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The magnetically ordered phase in the Hubbard model on the infinite-dimensional hyper-perovskite lattice
is investigated within dynamical mean-field theory. It turns out for the infinite-dimensional hyper-perovskite
lattice the self-consistent equations of dynamical mean-field theory are exactly solved, and this makes the
Hubbard model exactly solvable. We find electron spins are aligned in the ferromagnetic or ferrimagnetic
configuration at zero temperature and half filling of the edge-centered sites of the hyper-perovskite lattice. A
ferromagnetic-ferrimagnetic phase transition driven by the energy level splitting is found and it occurs through a
phase separation. The origin of ferromagnetism and ferrimagnetism arises from the band flatness and the virtual
hybridization between macroscopically degenerate flat bands and dispersive ones. Based on the exact solution in
the infinite-dimensional limit, a modified exact diagonalization as the impurity solver for dynamical mean-field
theory on finite-dimensional perovskite lattices is also proposed and examined.
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I. INTRODUCTION

Recently, flat (dispersionless) band systems have received
a great deal of attention due to the emergence of electron
correlations in macroscopic degeneracy. The emergence can
lead to rich strongly correlated phenomena [1]. The fractional
quantum Hall effect without external magnetic field and
flat-band ferromagnetism are its preeminent examples [2–7].
In the flat bands the electron wave functions are well localized
in real space, and this localization quenches the kinetic energy,
leaving the Coulomb interaction between electrons as the
dominant force. As a result electrons tend to be spin polarized
to minimize the interaction energy without any cost in the
kinetic energy. This yields the flat-band ferromagnetism [8,9].
Actually, it is a limit realization of the Stoner criterion
of ferromagnetism, where the density of states becomes
infinite [10]. Flat-band ferromagnetism can be considered as
the complement to Nagaoka ferromagnetism, where the Stoner
criterion is realized by infinite Coulomb interactions [11].
Several experimental realizations of flat-band ferromagnetism
in quantum wires [12], quantum dot arrays [13], and ultracold
fermion systems [14,15] have already been proposed.

Theoretically, a nontrivial flat band exists when the electron
hopping remains finite, but the net hopping vanishes. This de-
structive interference can be realized by cell construction [8,9],
line graphs [16–18], or orbital selection [19,20]. One of the
simplest flat-band models is the tight-binding model on the
so-called Lieb lattice or the edge-centered square lattice. It
belongs to the model family of cell construction [1,8]. The
Lieb lattice has attracted a lot of research attention since it is
the essential structure of layered cuprates of high-temperature
superconductors, and recently it was also experimentally
realized [21]. The edge-centered cubic lattice is also found
in the perovskite structure [22]. In the cubic perovskite
compounds ABX3, their essential structure elements, the
corner-sharing octahedra BX6, form the edge-centered cubic
lattice (see Fig. 1). Sometimes, the three-dimensional edge-

centered cubic lattice is also referred to as the perovskite
lattice [23]. Recently, ferromagnetism was found in a number
of transition-metal-oxide-based perovskites [24–29]. Studying
correlation effects in the perovskite lattice would reveal the
nature of magnetic ordering. We will refer to the edge-centered
hypercubic lattice as the hyper-perovskite lattice.

Electron correlations in the hyper-perovskite lattices can
lead the system to a wide variety of physics including mag-
netism, superfluidity, and topological phases [8,15,23,30]. The
simplest model for correlated electrons is the Hubbard model.
Originally, the Hubbard model was introduced to explore the
origin of ferromagnetism [31–33]. However, for most common
lattices, the stability of ferromagnetism in the Hubbard
model is very limited [11,34]. It turns out that the Hubbard
model is a generic model rather for antiferromagnetism than
for ferromagnetism. However, on the flat-band lattices the
ferromagnetic stability may occur in a wide parameter space,
since the Stoner criterion for ferromagnetism is satisfied [8].
In addition, on the hyper-perovskite lattices ferromagnetism
or ferrimagnetism is more preferable than antiferromagnetism
due to unequal numbers of sublattice sites [35].

In general, the stability of ferromagnetism in the Hubbard
model requires nonperturbative approaches [34]. Dynamical
mean-field theory (DMFT) is a powerful nonperturbative tool,
and it is widely and successfully used to investigate correlation
effects [36,37]. DMFT is exact in the infinite-dimensional
limit. The ferromagnetic stability in the Hubbard model
on the two-dimensional hyper-perovskite lattice was already
investigated by using the DMFT [15]. However, due to the
flat-band feature, the dynamical mean field must properly
retain the small energy scale. So far, only the numerical
renormalization group (NRG) is capable of capturing the
low-energy properties [15]. The standard exact diagonalization
(ED) [37,38] may fail to reproduce the dynamical mean field
from the finite set of bath orbits. However, by considering the
DMFT for the perovskite lattice in the infinite-dimensional
limit, we find that the self-consistent equations of the DMFT
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FIG. 1. The ideal structure of perovskite compounds ABX3. The
corner-sharing octahedra BX6 form an edge-centered cubic lattice.

are exactly solvable. This allows us to explicitly construct the
effective impurity model, which exactly treats the low-energy
scale in the infinite-dimensional limit. The exact solution
of the Hubbard model on the infinite-dimensional hyper-
perovskite lattice gives a precise insight of the magnetically
ordered ground state and the origin of magnetism in the
flat-band systems. In addition to the one-dimensional lattice,
the infinite-dimensional hyper-perovskite lattice is the other
unique case, where the Hubbard model is exactly solved.
Moreover, based on the tractable analysis of the DMFT at
the infinite-dimensional limit, we also propose a modified
ED scheme for the DMFT on finite-dimensional perovskite
lattices. In contrast to the standard ED [37,38], the modified
ED well recovers the NRG results. It could be used as
an alternative impurity solver to the NRG for the DMFT
on the finite-dimensional perovskite lattices. The modified
ED can be implemented into the density functional theory
(DFT) plus DMFT for the electronic structure calculations
[39,40].

The present paper is organized as follows. In Sec. II we
present the DMFT for the Hubbard model on the hyper-
perovskite lattice. In this section we also present the exact
solution of the DMFT at the infinite-dimensional limit and its
application for finite-dimensional perovskite lattices. Finally,
Sec. III is the conclusion.

II. THE HUBBARD MODEL ON THE
HYPER-PEROVSKITE LATTICE AND ITS DYNAMICAL

MEAN-FIELD THEORY SOLUTION

We consider the Hubbard model on the d-dimensional
hyper-perovskite lattice

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓, (1)

where c
†
iσ (ciσ ) is the electron creation (annihilation) operator

with spin σ at site i. t is the hopping parameter and we take into
account only the hopping between nearest-neighbor sites. U

is the local Coulomb interaction. The d-dimensional hyper-
perovskite lattice consists of a d-dimensional hypercubic
lattice and additional sites located in the middle of every
edge of the hypercube. In the two-dimensional space the
hyper-perovskite lattice is also called the Lieb lattice [1]. The
Lieb lattice is essentially the structure of layered cuprates, and
recently it was realized by an array of optical waveguides [21].
The three-dimensional perovskite lattice can be found in
perovskite compounds [22]. The hyper-perovskite lattice is
bipartite. We denote its sublattices by C and A, where C is
the hypercube, and A is the sublattice of the edge middle sites.
The unit cells of the hyper-perovskite lattice are the unit cells
of the hypercubic lattice and they consist of one site of
the hypercube C and its d nearest-neighbor sites of the A

sublattice. We also denote the number of sites of the hypercube
C by NC . The Hamiltonian in Eq. (1) can be rewritten as

H = −t
∑
I,l,σ

c
†
Iσ aI lσ + H.c. +

∑
Iσ

(εc − μσ )c†Iσ cIσ

−
∑
I lσ

μσ a
†
I lσ aI lσ + U

∑
I

nc
I↑nc

I↓ + U
∑
I l

na
I l↑na

Il↓,

(2)

where c and a denote the electron operator for the sublattices
C and A, respectively. The site index I runs over the lattice
sites of the hypercube C. l = 1,2, . . . ,d are the site indices of
the nearest-neighbor sites of the sublattice A around the site
I of the hypercube C. na

Ilσ = a
†
I lσ aI lσ , nc

Iσ = c
†
Iσ cIσ are the

number operators of electrons in the A and C sublattices. μσ =
μ + σh. Here we explicitly introduce the chemical potential
μ and an external magnetic field h. εc is the energy level for
electrons in the hypercube C. We also set the lattice parameter
of the hypercube as the length unit.

A. Free fermions in the infinite-dimensional
hyper-perovskite lattice

First, we consider the noninteracting case (U = 0). We
introduce the vector

�Iσ =

⎛
⎜⎜⎝

cIσ

aI1σ

...
aIdσ

⎞
⎟⎟⎠ (3)

and its Fourier transform in momentum space �kσ . The
noninteracting Green’s function of electrons in d-dimensional
space can be written as

ĝd
σ (k,ω) ≡ 〈〈�kσ |�†

kσ 〉〉ω
∣∣
U=0

=

⎛
⎜⎜⎜⎝

ω − εc + μσ 2t cos k1
2 · · · 2t cos kd

2
2t cos k1

2 ω + μσ · · · 0
...

...
. . .

...
2t cos kd

2 0 · · · ω + μσ

⎞
⎟⎟⎟⎠

−1

.

(4)
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This matrix can analytically be inverted. We obtain its
determinant

det
{[

ĝd
σ (k,ω)

]−1} = (ω + μσ )d−1

[
(ω + μσ )(ω + μσ − εc)

− 4t2
d∑

i=1

cos2 ki

2

]
. (5)

The zeros of this determinant indicate the spectra of the
Hamiltonian in Eq. (2). There are (d − 1) zero spectra and
2 other dispersive spectra, which satisfy the secular equation

εkν(εkν − εc) − 4t2
d∑

i=1

cos2 ki

2
= 0. (6)

The dispersive spectra εkν depend on momenta through
4t2 ∑d

i=1 cos2 ki

2 . We introduce a bare density of states (DOS)

Nd (ε)= 1

Nc

∑
k

|ε|δ
(

ε2 − 4t2
d∑

i=1

cos2 ki

2

)
= |ε|ρd (ε2), (7)

where

ρd (x) = 1

Nc

∑
k

δ

(
x − 2t2d − 2t2

d∑
i=1

cos ki

)
.

Here, we do not include the energy level εc in this bare DOS,
because we only use this bare DOS for performing the sums
over momenta in the Brillouin zone. The bare DOS can be
determined by using the Fourier transform [41]


d (s) =
∫ ∞

−∞
dxeisxρd (x)

= exp{is2t2d + d ln[J0(2t2s)]}, (8)

where J0(x) is the zeroth-order Bessel function. By expanding
the exponent argument in Eq. (8) in powers of s, we obtain


d (s) = exp

[
is2t2d − d

(2t2s)2

4
− d

4

(
(2t2s)2

4

)2

+O(d(t2s)6)
]
. (9)

In the limit d → ∞, 
d (s) is finite and ρd (x) is nonvanishing if
and only if t is scaled as ∼1/

√
d . This scaling is identical to the

one in the hypercubic and hyperdiamond lattices [36,37,42].
We take t = t∗/

√
2d , where t∗ is a constant. Then in the

infinite-dimensional limit the bare DOS becomes

N (ε) = lim
d→∞

Nd (ε) = 1
2 [δ(ε − t∗) + δ(ε + t∗)]. (10)

At infinite dimensions the bare DOS has a simple form. It is just
the sum of two delta functions located at ±t∗. The actual bare
DOS for the two dispersive bands in the infinite-dimensional
limit reads

Ñ (ε) = lim
d→∞

1

2Nc

∑
k,ν

δ(ε − εkν)

= 1
2 [δ(ε − ε+) + δ(ε − ε−)], (11)

where ε± = εc/2 ± [ε2
c /4 + (t∗)2]1/2. As we have noticed the

tight-binding model on the d-dimensional hyper-perovskite
lattice has two dispersive bands and (d − 1) degenerate flat
bands at zero energy. At infinite dimensions, the two dispersive
bands also effectively become flat at energy level ε±.

Inverting the matrix in Eq. (4), we obtain the noninteracting
Green’s functions of c and a electrons in d-dimensional space:

gd
cσ (k,ω) = 〈〈ckσ |c†kσ 〉〉ω

∣∣
U=0 = ω + μσ

(ω − εc + μσ )(ω + μσ ) − 4t2
∑d

i=1 cos2 ki

2

,

gd
alσ (k,ω) = 〈〈aklσ |a†

klσ 〉〉ω
∣∣
U=0 = 1

ω + μσ

[
1 + 4t2 cos2 kl

2

(ω + μσ − εc)(ω + μσ ) − 4t2
∑d

i=1 cos2 ki

2

]
,

gd
calσ (k,ω) = 〈〈ckσ |a†

klσ 〉〉ω
∣∣
U=0 = − 2t cos kl

2

(ω − εc + μσ )(ω + μσ ) − 4t2
∑d

i=1 cos2 ki

2

,

gd
aall′σ (k,ω) = 〈〈aklσ |a†

kl′σ 〉〉ω
∣∣
U=0 = 1

ω + μσ

4t2 cos kl

2 cos kl′
2

(ω − εc + μσ )(ω + μσ ) − 4t2
∑d

i=1 cos2 ki

2

,

where l,l′ = 1, . . . ,d, and l 
= l′. In real space within the unit cells, the noninteracting Green’s functions read

gd
cσ (ω) = 〈〈cIσ |c†Iσ 〉〉ω

∣∣
U=0 = 1

Nc

∑
k

gd
cσ (k,ω), gd

alσ (ω) = 〈〈aIlσ |a†
I lσ 〉〉ω

∣∣
U=0 = 1

Nc

∑
k

gd
alσ (k,ω),

gd
calσ (ω) = 〈〈cIσ |a†

I lσ 〉〉ω
∣∣
U=0 = 1

Nc

∑
k

gd
calσ (k,ω)e−ikl/2, gd

aall′σ (ω) = 〈〈aIlσ |a†
I l′σ 〉〉ω

∣∣
U=0 = 1

Nc

∑
k

gd
aall′σ (k,ω)ei(kl−kl′ )/2.

At large dimensions t ∼ 1/
√

d, the diagonal Green’s functions gd
cσ (ω),gd

alσ (ω) ∼ 1/d0, while the nondiagonal Green’s functions

gd
calσ (ω) = −

∫ ∞

−∞
dεNd−1(ε)

∫ π

−π

dkl

2π

2t cos kl

2 e−ikl/2

(ω − εc + μσ )(ω + μσ ) − ε − 4t2 cos2 kl

2

∼ 1√
d

,
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gd
aall′σ (ω) = 1

ω + μσ

∫ ∞

−∞
dεNd−2(ε)

∫ π

−π

dkl

2π

∫ π

−π

dkl′

2π

4t2 cos kl

2 cos kl′
2 ei(kl−kl′ )/2

(ω − εc + μσ )(ω + μσ ) − ε − 4t2 cos2 kl

2 − 4t2 cos2 kl′
2

∼ 1

d
.

Therefore, in the limit d → ∞, only the diagonal Green’s functions, gd
cσ (ω) and gd

alσ (ω), are finite, while nondiagonal ones,
gd

calσ (ω) and gd
aall′σ (ω), vanish. These features greatly simplify the DMFT.

B. Dynamical mean-field theory

The DMFT is based on the infinite-dimensional limit. In this limit the self-energy is a local function of frequency. The full
Green’s function satisfies the Dyson equation

Ĝσ (k,ω) = {[
ĝd

σ (k,ω)
]−1 − �̂σ (ω)

}−1
, (12)

where �̂σ (ω) is the self-energy. The self-energy can be expressed by the perturbation series of the noninteracting Green functions.
Since in the limit d → ∞, the noninteracting Green’s functions gd

calσ (ω) and gd
aall′σ (ω) vanish, the nondiagonal elements of the

self-energy �̂σ (ω) must vanish too. This property is also valid in the hyperdiamond lattice, where the unit cells have two sites [42].
Therefore, the self-energy �̂σ (ω) is a diagonal matrix with elements (�cσ (ω),�aσ (ω), . . . ,�aσ (ω)). The matrix in Eq. (12) can
analytically be inverted. We obtain the local Green’s function

Gd
aσ (ω) =

∫
ddk

(2π )d
Gd

a1σ (k,ω) = 1

ω + μσ − �aσ (ω)
+ 1

ω + μσ − �aσ (ω)

∫ π

−π

dk1

2π

×
∫

dεNd−1(ε)
4t2 cos2 k1

2

[ω + μσ − εc − �cσ (ω)][ω + μσ − �aσ (ω)] − 4t2 cos2 k1
2 − ε2

. (13)

In the limit d → ∞ the last term in Eq. (13) vanishes, since t ∼
1/

√
d, and limd→∞ Nd−1(ε) = N (ε). Thus, the local Green’s

function of a electrons at infinite dimensions becomes

Gaσ (ω) = lim
d→∞

Gd
aσ (ω) = 1

ω + μσ − �aσ (ω)
. (14)

This local Green’s function has a very simple form. It
looks like the full dressed Green’s function of a single level
μσ . Moreover, the local Green’s function of a electrons is
independent of the dynamics of c electrons. Within the DMFT
the self-energy �aσ (ω) is determined from the dynamics of a
single site embedded in an effective medium. This dynamics is
equivalent to the one of an Anderson model, which describes
an impurity coupled with a bath [37]:

Ha
d→∞ = −

∑
σ

μσa†
σ aσ + Una

↑na
↓ +

∑
m,σ

V a
mσ b†mσaσ + H.c.

+
∑
m,σ

Ea
mσ b†mσbmσ , (15)

where b
†
mσ , bmσ are the creation and annihilation operators

that represent the bath. The bath parameters Ea
mσ and V a

mσ are
determined by the self-consistent equation


aσ (ω) =
∑
m

∣∣V a
mσ

∣∣2

ω − Ea
mσ

, (16)

where 
aσ (ω) = ω + μσ − �aσ (ω) − G−1
aσ (ω) [37]. For most

common lattices, the self-consistent equation cannot directly
be solved. The bath parameters are usually determined ap-
proximately by minimizing a distance between 
aσ (ω) and
its projection into a finite set of the bath orbits [37]. In
contrast, for the infinite-dimensional hyper-perovskite lattice,
the self-consistent equation is exactly solvable. Indeed, using

Eq. (14), we immediately obtain 
aσ (ω) = 0, which leads
to V a

mσ = 0. Therefore, the effective single-site Hamiltonian
reads

Ha
d→∞ = −

∑
σ

μσ a†
σ aσ + Una

↑na
↓. (17)

One can check that this effective Hamiltonian indeed yields the
Dyson equation (14). It is just the single-site Hubbard model.
We obtain the self-energy and the Green’s function [33]

�aσ (ω) = U
〈
na

−σ

〉 + U 2
〈
na

−σ

〉(
1 − 〈

na
−σ

〉)
ω + μσ − U

(
1 − 〈

na−σ

〉) , (18)

Gaσ (ω) = 1 − 〈
na

−σ

〉
ω + μσ

+
〈
na

−σ

〉
ω + μσ − U

, (19)

where 〈na
σ 〉 is the average occupation number of electrons at

the sublattice A. It can be computed from the Green’s function.
From Eq. (19) we obtain〈

na
σ

〉 = (
1 − 〈

na
−σ

〉)
f (−μσ ) + 〈

na
−σ

〉
f (U − μσ ), (20)

where f (x) = 1/[exp(x/T ) + 1] is the Fermi-Dirac distribu-
tion function at temperature T . At finite temperature (T > 0)
we always obtain limh→0(〈na

↑〉 − 〈na
↓〉) = 0. Therefore, the

sublattice A is always paramagnetic at finite temperature
when the external magnetic field is absent. However, at zero
temperature, a ferromagnetic solution exists. When 0 < μ <

U and in the limit h → 0+ we obtain 〈na
↑〉 = 1 and 〈na

↓〉 = 0.
The magnetic field h � 0 fixes the direction of magnetization.
The spontaneous ferromagnetic state is fully saturated. The
ferromagnetism at half filling is due to the flat feature of
the electron bands of a electrons. Electrons tend to be spin
polarized to minimize the Coulomb interaction energy without
any cost in the kinetic energy.
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Proceeding with c electrons we obtain the local Green’s
function

Gd
cσ (ω) =

∫
ddk

(2π )d
Gd

cσ (k,ω),

where

Gd
cσ (k,ω)

=
[
ω − εc + μσ − �d

cσ (ω) − 4t2 ∑d
i=1 cos2 ki

2

ω + μσ − �d
aσ (ω)

]−1

.

In the limit of infinite dimensions we obtain

Gcσ (ω) = lim
d→∞

Gd
cσ (ω)

= 1

ω + μσ − εc − �cσ (ω) − t∗2Ga
σ (ω)

. (21)

Within the DMFT the self-energy �cσ (ω) is determined from
the dynamics of a single impurity coupled with an effective
conduction bath. The effective Hamiltonian reads

Hc
eff =

∑
σ

(εc − μσ )c†σ cσ + Unc
↑nc

↓

+
∑
m,σ

V c
mσ d†

mσ cσ + H.c. +
∑
m,σ

Ec
mσ d†

mσdmσ , (22)

where d
†
mσ , dmσ are the creation and annihilation operators

that represent the bath. The bath parameters Ec
mσ and V c

mσ are
again determined by the self-consistent equation [37]


cσ (ω) =
∑
m

∣∣V c
mσ

∣∣2

ω − Ec
mσ

= t∗2
(
1 − 〈

na
−σ

〉)
ω + μσ

+ t∗2
〈
na

−σ

〉
ω + μσ − U

. (23)

This equation gives V c
1σ = t∗

√
1 − 〈na−σ 〉, Ec

1σ = −μσ and
V c

2σ = t∗
√〈na−σ 〉, Ec

2σ = U − μσ . Therefore, the effective
Hamiltonian which determines the self-energy of c electrons
reads

Hc
d→∞ = ∑

σ (εc − μσ )c†σ cσ + Unc
↑nc

↓

+ t∗
∑

σ

√
1 − 〈na−σ 〉(c†σ d1σ + H.c.)

−∑
σμσd

†
1σ d1σ + t∗

∑
σ

√〈na−σ 〉(c†σ d2σ + H.c.)

+∑
σ (U − μσ )d†

2σ d2σ . (24)

One can check that this effective Hamiltonian indeed yields
the Dyson equation (21). It also shows a virtual hybridization
between the macroscopically degenerate flat bands and the
dispersive bands. In contrast to the hypercube or hyperdiamond
lattices [36,37,42], the self-consistent equations of the DMFT
for the infinite-dimensional hyper-perovskite lattice can ana-
lytically be solved. This allows us to explicitly construct the
effective impurity Hamiltonian as in Eqs. (17) and (24). So far,
the infinite-dimensional hyper-perovskite lattice is a unique
lattice structure, where the self-consistent equations of the
DMFT are exactly solvable. Since the DMFT is exact in the
infinite-dimensional limit, this also makes the Hubbard model

on the infinite-dimensional hyper-perovskite lattice exactly
solvable.

At zero temperature and 0 < μ < U , 〈na
↑〉 = 1, 〈na

↓〉 = 0,
we obtain

Hc
d→∞ = ∑

σ (εc − μ − σh)c†σ cσ + Unc
↑nc

↓

+ t∗(c†↑d1↑ + d
†
1↑c↑) − (μ + h)d†

1↑d1↑

+ t∗(c†↓d2↓ + d
†
2↓c↓) + (U − μ + h)d†

2↓d2↓. (25)

This effective Hamiltonian just describes an impurity coupled
with two bath levels with different bare energy levels.
However, each spin component of the impurity is only coupled
with one energy level. Therefore, the energy level splitting can
lead on an imbalance of the spin population, which yields
the ferromagnetism of the hypercube C. This ferromagnetism
arises due to the flat-band ferromagnetism of the sublattice
A, irrespective of the Coulomb interaction of c electrons.
When the sublattice A is paramagnetic, this ferromagnetic
mechanism is no longer valid, since both spin components
of the c electron are equally coupled with the bath energy
levels. In contrast to the case of the sublattice A, the effective
Hamiltonian in Eq. (25) may not give a final analytical formula
for the impurity Green’s function. However, we can compute
the impurity Green’s function by exact diagonalization. In the
limit h → 0, we also compute the filling and the magnetization
of c electrons:

nc =
∑

σ

〈nc
σ 〉, (26)

mc =
{

1
2

〈nc
↑〉−〈nc

↓〉
nc

, if nc � 1,

1
2

〈nc
↑〉−〈nc

↓〉
2−nc

, if nc > 1.
(27)

Here when nc > 1 we have defined the magnetization of hole
particles. When mc = 0 the ground state of the hypercube
C is paramagnetic. When 0 < |mc| < 1/2 the hypercube C

is ferromagnetic and unsaturated, and when |mc| = 1/2 it is
also ferromagnetic, but fully saturated. If mc > 0 the spin
of electrons in the hypercube C is parallel to the spin of
electrons in the sublattice A. In this case the full lattice is
ferromagnetic. If mc < 0 the magnetization of the hypercube
C has the opposite direction to the one of the A sublattice. In
this case the full lattice is ferrimagnetic.

We compute the self-energy �cσ (ω) from the effective
Hamiltonian in Eq. (25) by exact diagonalization at zero
temperature. We are interested in the region 0 < μ < U ,
where electrons in the sublattice A form a fully saturated
ferromagnetic ground state. In Fig. 2 we plot the filling of
c electrons as a function of their bare energy level εc. Since
we choose μ = U/2 the system has particle-hole symmetry.
In Fig. 2 one can see that the filling nc is uniquely determined
in three different regions, where nc is around 0 (dilute electron
filling), 1 (half filling), and 2 (dilute hole filling). At certain
values of εc/t∗ the filling nc abruptly changes, and its value
becomes uncertain. This signals a phase separation at those
values of εc.

In Fig. 3 we plot the dependence of the magnetization mc

on the filling nc for different values of the chemical potential
μ. We use the energy level εc to vary the filling value nc.
The phase separation is the region where the filling value
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FIG. 2. The filling nc of c electrons as a function of the energy
level εc at U = 5 and μ = U/2 (t∗ = 1).

nc becomes uncertain. When μ � U/2, the phase separation
occurs around the half filling. Outside the phase separation
region, for filling nc < 1, mc = 1/2, hence the hypercube
C is fully saturated ferromagnetic, whereas in the region
1 < nc < 2, −1/2 < mc < 0, thus the hypercube C is still
ferromagnetic, but its magnetization is unsaturated. For the
full lattice, when nc < 1 the ground state is fully saturated
ferromagnetic, while when 1 < nc < 2, the ground state is
ferrimagnetic, since the magnetization of the hypercube mc is
negative. The phase separation separates the ferromagnetic and

FIG. 3. The magnetization mc via the filling nc of c electrons for
different values of the chemical potential μ. PS denotes the phase
separation region. U = 5, t∗ = 1.

FIG. 4. The magnetization mc of the hypercube C as a function
of the Coulomb interaction U at half filling μ = U/2 and εc = 0.
t∗ = 1.

the ferrimagnetic phases. In contrast to the two-dimensional
case, where a crossover from ferromagnetism to ferrimag-
netism is driven by the Coulomb interaction [15], we found
the phase separation between the ferromagnetic-ferrimagnetic
phase transition driven by the energy level splitting. Indeed,
in the infinite-dimensional limit, all bands effectively become
flat, and any finite value of the Coulomb interaction would
be dominant and it cannot lead to any phase crossover.
Instead of the Coulomb interaction, the energy level splitting
drives the imbalance of the spin populations that lead to
the ferromagnetic-ferrimagnetic phase transition through the
phase separation region. With further increasing μ, the phase
separation is shifted to the region of lower fillings, and an
additional phase separation region appears in the filling region
nc > 1. When μ = U/2, these two phase separation regions
divide the filling nc into three regions. At dilute electron or
hole fillings, the hypercube C is fully saturated ferromagnetic,
while near half filling, it is unsaturated ferromagnetic. When
μ > U/2, the above analyzed scenario still occurs with
particles replaced by holes. Note that for all values of the
chemical potential in the range 0 < μ < U , the filling of
electrons in the sublattice A is always na = 1. The ground
state is uniquely determined by the model parameters μ and εc

rather than by εc and the total filling n = na + nc. With a fixed
total filling n, multiple values of the chemical potential may
be obtained, and different ground states may be established.

In Fig. 4 we plot the magnetization mc of the hypercube C as
a function of the Coulomb interaction U at half filling μ = U/2
and εc = 0. One can see that mc approaches −1/2 only at
U → ∞. At finite values of the Coulomb interaction, the
ferromagnetic ground state of the hypercube C is unsaturated at
half filling. However, near the half filling the spin polarization
of the ferromagnetism of the hypercube C is opposite to the
one of the sublattice A. As a consequence, the ground state
of the full lattice is ferrimagnetic. This is consistent with the
Lieb theorem [35], since the sublattices C and A have unequal
numbers of sites. Note in the two-dimensional Lieb lattice, the
DMFT also found the ferrimagnetic ground state, however,
only in the strong-coupling regime [15]. In addition, the origin
of the ferrimagnetism is quite different. The ferrimagnetism
found in the two-dimensional Lieb lattice is due to the
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FIG. 5. Magnetic phase diagram of the hypercube C. SF (UF)
denotes the fully saturated (unsaturated) ferromagnetism. The phase
separation occurs on the phase boundaries. U = 5, t∗ = 1.

antiferromagnetic Heisenberg exchange in the strong-coupling
regime [15], while in the infinite-dimensional hyper-perovskite
lattice the ferrimagnetism arises from the band flatness and the
virtual hybridization between macroscopically degenerate flat
bands and the dispersive bands.

Finally, the phase diagram is presented in Fig. 5. The
phase diagram distinguishes three regions, two of which
are saturated ferromagnetism (mc = 1/2) separated by an
unsaturated ferromagnetism region (−1/2 < mc < 0). The
phase boundaries are actually the phase separation, where the
filling nc becomes uncertain. For the full lattice, the saturated
ferromagnetism region corresponds to fully ferromagnetism,
whereas the unsaturated one corresponds to ferrimagnetism.
At half filling μ = U/2 and εc = 0, the ground state is
ferrimagnetic.

C. Application for finite-dimensional perovskite lattices

The effective single-impurity models defined in Eqs. (17)
and (24) exactly treat the local dynamics of electrons in
the hyper-perovskite lattice, however, only in the infinite-
dimensional limit. One can see that the effective single-
impurity model of a electrons in Eq. (17) would produce
the two Hubbard subbands located at −μ and U − μ. In
the two-dimensional case this only roughly agrees with the
NRG results in the strong-coupling regime [15]. In finite-
dimensional perovskite lattices the dynamical mean fields
δ
aσ (ω) ≡ 
aσ (ω) and δ
cσ (ω) ≡ [
cσ (ω) − (t∗)2Gaσ (ω)]
no longer vanish. Therefore the baths in the effective single-
impurity models in Eqs. (17) and (24) do not well reproduce
the dynamical mean fields. In order to take into account the
finite values of δ
aσ (ω) and δ
cσ (ω) in the finite-dimensional
lattices, we represent them by finite sets of orbits

δ
aσ (ω) =
na

s∑
m=1

∣∣V a
mσ

∣∣2

ω − Ea
mσ

, (28)

δ
cσ (ω) =
nc

s∑
m=1

∣∣V c
mσ

∣∣2

ω − Ec
mσ

. (29)

This representation is similar to the one in the standard
ED, except for the term (t∗)2Gaσ (ω) in δ
cσ (ω), which is
a feature of the exact solution at the infinite-dimensional
limit. We will see later this term is crucial; without it the
ED may produce artifact results. The dynamical mean fields
δ
aσ (ω) and δ
cσ (ω) represent their derivations from the
infinite-dimensional limit. The corresponding effective single-
impurity models become

Hα = Hα
d→∞ +

∑
m,σ

V α
mσf †

mσ ασ + H.c. +
∑
m,σ

Eα
mσf †

mσ fmσ ,

where α represents a or c electrons. Ha
d→∞ and Hc

d→∞ are
already defined in Eqs. (17) and (24), respectively. As in the
standard ED, the bath parameters V α

mσ and Eα
mσ are determined

by minimizing the distance

r = 1

M

M∑
n=1

ω−k
n

∣∣∣∣∣∣δ
ασ (iωn) −
na

s∑
m=1

∣∣V α
mσ

∣∣2

iωn − Eα
mσ

∣∣∣∣∣∣
2

, (30)

where ωn = (2n − 1)πT is the Matsubara frequency, M is a
frequency cutoff, and k is a parameter which is introduced for
better low-frequency fitting [43]. In particular, in our numerical
calculations we take k = 3. We numerically solve the DMFT
with the proposed modified ED as the impurity solver for the
two-dimensional perovskite lattice (i.e., the Lieb lattice) at half
filling (μ = U/2, εc = 0). For integrations in the momentum
space we take the square lattice of 128 × 128 points. The
Matsubara frequency is discretized with fictitious temperature
T = 0.01t . The ED is performed with the number of bath orbits
na

s = nc
s = 3. We have also checked the results with na

s =
nc

s = 4. We compute the DOS ρασ (ω) = ImGασ (ω − iη)/π
with the delta function broadening η = 0.01t . In Fig. 6 we
plot the obtained DOS by the DMFT with the modified ED,
and compare them with the ones obtained by the DMFT with
NRG [15] and by the DMFT with the standard ED [37,38].
The standard ED is performed with the number of bath orbits

0.0

0.5

1.0
U=2.8 t
ρ

a↑
(ω)

-10 -5 0 5 10
0.0

0.5

1.0D
O
S

ω

U=5.6 t
ρ

c↑
(ω)

-5 0 5 10
ω

U=5.6 t
ρ

a↑
(ω)

U=2.8 t
ρ

c↑
(ω)

FIG. 6. The density of states (DOS) of electrons of the C and A

sublattices at half filling (μ = U/2, εc = 0) in the two-dimensional
Lieb lattice. The blue solid lines, the green dotted lines, and the red
filled circles are the DOS calculated by the DMFT with the modified
ED (nc

s = na
s = 3), the standard ED (nc

s = na
s = 5), and the NRG,

respectively. The NRG results are reproduced from Ref. [15].
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FIG. 7. The interaction dependence of the sublattice magnetiza-
tions calculated by the DMFT with NRG, the modified ED (MED)
(nc

s = na
s = 3), and the standard ED (SED) (nc

s = na
s = 5) at half

filling (μ = U/2, εc = 0) in the two-dimensional Lieb lattice. The
NRG results are reproduced from Ref. [15].

na
s = nc

s = 5. Both the standard and modified ED have the
same total number of orbits coupled to the c impurity in
the ED. Like any ED, the DOSs obtained by the modified
ED exhibit spikelike peaks. However, the structure of their
principal peaks agrees well with the NRG results as shown in
Fig. 6. In contrast, the DOSs obtained by the standard ED show
significantly different behaviors. For instance, for U = 2.8t

the DOSs obtained by the standard ED show a metallic state,
while both the NRG and the modified ED give an insulating
state solution. For strong interactions (U = 5.6t) the principal
peaks in the DOSs obtained by the standard ED are shifted from
the ones obtained by the NRG and the modified ED. These
results indicate that the standard procedure of minimizing
the distance between the full dynamical mean field and its
finite bath counterpart may produce artifacts for the flat bands.
The modified ED takes into account the flat-band feature
explicitly through the term (t∗)2Gaσ (ω). In Fig. 7 we plot
the sublattice magnetizations as a function of the interaction.
This figure shows good agreement between the modified ED
and NRG results for whole range of the interaction, while the
standard ED gives small sublattice magnetizations in the weak-
interaction regime. Actually, the spontaneous magnetization of
the sublattice A does not vanish as the interaction U → 0 [15].
It vanishes only at U = 0. This feature is also confirmed by the
exact solution in the infinite-dimensional limit. Due to the band
flatness, any finite-value interaction would become dominant
and it leads the system to the magnetically ordered state. One
also can see that for weak interactions the local DOS ρaσ (ω)
exhibits a very narrow peak due to the band flatness [15]. As
a consequence, the minimizing procedure in standard ED fails
to capture the flatness feature, and this induces artifacts.

As the impurity solver for the DMFT, the NRG can be
extended to finite temperature [44]. However, within this
NRG, it is difficult to continuously vary temperature, since
temperature is discretized by a power of a cutoff [44]. In
contrast, the modified ED works well with the DMFT at any

FIG. 8. The temperature dependence of the sublattice magnetiza-
tions calculated by the DMFT with the modified ED (nc

s = na
s = 3)

at half filling (μ = U/2, εc = 0) in the two-dimensional Lieb lattice.

temperature. It also works in both the real and imaginary
frequency spaces. These features are the advantages of the
ED method. In Fig. 8 we plot the temperature dependence
of the sublattice magnetizations obtained by the DMFT with
the modified ED. Both sublattice magnetizations vanish at the
same critical temperature. This indicates that the magnetic
ordering must simultaneously occur in both sublattices. Since
the modified ED works well for the two-dimensional per-
ovskite lattice, it can be used as an alternative impurity solver
for three-dimensional perovskite lattice too. The modified
ED can be implemented into the DFT+DMFT for electronic
structure calculations [39,40]. Recently, ferromagnetism found
in a number of transition-metal-oxide-based perovskites ABO3

has attracted research attention [24–29]. In particular, the
osmate-based perovskites exhibit flat-band features [29]. Most
theoretical studies focus on the d electron orbitals in the
transition-metal ions, and neglect their hybridizations with
the p orbitals of the surrounding oxygen ions [27,28]. The
hybridizations in the sharing corner octahedra BO6 essentially
yield the three-dimensional perovskite lattice. One may expect
that the DFT+DMFT with the modified ED can be applied for
the electronic structure calculations of those materials.

III. CONCLUSION

We have investigated the nature of the magnetically ordered
phase in the Hubbard model on the infinite-dimensional hyper-
perovskite lattice by using DMFT. In contrast to the hypercube
or hyperdiamond lattices, for the infinite-dimensional hyper-
perovskite lattice the self-consistent equations of DMFT
are exactly solvable. This allows us to explicitly construct
the effective impurity Hamiltonian, and makes the DMFT
exact. In addition to the one-dimensional space, the hyper-
perovskite lattice at infinite dimensions is the other space,
where the Hubbard model is exactly solved. We have found
the ferromagnetic-ferrimagnetic phase transition driven by the
energy level splitting and the phase separation between the
ferromagnetic and ferrimagnetic phases. Both ferromagnetism
and ferrimagnetism arise from the band flatness and the virtual
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hybridization between macroscopically degenerate flat bands
and the dispersive bands. Our findings rigorously manifest
the ferromagnetic and ferrimagnetic stabilities in a wide
parameter space of the Hubbard model on the flat-band
lattices. We have also proposed a modified ED as the impurity
solver for DMFT on finite-dimensional perovskite lattices. The
modified ED is based on the tractable analysis of the DMFT
solution at the infinite-dimensional limit. It turns out that the
standard ED fails to fully capture the local dynamics of the
flat-band systems. As a benchmark for the modified ED,
we have studied the Hubbard model on the two-dimensional

Lieb lattice, and compare the obtained results with the ones
calculated by DMFT+NRG. A good agreement between
the modified ED and NRG results indicates a possibility
of implementing the modified ED in DMFT for electronic
structure calculations of flat-band materials.

ACKNOWLEDGMENTS

This research is funded by Vietnam National Foundation for
Science and Technology Development (NAFOSTED) under
Grant No. 103.01-2014.09.

[1] L. Zheng, L. Feng, and W. Yong-Shi, Chin. Phys. B 23, 077308
(2014).

[2] D.-N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nat. Commun. 2,
389 (2011).

[3] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106, 236802
(2011).

[4] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett.
106, 236803 (2011).

[5] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev.
Lett. 106, 236804 (2011).
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