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Controlling heat flows among three reservoirs asymmetrically coupled to two two-level systems
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We study heat flows among three thermal reservoirs via two two-level systems (TLSs). Two reservoirs are
coupled to one TLS and the third reservoir to the second TLS. The two TLSs are also coupled to each other,
thus bridging the third reservoir with the two other reservoirs. We show that the magnitudes and directions of the
reservoirs’ heat currents can be controlled by varying the various damping rates of the two TLSs due to coupling
with the corresponding reservoirs. First, it is shown that by changing the damping rate due to one reservoir,
magnitudes of heat currents of the other two reservoirs can behave in completely different manners, namely,
although one may be enhanced, the other may instead be suppressed, and vice versa. Second, the sign of the
heat current of one reservoir may change (i.e., crossover from heat absorption to heat release, or vice versa) if a
damping rate or the coupling strength between the two TLSs is swept through a critical value, which depends on
the temperature settings for the three reservoirs. Due to the asymmetric couplings of the two TLSs to the three
reservoirs, the thermal rectification occurs without introducing any additional asymmetry to the systems.
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I. INTRODUCTION

Understanding classical thermodynamics at the quantum
level has given birth to the subject of quantum thermodynamics
[1], which provides a new approach to explore the microscopic
world as well as a microscopic alternative to test the fundamen-
tal laws of thermodynamics. Quantum thermodynamics has
attracted more and more interest from different perspectives
and has achieved considerable progress. By means of quantum
resources, various quantum analogues [2–11] of classical
heat engines have been constructed, such as Carnot engines
[8] and Otto cycles [9–11]. Based only on the temperature
differences of the heat baths, without using external sources
of work and prescribed unitary transformations, a scheme of
a self-contained quantum refrigerator has been proposed [12]
and extensively studied [13–17].

In addition to the quantum heat engine and refrigerator,
the quantum devices that are based on the controlling of
thermal transport, such as the heat rectifiers [18–23], heat
transistors [24,25], heat logical gates [26], thermal memory
[27], and thermal ratchet [28], have also become one of
the goals of recent research in quantum thermodynamics.
The thermal rectifiers are components which exhibit an
asymmetric flux when the temperatures at their ends are
inverted. In Ref. [18], Zhang et al. studied thermal rectification
in quantum spin-chain systems by means of quantum master
equations and found that the sign of rectification can be
changed when one changes the magnetic field, temperature,
anisotropy, and system size. In Ref. [19], Roy proposed an
optical diode that works at low intensity of light in the
fully quantum regime. In Ref. [20], Fratini et al. studied
the one-dimensional Fabry-Perot interferometer built with
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a pair of two-level systems (TLSs), which can operate as
a microscopic integrated optical rectifier. In Ref. [21], an
optimal rectification in the ultrastrong-coupling regime of two
TLSs was proposed by Werlang et al., which under a certain
condition allows heat flow in one direction but completely
forbids heat flow in the opposite direction. The authors
of Ref. [21] stressed the necessity of the strong-coupling
formalism over the phenomenological approach for predicting
optimal rectification. In Ref. [22], Zhang et al. studied ballistic
thermal transport in three-terminal atomic nanojunctions. In a
recent work [24], Joulain et al. designed a quantum thermal
transistor made up of three interacting TLSs, each of which
is in turn coupled to a thermal reservoir. It was shown that a
small variation of the heat current in one TLS can considerably
amplify the variations of the other two in a wide range of energy
parameters and temperatures [24]. Those quantum devices
closely rely on the ability to manage the heat flow through
a set of coupled quantum systems. Moreover, the control of
heat flow in interacting quantum systems is also a fundamental
question since open quantum systems are always exposed to
their environments, in particular to the thermal baths [29–33].
Therefore, it is meaningful from both aspects of theory and
application to investigate the controlling of the magnitudes as
well as directions of heat flows among thermal reservoirs out
of equilibrium.

In most studies (e.g., [29–33]) of heat transport, only two
thermal baths are involved, each of which is coupled to a
terminal site of the coupled systems so that the absorbed heat
of the cold bath is always equal to the released heat of the hot
bath and their variations are synchronous. If one more thermal
bath is added in the end of the coupled systems, namely, three
heat baths are asymmetrically coupled to the systems, then
the behaviors of heat currents regarding the three baths, in
particular their magnitudes’ variations and direction switch,
become rich and remain unclear. For this purpose, in this
work, we consider the system comprised of two interacting
TLSs A and B. The TLS A is coupled at the same time
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with two thermal reservoirs R
(1)
A and R

(2)
A , while the TLS B is

coupled only to a single reservoir RB . In such an asymmetric
coupling regime, we are interested in the control of both the
magnitudes and directions of the heat currents of each of
the three reservoirs by adjusting the strengths of the different
existent couplings. It is found that (i) increasing the magnitude
of one heat current does not always promote the other two:
one of them may instead be suppressed, e.g., in the situation in
which two of three reservoirs have an equal temperature, and
(ii) when the three reservoirs possess different temperatures,
the one with intermediate temperature may experience a
crossover from heat release to heat absorption, or vice versa
(i.e., an inversion of heat current direction occurs). Moreover,
due to the inherent asymmetry of the model, the thermal
rectification occurs without introducing additional asymmetry
into the system. As we shall show, the heat transfer is more
favorable from the TLS B to A, while restrained in the opposite
direction.

The paper is organized as follows. In Sec. II, we present the
model and construct a quantum master equation to describe the
dynamics of the two TLSs in their eigenstate representation.
By virtue of the steady-state solution of the master equation,
we discuss the control of the magnitudes and directions of
the three reservoirs’ heat currents in Secs. III A and III B,
respectively, and demonstrate the thermal rectification effect
in Sec. III C. Finally, we conclude in Sec. IV.

II. THE MODEL

Consider two interacting TLSs A and B governed by the
Hamiltonian (with � = 1)

ĤS = ωA

2
σ̂ A

z + ωB

2
σ̂ B

z + g(σ̂ A
+ σ̂ B

− + σ̂ A
− σ̂ B

+ ), (1)

where σ̂
μ
z = |1〉μ〈1| − |0〉μ〈0| is a Pauli operator, σ̂

μ
+ =

|1〉μ〈0| (σ̂ μ
− = |0〉μ〈1|) is the raising (lowering) operator for

a TLS μ = A,B with transition frequency ωμ, and g denotes
the interaction strength between the two TLSs.

In the usual consideration, each TLS is assumed to be
coupled to a single thermal reservoir and heat currents may
arise between the reservoirs in the stationary state scenario.
Here, we study the problem of how the heat will flow when
one of the two TLSs is instead coupled to multiple independent
reservoirs. To be definite, let us simultaneously couple the TLS
A to two boson heat reservoirs R

(1)
A and R

(2)
A with temperatures

T
(1)
A and T

(2)
A , respectively, while allowing the TLS B to only

interact with a single boson heat reservoir RB with temperature
TB (see Fig. 1). The reservoirs can be described by the
Hamiltonian

ĤR =
∑

l

ωal â
†
l âl +

∑
m

ωbmb̂†mb̂m +
∑

n

ωcnĉ
†
nĉn, (2)

with the creation and annihilation operators â
†
l (b̂†m, ĉ

†
n) and

âl (b̂m, ĉn) describing the lth (mth, nth) boson mode with
frequency ωal (ωbm, ωcn) of the reservoir R

(1)
A (R(2)

A , RB). The
interaction Hamiltonian of the two TLSs with their respective

FIG. 1. (a) Schematic diagram of the physical model under
consideration. Two TLSs A and B are coupled to each other with
a strength g. The TLS A is coupled simultaneously to two heat
reservoirs R

(1)
A and R

(2)
A with temperatures T

(1)
A and T

(2)
A , respectively,

while B is coupled to a single heat reservoir RB with temperature TB .
(b) The levels of the four eigenstates |λi〉 (i = 1,2,3,4) of Hamiltonian
ĤS , given by Eq. (1), for the two coupled TLSs. In the presence of
the baths, there exist bath-induced exciting and damping processes
among the four eigenstates. The effective transition rates are given
by �1, �2, �3, and �4 in Eq. (12).

reservoirs reads

ĤI =
∑

l

κ
(1)
A,l(σ̂

A
+ âl + σ̂ A

− â
†
l ) +

∑
m

κ
(2)
A,m(σ̂ A

+ b̂m + σ̂ A
− b̂†m)

+
∑

n

κB,n(σ̂ B
+ ĉn + σ̂ B

− ĉ†n), (3)

where κ
(1)
A,l (κ (2)

A,m) represent the coupling strengths of A and the

lth (mth) mode of the reservoir R
(1)
A (R(2)

A ), while κB,n denote
that of B and the nth mode of RB .

In the present model, the heat transports include the direct
one between R

(1)
A and R

(2)
A through the common TLS A and the

indirect ones between R
(1)
A , R(2)

A , and RB through both the TLSs
A and B. The interaction strength g between A and B thus
becomes an important parameter that affects the heat currents.
In the strong A-B coupling regime, the dissipation of each
TLS depends not only on its coupling with the corresponding
reservoir(s), which is assumed to be weak, but also on the
coupling between themselves. Therefore, we should construct
the master equation to describe the system evolution in the
representation of the eigenstates of the full system Hamiltonian
ĤS . The eigenstates (eigenenergies) of ĤS , given by Eq. (1),
are |λ1〉 = |11〉 [E1 = 1

2 (ωA + ωB)], |λ2〉 = sin(θ/2)|01〉 +
cos(θ/2)|10〉 (E2 = α), |λ3〉 = cos(θ/2)|01〉 − sin(θ/2)|10〉
(E3 = −α), and |λ4〉 = |00〉 [E4 = − 1

2 (ωA + ωB)], with α =√
g2 + 1

4 (ωA − ωB)2 and tan θ = 2g/(ωA − ωB). In terms of
the eigenstates of ĤS , the total Hamiltonian Ĥ=ĤS+ĤR+ĤI
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can be rewritten as

Ĥ =
4∑

i=1

Ei |λi〉〈λi | + ĤR +
∑

j

Ĥ ′
I,j , (4)

where

Ĥ ′
I,j =

∑
l

κ
(1)
A,l[V

†
A,j (ωj )âl + VA,j (ωj )â†

l ]

+
∑
m

κ
(2)
A,m[V †

A,j (ωj )b̂m + VA,j (ωj )b̂†m]

+
∑

n

κB,n[V †
B,j (ωj )ĉn + VB,j (ωj )ĉ†n]. (5)

In Eq. (5), Vμ,j (ωj ) denotes the eigenoperators of the Hamil-
tonian HS , such that [HS,Vμ,j (ωj )] = −ωjVμ,j (ωj ), and ωj

stands for the eigenfrequency ω1 = 1
2 (ωA + ωB) − α corre-

sponding to transitions |λ1〉 ↔ |λ2〉 and |λ3〉 ↔ |λ4〉, while
ω2 = 1

2 (ωA + ωB) + α corresponds to transitions |λ1〉 ↔ |λ3〉
and |λ2〉 ↔ |λ4〉. Explicitly, the forms of Vμ,j (ωj ) are obtained
as follows:

VA,1(ω1) = sin
θ

2
(|λ2〉〈λ1| − |λ4〉〈λ3|),

VA,2(ω2) = cos
θ

2
(|λ3〉〈λ1| + |λ4〉〈λ2|),

VB,1(ω1) = cos
θ

2
(|λ2〉〈λ1| + |λ4〉〈λ3|),

VB,2(ω2) = sin
θ

2
(−|λ3〉〈λ1| + |λ4〉〈λ2|). (6)

In the above, we have presented the forms of Vμ,j (ωμ,j ) when
ωj > 0, otherwise Vμ,j (−ωj ) = V

†
μ,j (ωj ).

Because the coupling between a TLS and its reservoir(s)
is weak, the equation of motion for the two coupled TLSs
can be derived within the framework of the Born-Markov
approximation as

ρ̇ = −i[HS,ρ] + L(1)
A [ρ] + L(2)

A [ρ] + LB[ρ], (7)

where the Lindblad operators L(k)
A [ρ] (k = 1,2) and LB[ρ] are

given by

L(k)
A [ρ] =

∑
j

�
(k)
A (ωj )

{[
n̄

(k)
A (ωj )+1

]
[2VA,j (ωj )ρV

†
A,j (ωj )

−V
†
A,j (ωj )VA,j (ωj )ρ − ρV

†
A,j (ωj )VA,j (ωj )]

+ n̄
(k)
A (ωj )[2V

†
A,j (ωj )ρVA,j (ωj )

−VA,j (ωj )V †
A,j (ωj )ρ − ρVA,j (ωj )V †

A,j (ωj )]
}
, (8)

and

LB[ρ] =
∑

j

�B(ωj ){[n̄B(ωj ) + 1][2VB,j (ωj )ρV
†
B,j (ωj )

−V
†
B,j (ωj )VB,j (ωj )ρ − ρV

†
B,j (ωj )VB,j (ωj )]

+ n̄B (ωj )[2V
†
B,j (ωj )ρVB,j (ωj ) − VB,j (ωj )

×V
†
B,j (ωj )ρ − ρVB,j (ωj )V †

B,j (ωj )]}, (9)

where �
(k)
A (ωj ) and �B(ωj ) are spectral functions which

depend on the coupling strengths κ
(k)
A,l and κB,n and characterize

damping rates of the system of two TLSs due to interaction
with the reservoirs R

(k)
A and RB , respectively. For simplicity, we

suppose that �
(k)
A (ωj ) = �

(k)
A and �B(ωj ) = �B are frequency

independent throughout the paper. The average photon num-
bers n̄

(k)
A (ωj ) and n̄B(ωj ) of the reservoir R

(k)
A and RB depend

on the temperature of the reservoirs and take the forms

n̄
(k)
A (ωj ) = 1

exp
[ ωj

T
(k)
A

] − 1
, n̄B(ωj ) = 1

exp
[ωj

TB

] − 1
. (10)

III. THE CONTROL OF HEAT CURRENTS

In order to reveal the heat flow when the system reaches
the stationary state, we should derive the steady-state solution
ρS of the master equation (7). By letting ρ̇S = 0 in Eq. (7),
we obtain that all off-diagonal elements ρS

ii ′ = 〈λi |ρS |λi ′ 〉 with
i �= i ′ are zero, while the diagonal ones are as follows:

ρS
11 = �1�2

(�1 + �3)(�2 + �4)
,

ρS
22 = �2�3

(�1 + �3)(�2 + �4)
,

ρS
33 = �1�4

(�1 + �3)(�2 + �4)
,

ρS
44 = �3�4

(�1 + �3)(�2 + �4)
, (11)

where �1, �2, �3, and �4 denote the net transition rates among
the eigenstates {|λi〉} shown in Fig. 1(b), which are given by

�1 = sin2(θ/2)
[
J

(1)
A (ω1) + J

(2)
A (ω1)

] + cos2(θ/2)JB(ω1),

�2 = cos2(θ/2)
[
J

(1)
A (ω2) + J

(2)
A (ω2)

] + sin2(θ/2)JB(ω2),

�3 = sin2(θ/2)
[
J

(1)
A (−ω1) + J

(2)
A (−ω1)

]
+ cos2(θ/2)JB(−ω1),

�4 = cos2(θ/2)
[
J

(1)
A (−ω2) + J

(2)
A (−ω2)

]
+ sin2(θ/2)JB(−ω2), (12)

with

J
(k)
A (−ωj ) = �

(k)
A (ωj )

[
n̄

(k)
A (ωj ) + 1

]
,

J
(k)
A (ωj ) = �

(k)
A (ωj )n̄(k)

A (ωj ),

JB(−ωj ) = �B(ωj )[n̄B(ωj ) + 1],

JB(ωj ) = �B(ωj )n̄B(ωj ). (13)

In this work, we are interested in the heat flow among the
three reservoirs after the total system has reached the stationary
state. The heat currents associated with the reservoirs R

(k)
A and

RB can be defined, respectively, as [34,35]

Q
(k)
A = T r

{
L(k)

A [ρS]HS

}
, QB = T r{LB[ρS]HS}. (14)

From the perspective of reservoir, a positive heat current means
heat release from the reservoir, while a negative value implies
heat absorption by the reservoir. Therefore, a change of sign
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of the heat current can be used as a witness for a crossover
between heat absorption and heat release, or vice versa.

A. Magnitude modulation of the heat current

When each of two interacting TLSs is coupled only to
a single thermal reservoir, the released heat (if any) of one
reservoir should be equal to the absorbed heat of another one
in the steady-state regime due to the energy conservation.
Therefore, if the output (input) heat is increased for one
reservoir, e.g., by increasing the coupling strength of the
reservoir to the system, then the input (output) heat from
another reservoir is also increased, and vice versa. By contrast,
here the two TLSs are asymmetrically coupled to three thermal
reservoirs, namely, the TLS A is coupled at the same time to
two reservoirs R

(1)
A and R

(2)
A , while the TLS B is coupled just

to the single one RB . So there exist three heat currents Q
(1)
A ,

Q
(2)
A , and QB associated with these three reservoirs. In this

connection, a question arises: how does the variation of the
magnitude (i.e., the absolute value) of one heat current (e.g.,
|Q(1)

A |) affect that of the other two (e.g., |Q(2)
A | and |QB |)? In

particular, do they vary in the same manner, namely, all of them
increase or decrease simultaneously? Here, we shall show that
an increase (decrease) of one heat current, e.g., via changing
the corresponding damping rate, does not always lead to the
simultaneous increases (decreases) of the other two, namely,
one of the latter can instead be reduced (amplified).

To be explicit and without loss of generality, let us take
the case of T

(1)
A = T

(2)
A �= TB as an example to illustrate

the unsynchronized variations of the heat currents. If we
change the damping rate �B , we get the same variation trends
with respect to the magnitudes of the heat currents |Q(1)

A |,
|Q(2)

A |, and |QB |, namely, |Q(1)
A = |Q(2)

A | = |QB | = 0 when
�B = 0, but they all increase with increasing �B , similar to the
usual situation involving only two reservoirs as stated above.
Nevertheless, if we alter �

(1)
A or �

(2)
A , the variations of the three

heat currents no longer synchronize.
The dependence of heat currents and their magnitudes (i.e.,

|Q(1)
A |, |Q(2)

A |, and |QB |) on the values of �
(2)
A is shown in

Fig. 2(a) and its inset, where we set T
(1)
A = T

(2)
A < TB . We

observe that |Q(1)
A | = QB > 0 and |Q(2)

A | = 0 at �
(2)
A = 0, but

an increase in �
(2)
A causes increases in both |Q(2)

A | and |QB |,
which are accompanied by a decrease in |Q(1)

A |. This reveals the
fact that the heat amount absorbed by R

(1)
A in the presence of

R
(2)
A is smaller than that without R(2)

A . In other words, adding an
additional cold source R

(2)
A and increasing its coupling strength

to the TLS A favor the heat release of the hot source RB and,
at the same time, suppresses the heat absorption of the other
cold source R

(1)
A .

We now reset the parameters to T
(1)
A = T

(2)
A > TB , i.e., the

reservoirs R
(1)
A and R

(2)
A are hot sources serving equally as

a heat supplier and RB is the cold source playing the role
of a heat absorber. Although the variations of each of Q

(1)
A ,

Q
(2)
A , and QB displayed in Fig. 2(b) are different from those

displayed in Fig. 2(a), we still observe similar behaviors of
the magnitudes of the heat currents [see the inset of Fig. 2(b)]
as in the previous case with T

(1)
A = T

(2)
A < TB , which should,

FIG. 2. Heat currents Q
(1)
A (dashed line), Q

(2)
A (dash-dotted line),

and QB (solid line) as a function of the scaled damping rates �
(2)
A /�

(1)
A .

The insets show the variations of |Q(1)
A |, |Q(2)

A |, and |QB |. The
temperatures are set as (a) T

(1)
A = T

(2)
A = �

(1)
A < TB = 10�

(1)
A and (b)

T
(1)
A = T

(2)
A = 10�

(1)
A > TB = �

(1)
A . The other parameters are set as

ωA = 10�
(1)
A , ωB = 9�

(1)
A , g = �

(1)
A , and �B = �

(1)
A .

however, be interpreted as follows: adding an additional hot
source R

(2)
A and increasing its coupling strength to the TLS

A favor the heat absorption by the cold source RB and, at
the same time, reduces the heat release from the other hot
source R

(1)
A .

In order to understand physical reasons for the different
behaviors of the heat current magnitudes depicted above,
we derive from Eq. (14) the explicit expressions of the heat
currents of the reservoirs R

(k)
A and RB in terms of steady-state

populations as

Q
(k)
A = x

(k)
11 ρS

11 + x
(k)
22 ρS

22 + x
(k)
33 ρS

33 + x
(k)
44 ρS

44, (15)

with

x
(k)
11 = 2

[
sin2

(
θ

2

)
J

(k)
A (−ω1)E21 + cos2

(
θ

2

)
J

(k)
A (−ω2)E31

]
,

x
(k)
22 = 2

[
sin2

(
θ

2

)
J

(k)
A (ω1)E12 + cos2

(
θ

2

)
J

(k)
A (−ω2)E42

]
,
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x
(k)
33 = 2

[
cos2

(
θ

2

)
J

(k)
A (ω2)E13 + sin2

(
θ

2

)
J

(k)
A (−ω1)E43

]
,

x
(k)
44 = 2

[
cos2

(
θ

2

)
J

(k)
A (ω2)E24 + sin2

(
θ

2

)
J

(k)
A (ω1)E34

]
;

(16)

and

QB = y11ρ
S
11 + y22ρ

S
22 + y33ρ

S
33 + y44ρ

S
44, (17)

with

y11 = 2

[
cos2

(
θ

2

)
JB(−ω1)E21 + sin2

(
θ

2

)
JB(−ω2)E31

]
,

y22 = 2

[
cos2

(
θ

2

)
JB(ω1)E12 + sin2

(
θ

2

)
JB(−ω2)E42

]
,

y33 = 2

[
sin2

(
θ

2

)
JB(ω2)E13 + cos2

(
θ

2

)
JB(−ω1)E43

]
,

y44 = 2

[
sin2

(
θ

2

)
JB(ω2)E24 + cos2

(
θ

2

)
JB(ω1)E34

]
,

(18)

in which Eii ′ = Ei − Ei ′ (i,i ′ = 1,2,3,4) denotes the energy
differences between the two eigenstates |λi〉 and |λi ′ 〉. The
above Eqs. (15)–(18) demonstrate all the contributions of
transitions between energy levels of the TLSs to the heat
currents Q

(k)
A and QB , respectively. Since E21 and E31 (E24 and

E34) are always negative (positive), the first (last) terms of the
right-hand side of (15) and (17) contribute to heat absorption
(release) of the corresponding reservoirs. As for the middle two
terms, their signs are determined by the concrete parameters.
It is worth pointing out that the magnitudes of heat currents
are solely determined by the populations ρS

11, ρS
22, ρS

33, and ρS
44

once the coefficients x
(k)
ii and yii are given.

In Fig. 2(a), we have considered the dependences of
magnitudes of the three heat currents on the damping rate
�

(2)
A of reservoir R

(2)
A for T

(1)
A = T

(2)
A < TB , and shown that

although |Q(2)
A | grows with �

(2)
A , |Q(1)

A | is instead reduced.
Since increasing �

(2)
A leads to the stronger coupling between

the reservoir R
(2)
A and the TLSs, it is easy to understand

that in this case, R
(2)
A absorbs more heat from QB with an

increase of |Q(2)
A |. However, it remains unclear why |Q(1)

A |
is decreased, namely, its heat absorption is suppressed. For
the parameters used in Fig. 2(a), the first three terms in
(15) are all negative with respect to Q

(1)
A , which implies

that ρS
11, ρS

22, ρS
33 contribute to the heat absorption and ρS

44

contributes to the heat release of the reservoir R
(1)
A , therefore

|Q(1)
A | = |x(k)

11 |ρS
11 + |x(k)

22 |ρS
22 + |x(k)

33 |ρS
33 − x

(k)
44 ρS

44. From the
variations of the populations with �

(2)
A , shown in Fig. 3(a),

we observe that ρS
44 dominates among the populations and

increases with �
(2)
A , while the values of ρS

11, ρS
22, and ρS

33 retain
small values and slightly decrease. As a result, |Q(1)

A | is reduced
with an increase of �

(2)
A .

When the temperatures are reset to T
(1)
A = T

(2)
A > TB , as

considered in Fig. 2(b), we still observe the different behaviors
of |Q(2)

A | and |Q(1)
A | with �

(2)
A , namely, the former is increased

FIG. 3. Population variations with the scaled damping rate
�

(2)
A /�

(1)
A for the same parameters used in Figs. 2(a) and 2(b).

while the latter is decreased. Here, for the used parameters, the
first three terms in (15) are all negative and only the last term
is positive, and, at the same time, for this temperature setting,
Q

(1)
A > 0 in the whole range of �

(2)
A ; therefore, we have |Q(1)

A | =
−|x(k)

11 |ρS
11 − |x(k)

22 |ρS
22 − |x(k)

33 |ρS
33 + x

(k)
44 ρS

44. The dependences
of the populations on �

(2)
A in Fig. 3(b) show that ρS

44 decreases
with �

(2)
A , while ρS

11, ρS
22, and ρS

33 retain small values and
slightly increase. Consequently, |Q(1)

A | is reduced with an
increase of �

(2)
A .

B. Direction switch of the heat current

So far, we have discussed the situation when the tem-
peratures of two among the three reservoirs are equal and
have demonstrated behaviors of the magnitudes of the heat
currents by changing the damping rate of the joint two TLSs
A and B due to an individual reservoir. In this section, we
deal with the situation when the temperature of each of the
three reservoirs is distinct. We are interested in controlling the
heat transfer among the reservoirs, in particular the inversion
of heat current direction by changing one damping rate at
a time or the coupling strength between the two TLSs. We
show that due to the competition between the heat current
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FIG. 4. Heat currents Q
(1)
A (dashed line), Q

(2)
A (dash-dotted line),

and QB (solid line) as a function of the scaled damping rates
�B/�

(2)
A . The temperatures are chosen as (a) T

(1)
A = �

(2)
A , T (2)

A = 6�
(2)
A ,

TB = 10�
(2)
A and (b) T

(1)
A = 10�

(2)
A , T (2)

A = 6�
(2)
A , TB = �

(2)
A . The other

parameters are chosen as �
(1)
A = 0.5�

(2)
A , g = 4�

(2)
A , ωA = 10�

(2)
A , and

ωB = 9�
(2)
A . The horizontal line at zero is added to guide the eye for

the heat crossover.

to the low-temperature reservoir and the heat current from
the high-temperature reservoir, the reservoir with intermediate
temperature can experience an inversion of heat current
direction.

We consider the variations of heat currents Q
(1)
A , Q

(2)
A , and

QB when �B is changed, in Fig. 4(a), for TB > T
(2)
A > T

(1)
A

and, in Fig. 4(b), for TB < T
(2)
A < T

(1)
A , namely, the reservoir

R2
A is set possessing intermediate temperature. As is seen from

Fig. 4(a), when �B is increased from zero, RB is connected
to the others and releases heat (i.e., QB > 0), but the released
heat by RB is still small so the absorbed heat by R

(2)
A from

RB is still less than that which it releases to R
(1)
A , resulting in

a positive Q
(2)
A . In the course of increasing �B , there appears

a critical value at which the heat amount transferred from
RB to R

(2)
A is in balance with the heat amount transferred

from R
(2)
A to R

(1)
A , leading to Q

(2)
A = 0 [for the parameters

used in Fig. 4(a), the critical value is �B ≈ 0.34�
(2)
A ]. For

any further increase in �B , the heat amount coming into
R

(2)
A is larger than that going out, so Q

(2)
A becomes negative.

This picture indicates a crossover from heat release to heat
absorption experienced by R

(2)
A , the reservoir with intermediate

temperature. Interestingly, if the temperature order is reversed,
the reservoir with intermediate temperature may also exhibit a
crossover in the “reversed direction,” i.e., from heat absorption
to heat release, as shown in Fig. 4(b), in which the critical
value for crossover is �B ≈ 0.75�

(2)
A . It can be verified that a

crossover of heat current always occurs for the reservoir with
intermediate temperature when the coupling between the two
TLSs and a reservoir varies, no matter whether it is R

(1)
A , R

(2)
A ,

or RB .
From the above discussion, we know that the reservoir

with intermediate temperature would undergo a heat crossover
at some critical values of the damping rates as they are
increasing from zero. What do such critical values depend
on? We shall now show that they depend on the setting of
temperatures of the reservoirs. To do that, let us introduce
the following notations: 
M = T> − T= and 
m = T= − T<,
with T>, T=, and T< being the highest, intermediate, and
lowest temperature possessed by the reservoirs. First, consider
the situation when RB is the hot, R

(2)
A the cool, and R

(1)
A the

cold reservoir (i.e., TB > T
(2)
A > T

(1)
A ). Clearly, from Fig. 5(a),

at �B = 0, the reservoir R
(2)
A only releases its heat to R

(1)
A

so its heat current Q
(2)
A > 0. For �B > 0, this reservoir also

absorbs heat from RB so, as a result, it will experience a
heat crossover from Q

(2)
A > 0 to Q

(2)
A < 0, if the heat amount

QB→A2 transferred from RB to R
(2)
A becomes equal to QA2→A1 ,

the amount of heat delivered to R
(1)
A from R

(2)
A . From the fact

that QB→A2 ∝ �B
M and QA2→A1 ∝ 
m, it follows that the
critical value �B,cr ∝ 
m/
M . This means that the larger
the value of 
m (i.e., the temperature difference between
the cool and cold reservoirs) and/or the smaller the value
of 
M (the temperature difference between the hot and cool
reservoirs), the higher the value of �B,cr which is needed to
trigger such a crossover. This is perfectly reflected in Fig. 5(a)
where we can see that a higher T

(2)
A , which corresponds

to a bigger ratio 
m/
M , leads to a larger critical value
�B,cr . If the temperatures of RB and R

(1)
A are reversed (that

is, T
(1)
A > T

(2)
A > TB), we then have QA2→B ∝ �B
m and

QA1→A2 ∝ 
M so that �B,cr ∝ 
M/
m. This is also nicely
reflected in Fig. 5(b) where, contrary to what happens in
Fig. 5(a), we see that a higher T

(2)
A , which corresponds to a

smaller ratio 
M/
m, leads to a smaller critical value �B,cr at
which the sign of Q

(2)
A changes from negative to positive.

Now we turn to the coupling between the two TLSs A

and B, which plays an essential role in the present model
because without it the reservoirs R

(1)
A , R

(2)
A and the reservoir

RB are not connected so the heat currents obey the trivial
equation QB = Q

(1)
A + Q

(2)
A = 0. In the remaining part of this

work, we shall clarify the question: how can we control
the heat currents of different reservoirs, in particular the
inversion of heat current direction, by engineering g? As is
well known, a reservoir with the highest (lowest) temperature
always releases (absorbs) heat; hence, its heat current remains
positive (negative) for the whole range of variation of g. As for
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FIG. 5. (a) Q
(2)
A vs �B/�

(2)
A with various temperatures T

(2)
A

between T
(1)
A and TB for T

(1)
A = �

(2)
A and TB = 10�2

A. (b) Same as in
(a), with various temperatures T

(2)
A between TB and T

(1)
A for TB = �

(2)
A

and T
(1)
A = 10�

(2)
A . The other parameters are chosen as in Fig. 4. The

horizontal line at zero is added to guide the eye for the heat crossover.

a reservoir with intermediate temperature, it may at the same
time absorb heat from a hotter reservoir and release heat to a
colder one. The net value of its heat current depends on whether
heat absorption or heat release prevails and, as a consequence,
the heat current may change its sign (i.e., experience a heat
crossover) when g is varied. For example, a crossover of
the sign of heat current of the reservoir R

(2)
A (R(1)

A ) from
“positive” to “negative” (“negative” to “positive”) appears
at g = gcr = 0.98� (1.03�) for the setting TB > T

(2)
A > T

(1)
A

(TB < T
(1)
A < T

(2)
A ), as illustrated in Fig. 6(a) [Fig. 6(b)] with

detailed data given in the figure caption.
The critical value g = gcr at which a crossover occurs

also depends on the temperatures of the different reservoirs.
Figure 7(a) plots the heat current Q

(2)
A versus g/� for several

values of T
(2)
A satisfying the inequality TB > T

(2)
A > T

(1)
A . This

figure clearly indicates the increasing of gcr with T
(2)
A , in

accordance with a theoretical estimate gcr ∝ 
m/
M ∝ T
(2)
A .

For another temperature setting, say, T
(2)
A > T

(1)
A > TB , the

critical value gcr decreases when the temperature of the
reservoir R

(1)
A (i.e., the one with intermediate temperature)

FIG. 6. Heat currents Q
(1)
A (dashed line), Q

(2)
A (dash-dotted line),

and QB (solid line) as a function of the scaled coupling strength
g/� of TLSs A and B for different temperature settings. The other
parameters are set as ωA = 10�, ωB = 9�, and �

(1)
A = �

(2)
A = �B =

�. The horizontal line at zero is added to guide the eye for the heat
crossover.

increases, as seen from Fig. 7(b), which is also in good
agreement with a theoretical estimate for this situation, gcr ∝

M/
m ∝ 1/T

(1)
A .

C. Thermal rectification

In the following, we would like to discuss the thermal
rectification of our model. The rectification efficiency R can
be quantified as R = (QBA − QAB)/ max{QBA,QAB}, where
QBA (QAB) is the heat current from B to A (from A to B)
when the reservoir RB is set as the higher temperature T>

(the lower temperature T<). For convenience, we assume the
reservoirs R

(1)
A and R

(2)
A that are in contact with the TLS A

have the same temperature so that the thermal rectification
can be demonstrated via an exchange of the temperatures of
the reservoir RB and that of R1

A and R2
A. Generally, if one

introduces asymmetry to the nonlinear system, then it may
show the rectification effect [18]. In Fig. 8(a), the situation
of ωA = 10� �= ωB = 4� (with �

(1)
A = �

(2)
A = �B = �) is

considered, where we can see that the rectification R changes
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FIG. 7. (a) Q
(2)
A vs g/� with different values of temperatures

T
(2)
A for T

(1)
A = � < T

(2)
A < TB = 10�; (b) Q

(1)
A vs g/� with different

values of temperatures T
(1)
A for TB = � < T

(1)
A < T

(2)
A = 10�. The

other parameters used here are the same as in Fig. 6. The horizontal
line at zero is added to guide the eye for the heat crossover.

sign when the coupling strength g between the TLSs A and
B increases. R can be positive, zero, or negative, depending
on the values of g, and retains similar behaviors for different
lower temperatures T< with the given higher temperature T>.
However, this rectification induced by the detuning of the
two TLSs is not the unique character of our model, which
happens also for the usual two-reservoir scenario where each
TLS is equally coupled to a single reservoir. Our model
with three reservoirs actually possesses inherent asymmetry
for the heat conduction due to the asymmetric couplings of
the TLSs A and B to the thermal reservoirs. In Fig. 8(b),
we show the rectification as a function of g/� for two
identical TLSs, namely, ωA = ωB . We observe that R remain
positive and slightly vary with g/� for all the considered
temperature differences, which implies that the heat transfer
is favorable from B to A, while restrained in the opposite
direction. Here, the rectification with identical TLSs is an
important character of our model since for two identical TLSs
being equally coupled to two reservoirs, the rectification R

will remain zero, as shown by the horizontal line at zero in
Fig. 8(b).

FIG. 8. Rectification as a function of scaled coupling strength
g/� for different lower temperature T< with a given higher
temperature T> = 10�. Two nonresonant TLSs are considered in
(a) with ωA = 10� and ωB = 4�, while two identical TLSs are
considered in (b) with ωA = ωB = 10�. The horizontal line at zero
in (b) denotes the rectification in the two-reservoir case, namely, each
of two identical TLSs being coupled to a single reservoir.

IV. CONCLUSION

In conclusion, we have studied the possibility of controlling
both the magnitudes and directions of heat currents of three
thermal reservoirs that are asymmetrically coupled to two
interacting TLSs. More precisely, two of the three reservoirs
are simultaneously coupled to one TLS, but the remaining
reservoir is coupled to another TLS. In terms of the eigenstates
of the two interacting TLSs, we have constructed a master
equation to describe the dynamics of the two TLSs and
derived the solution in the steady-state regime. First, we have
considered the situation when two of the three reservoirs
possess an equal temperature which is different from that of
the third one, and have analyzed the control of the magnitudes
of the reservoirs’ heat currents under this situation. We have
shown that increasing (decreasing) the damping rate regarding
one reservoir can increase (decrease) the magnitude of the heat
current associated with this reservoir, but leads to completely
opposite behaviors of those of the other two reservoirs, namely,
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the magnitude of heat current of one reservoir may be increased
(decreased) as well, while that of the other one may instead be
decreased (increased). In other words, adding an additional
thermal reservoir and increasing its coupling strength to
one TLS can favor heat transfer of one of the two other
reservoirs, while suppress that of the remaining one. Then,
the situation when each of the three reservoirs has a different
temperature has also been considered. In this situation, we have
demonstrated the inversion of the direction of the heat current
(i.e., the crossover between heat absorption and release) of
the reservoir with intermediate temperature by varying the
damping rate regarding one of the other two reservoirs (i.e., the
ones with the highest and lowest temperatures) or by varying
the coupling strength of the two TLSs. The critical values
of the damping rate and the coupling strength that trigger
the crossover are found related to the temperature settings

of the three reservoirs. We have also discussed the thermal
rectification of our model due to the inherent asymmetric
couplings of the two TLSs to the three reservoirs.
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R. Scheibner, M. Köig, D. Reuter, A. D. Wieck, C. Gould, H.
Buhmann, and L. W. Molenkamp, New J. Phys. 10, 083016
(2008); L. Zhang, J. Thingna, D. He, J. S. Wang, and B. Li,
Europhys. Lett. 103, 64002 (2013); L. Zhang, J. T. Lü, J. S.
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