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We present a theoretical study of the electron distribution, i.e., two-dimensional electron gas (2DEG) in
polar heterojunctions (HJs) within a realistic model. The 2DEG is confined along the growth direction by
a triangular quantum well with a finite potential barrier and a bent band figured by all confinement
sources. Therein, interface polarization charges take a double role: they induce a confining potential and,
furthermore, they can make some change in other confinements, e.g., in the Hartree potential from io-
nized impurities and 2DEG. Confinement by positive interface polarization charges is necessary for the
ground state of 2DEG existing at a high sheet density. The 2DEG bulk density is found to be increased in
the barrier, so that the scattering occurring in this layer (from interface polarization charges and alloy
disorder) becomes paramount in a polar modulation-doped HJ.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Recently, electronic transport and intersubband optical transi-
tion in polar heterostructures (HSs), such as gallium nitride (GaN)
(or zinc oxide (ZnO)), and their compounds have been intensively
investigated [1,2]. These properties are characteristic of the quality
and performance of electronic and optical devices [3]. The quoted
semiconductors possess unique features that make them im-
portant to fabricate electronic and optical devices in view of their
promising potential for high-voltage, high-power, and high-tem-
perature microwave applications.

The electronic transport in a HS is characterized by a high
mobility of two-dimensional electron gas (2DEG) in the sample,
and its optical absorption by a narrow spectral linewidth. Both
properties in question are determined by various scattering pro-
cesses taking place with 2DEG. The effect of a scattering process in
the lateral plane is determined by its mechanism, but this also
depends on the electron distribution along the growth direction
(quantization direction). Thus, the effect of an electron scattering
process in the lateral plane depends on the envelope function, i.e.,
on confinement sources.

As is well known [1,2], polarization is an important property of
a nitride and oxide-based HS. The HS possesses a very high (areal)
n).
density of polarization charges bound on the interface
(s∼1013 cm�2). For formation of 2DEG in a polar HS, interface
polarization charges take a double role: they are a source to supply
carriers (electrons) into the sample, but they also are a source to
confine the carriers along the growth direction. It is worth noting
that for formation of 2DEG in a modulation-doped HS, ionized
impurities take such a double role as well [3,4].

Therefore, the aim of this paper is to present a theoretical study
of the electron distribution (2DEG) in a polar modulation-doped
HS, where the above double role of both interface polarization
charges and ionized impurities is reasonably taken into account.
Especially, we want to compare the role of the interface polar-
ization charges and the ionized impurities which has not be done
so far.

For simple illustration, we deal with a two-layer HS, i.e., single
heterojunction (HJ) based on GaN. In Section 2, the 2DEG in a HJ is
assumed to occupy the ground subband. The corresponding elec-
tron state is approximately described by a variational wave func-
tion in a triangular quantum well (QW). Within this realistic
model, the QW has a finite potential barrier and a bent band.

In Section 3, parameters figuring the variational wave function
are determined for a polar modulation-doped HJ by all confining
potentials, especially from interface polarization charges and io-
nized impurities. Numerical results illustrating the electron dis-
tribution in HJ are also presented in Section 3. Lastly, a summary is
given in Section 4.

www.elsevier.com/locate/physb
http://dx.doi.org/10.1016/j.physb.2015.09.042
http://dx.doi.org/10.1016/j.physb.2015.09.042
http://dx.doi.org/10.1016/j.physb.2015.09.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.09.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.09.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2015.09.042&domain=pdf
mailto:thanhtienctu@gmail.com
http://dx.doi.org/10.1016/j.physb.2015.09.042


N.T. Tien et al. / Physica B 479 (2015) 62–66 63
2. Theory

2.1. Variational wave function for HJ of finite potential barrier

We are now dealing with wurtzite III-nitride-based HJs, e.g., an
AlGaN/GaN sample, which is composed of an AlGaN layer grown
on a GaN layer. The system is featured with the z-axis along and
opposite to the growth direction [0001], and z¼0 being the in-
terface plane between the GaN channel z 0( > ) and the AlGaN
barrier z 0( < ). It is assumed that the channel layer (large thick-
ness) is relaxed, while the barrier one (small thickness) is under
tensile strain and modulation-doped.

At low temperature, the 2DEG is assumed to primarily occupy
the lowest subband. It was shown [4–6] that in the realistic model
of triangular QWs with a finite potential barrier, the electron state
may be well described by a Fang–Howard wave function modified
by Ando [5]:
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Here, κ and k are half the wave numbers in the barrier and channel
layers, respectively. A, B, and c are dimensionless parameters given
in terms of k and κ through the boundary and normalization
conditions, as follows [4,6]:
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The wave function of the lowest subband (its wave vectors k
and κ) is to minimize the total energy per electron, which is fixed
by the Hamiltonian

H T V z , 3tot= + ( ) ( )

where T is the kinetic energy, and V ztot ( ) is the overall confining
potential.

2.2. Confining potentials in a polar modulation-doped HS

Carrier confinement in a polar modulation-doped HS is de-
termined by all confining sources located along the growth di-
rection (z-axis): potential barrier, interface polarization charges,
and Hartree potential induced by ionized impurities and 2DEG:

V z V z V z V z . 4tot b H( ) = ( ) + ( ) + ( ) ( )σ

We are to specify the individual confining potentials in Eq. (4).
First, for the potential barrier of a finite height V0 located at the
interface plane z¼0, it holds

V z V z , 5b 0 θ( ) = ( − ) ( )

with zθ ( ) as a unity step function. The potential barrier height is
fixed by the conduction band offset between the AlGaN and GaN
layers: V E x0 c= Δ ( ), with x as the alloy (Al) content in the AlGaN
barrier.

It is well known [7–10] that due to piezoelectric and sponta-
neous polarizations in a nitride-based strained HS there exist po-
sitive polarization charges bound on the interface. These charges
create a uniform normal electric field with the potential given by
[11]

V z e z
2

,
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π
ε
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( )σ

with s as their total density. Here /2a b cε ε ε= ( + ) is the average
value of the dielectric constants of the barrier bε( ) and channel cε( ).
Next, we calculate the Hartree potential induced by the ionized
donors and 2DEG in the HS. This is determined according to
Poisson's equation [6,12]
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where N zI ( ) is the bulk density of donors along the growth di-
rection, and n(z) the one of electrons.

Hereafter, we are concerned with such samples that are mod-
ulation-doped in the barrier [13–15]:

⎧⎨⎩N z
N z z zfor ,
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I
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where z Ls s= and z L Ld s d= + , with Ls and Ld as the thicknesses of
the spacer and doping layers, respectively.

The bulk density of electrons along the z-axis is determined by
the envelope wave function in Eq. (1):

n z n z , 9s
2ζ( ) = | ( )| ( )

with ns as their sheet density.
We solve the Poisson equation for the Hartree potential V zH ( )

induced by the above distributions of the donors and 2DEG in
combination with the boundary conditions at z = ± ∞. For a non-
polar HS, the subsystem composed of the donors and the 2DEG is
neutral, so its electric field is vanishing at z = ± ∞ [4,6,16]:

V z/ 0. 10H∂ ∂ ( ± ∞) = ( )

However, in a polar HS the 2DEG originates not only from donors,
but also from polarization charges, the neutrality condition is not
claimed on the donor-2DEG subsystem. Hence, the boundary
condition at z = − ∞ must be different, given as follows [12]:

V z V E/ 0 and , 11H H I∂ ∂ ( − ∞) = ( − ∞) = ( )

with EI as the binding energy of an ionized donor.
As a result, the Hartree potential may be represented in the

form

V V V . 12H I s= + ( )

Here the first term is the potential due to remote donors, de-
termined by the doping profile, viz., the donor sheet density
n N LI I d( = ) and the thicknesses of the doping and spacer layers,
given by
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The second term is the potential due to 2DEG, determined by
the electron sheet density ns and its z-axis distribution, i.e., the
electron wave function, given by
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The auxiliary functions in Eq. (14) are defined in terms of the
variational parameters entering Eq. (1), as follows:
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Fig. 1. Wave function zζ ( ) (a) and confining potentials (b) in an AlGaN/GaN HS for a
2DEG density n 5 10 cms

12 2= × − , a modulation doping of donor bulk density
N 5 10 cmI

18 3= × − , doping thickness L 150 Ad = ˚ , spacer L 70 As = ˚ , and various po-
larization-charge densities e/ 5 10 , 1012 13σ = × , and 5 10 cm13 2× − , labeled a, b, and c,
respectively. Solid and dashed lines refer to the realistic model and the ideal model,
respectively with the wave functions in (a) and the confining potentials in (b).
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2.3. Total energy per electron in the HJ lowest subband

We now turn to the total energy per electron when the 2DEG is
occupying the ground subband. The expectation value of the Ha-
miltonian given by Eqs. (3) and (4) reads

E k T V V V V, . 170 b I sκ( ) = 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉 ( )σ

The total energy per electron is obtained by a modification of Eq.
(17) in which the average 2DEG potential Vs〈 〉 is to be replaced with
its half [4].

Upon employing the above-derived analytic expressions for the
individual confining potentials, we may easily calculate their ex-
pectation values with the lowest-subband wave function from Eq.
(1). The average energies figuring in Eq. (17) are supplied below.

For the kinetic energy, it holds
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where mz is the out of-plane effective mass of the GaN electron.
Next, for the potentials related to the barrier and the polar-

ization charges bound on the interface, we have
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For the potential due to ionized impurities, it holds

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭ 21

V E
e n d s

A
d s

d s d d s s
d

d

s
s

B
k

c c

4
2

2
1

2
1 4 6 ,

I I

2
I

a

2

2 2 1 1

2

0

2

0

2
2

( )

π
ε κ

κ
χ χ χ χ χ

χ

〈 〉 = + +

+
( − )

( ) − ( ) − ( ) + ( ) + [ ( ) − ]

− [ ( ) − ] + ( + + )

with s Lsκ= and d L Ld sκ= ( + ) as the dimensionless doping sizes.
Here we introduced an auxiliary function
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Lastly, the average 2DEG potential is given by
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3. Numerical results

In previous studies [15,17–20] of lateral 2DEG transport in HJs,
the calculation was done within the ideal model of infinite-po-
tential barrier, based on the standard Fang–Howard wave function
[22]. This model simplified essentially the mathematics of the
transport theory and was a good approximation for such scattering
mechanisms that are insensitive to the near-interface wave func-
tion, as by phonons, ionized impurities, and charged dislocations.

In this paper we study the opposite case where the key scat-
tering mechanisms are quite sensitive thereto [23,24]. Therefore,
we examine the confinement effect within the realistic model of
finite barrier, based on the modified Fang–Howard wave function
[5]. As an example, we deal with the AlGaN/GaN polar HJ of a finite
barrier being equal to the conduction band offset for x¼0.3: V0

¼0.45 eV. Numerical results are similar for MgZnO/ZnO polar HJ.
Hereafter, the dashed and solid lines refer to the infinite- and fi-
nite-barrier models, respectively. We are concerned with the de-
pendence of the wave function on parameters of the supply and
confinement sources, e.g., 2DEG, doping source, and polarization.

In Figs. 1 and 2, we display the standard (dashed lines) and
modified (solid ones) Fang–Howard wave functions zζ ( ) along the
z-axis under modulation doping with a bulk density of donors
N 5 10 cmI

18 3= × − , and thickness for doping L 150 Ad = ˚ and spacer
L 70 As = ˚ .

In Fig. 1(a), these are plotted for a sheet density of 2DEG
n 5 10 cms

12 2= × − and various polarization-charge densities
e/ 5 10 , 1012 13σ = × , and 5 10 cm13 2× − , labeled a, b, and c, re-

spectively. To demonstrate the bent band effect by the interface
polarization charges, we display the total confining potential in
Fig. 1(b).

In Fig. 2, these are plotted for a polarization-charge density
e/ 10 cm13 2σ = − and various sheet densities of 2DEG

n 10 , 5 10s
12 12= × , and 10 cm13 2− , labeled a, b, and c, respectively.

Next, we examine the doping effect in the AlGaN/GaN HJ on the
2DEG distribution. The standard and modified Fang–Howard wave



a

b

c

100 50 0 50 100
0

5

10

15

20

25

z A
0

z
10

2 cm
1

2

Fig. 2. Wave function zζ ( ) in AlGaN/GaN HS for an alloy (Al) content x¼0.3, a
modulation doping of N 5 10 cmI
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The interpretation is the same as in Fig. 1.
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Fig. 3. Wave function zζ ( ) in AlGaN/GaN HS for an alloy (Al) content x¼0.3, a 2DEG
density n 5 10 cms

12 2= × − , and modulation doping with thickness L 150 Ad = ˚ , and
(a) a spacer thickness L 70 As = ˚ and various densities N 10 , 5 10I

18 18= × , and
10 cm19 3− , labeled a, b, and c, respectively, and (b) a density N 5 10 cmI

18 3= × − and
various spacer thicknesses L 0, 70s = , and 150 Å , labeled a, b, and c, respectively.
The interpretation is the same as in Fig. 1. Note that, in the infinite barrier model,
wave functions are virtually unchanged when the spacer thickness changes.
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functions zζ ( ) are plotted in Fig. 3 for a polarization-charge density
e/ 10 cm13 2σ = − and a 2DEG sheet density n 5 10 cms

12 2= × − . The

modulation doping is with a doping thickness L 150 Ad = ˚ and (a) a
fixed spacer thickness L 70 As = ˚ , and various donor densities
N 10 , 5 10I

18 18= × , and 10 cm19 3− , labeled a, b, and c, respectively,
and (b) a fixed donor density N 5 10 cmI

18 3= × − , and various
spacer thicknesses L 0, 70s = , and 150 Å, labeled a, b, and c,
respectively.

The numerical calculation reveals the fact that without inter-
face polarization charges (s¼0) the ground state of 2DEG cannot
exist at a high electron sheet density (e.g., n 10 cms

12 2= − ).
From the lines thus obtained, we may draw the following

conclusions.
As clearly seen from Figs. 1–3, the influence of confining

sources on the electron wave function in the ideal (infinite barrier)
and realistic (finite one) models is essentially different.

(i) Within the ideal model of infinite barrier (dashed lines), the
peak of the wave function is raised when increasing the densities
of interface polarization charges [16], ionized impurities, as well as
decreasing the 2DEG [19]. But the wave functions are virtually
unchanged when we change the spacer thickness.

(ii) This change is in sharp contrast to that in the realistic model
of finite barrier (solid lines), where the wave function peak is
lowered with the above variation of the parameters. Only the peak
of the wave function is raised when increasing the densities of
interface polarization charges [21].

The change of the wave function with variation of the confining
parameters is explained as follows. For instance, for 0σ > , the
polarization charges bound on the interface cause an attraction of
electrons thereto. In the infinite-barrier model, the wave function
cannot penetrate into the barrier, being squeezed, so that its peak
is raised, its local slope at the interface plane, z 0ζ′( = ), is in-
creased. On the contrary, in the finite-barrier model, the wave
function can penetrate through the interface plane, so being
shifted toward the barrier and its local value at the plane, 0ζ ( ), is
reduced.

As a result, combined roughness (CR) scattering, which is a
combination of the effects from interface geometric roughness and
polarization roughness, is found to be weakened [23]. Further, the
value of the wave function at z La= − near the interface is smaller,
so alloy disorder (AD) scattering is also reduced [24].
4. Summary

In this paper we study the electron distribution (2DEG) in polar
HJs within the realistic model. The 2DEG is confined by triangular
quantum well of a finite potential barrier and a bent band figured
by all confinement sources. For a polar modulation-doped HJ, the
confining effects from interface polarization charges and ionized
impurities are properly taken into account.

We found out that the electron distribution in the realistic (finite
barrier) and ideal (infinite one) models is changed in opposite direc-
tions in many cases when the carrier-supply and confinement sources
are varying. Only the electron distribution is changed in the same
trend when increasing the densities of interface polarization charges
but they penetrate into the barrier when the height of barrier is finite.

Interface polarization charges are necessary to fabricate elec-
tronic devices with 2DEG in the ground state of high sheet density,
so, of high electric conductivity.

The ideal model is applicable, as a good approximation, only to
scatterings that are insensitive to the near-interface 2DEG dis-
tribution. For scatterings sensitive thereto, e.g., alloy disorder and
roughness-related roughness, the realistic model must be
applicable.
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