω
′
n1

) (V2)
−1
σ2σ′1σlσk

(p′1, ω
′
n1

; pl, ωnl)

(ϕ2)σlσk (pl, ωnl ; pk, ωnk)

)〉
,

〈
ϕ∗3V

−1
2 ϕ3

〉
=

〈∑
a

∑
σ′1, p

′
1, ωn′1 .

σ′2, p
′
2, ω
′
n2

(
(ϕ3)

∗
σ2σ′2

(p′1, ωn′1 ; p′2, ω
′
n2

) (V3)
−1
σ′1σ
′
2σlσk

(p′2, ω
′
n2

; pl, ωnl)

×(ϕ3)σlσk (pl, ωnl ; pk, ωnk)

)〉
.

Appendix C. Figures and figure captions

Figure C1. An illustration of T P
phase diagram of UGe2 calculated for
Ts = 0, Tf0 = 52K, Pc = 1.6GPa,γ/κ =
0.10496, δ/κ = 0.17902. The FS phase
domain is shaded. The solid line
shows the second order FM-FS phase
transition.
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