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The lepton flavor violating decay of the Standard Model-like Higgs boson (LFVHD) is discussed in the
framework of the radiative neutrino mass model built in [K. Nishiwaki, H. Okada, and Y. Orikasa, Phys.
Rev. D 92, 093013 (2015)]. The branching ratio (BR) of the LFVHD is shown to reach 10−5 in the most
interesting region of the parameter space shown in [K. Nishiwaki, H. Okada, and Y. Orikasa, Phys. Rev. D
92, 093013 (2015)]. The dominant contributions come from the singly charged Higgs mediations, namely,
the coupling of h�2 with exotic neutrinos. Furthermore, if the doubly charged Higgs boson is heavy enough
to allow the mass of h�2 around 1 TeV, the mentioned BR can reach 10−4. In addition, we obtain that the
large values of Brðh → μτÞ lead to very small ones of Brðh → eτÞ, much smaller than the various
sensitivities of current experiments.

DOI: 10.1103/PhysRevD.93.115026

I. INTRODUCTION

The confirmation of the existence of a scalar boson,
known as the StandardModel (SM)-like Higgs boson, is the
greatest early success of the LHC [1,2]. In addition, the LHC
has reported recently some significant new physics beyond
the SM, where the lepton flavor violating decay of the
Standard Model-like Higgs boson (LFVHD) h → μτ
is one of the hottest subjects [3]. The upper bound
Brðh0 → μτÞ < 1.5 × 10−2 at 95% C.L. was announced
by the CMS Collaboration, in agreement with 1.85 ×
10−2 at 95% C.L. from the ATLAS Collaboration. More
interestingly, CMS has indicated a 2σ excess of this decay,
with the value of Brðh → μτÞ ¼ 0.84þ0.39

−0.37%. In addition,
two other lepton flavor violating (LFV) decays of the SM-
like Higgs boson have set experimental upper bounds
at BRðh → eτÞ < 0.7% and BRðh → eμÞ < 0.036% at
95%C.L. [4]. Theoretically, many publications have studied
how large BRðh → μτÞ can become in specific models
beyond the SM, such as the seesaw [5,6], supersymmetry
(SUSY) [5,7], two Higgs doublet [8,9], and 3-3-1 models
[10], as well as other interesting ones [11–13]. The LFV
decay of newneutralHiggs bosons in non-SUSYmodels has
also been discussed [14]. The significance of the LFVHD in
colliders was addressed in [15].

The first source of LFV decays results from the mixing
of different flavor massive neutrinos [16]. The simplest
models explaining the mixing and the masses of active
neutrinos may be the seesaw models, but the branching
ratio (BR) of LFV decays predicted by these models are
very small. Perhaps the inverse seesaw model gives the
largest BR, which is about 10−5 [6]. All of the SUSY
models, even the Minimal Supersymmetric Standard
Model, easily predict large values of the BR of the
LFVHD with new LFV sources in the slepton sector.
However, the particle spectra of these models are rather
complicated. In contrast, recent studies have shown that
many of the non-SUSY models inheriting simpler particle
spectra can predict very large BRs of the LFVHD at one-
loop level, satisfying all relevant experimental constraints.
Some of these models even have tree level couplings of the
LFVHD, and they simultaneously explain other interesting
experimental results [8].
There is another class of models, where neutrino mass is

radiatively generated, that can predict large BRs of the
LFVHD. These models do not have active neutrino mass
terms at tree level, but they contain LFV couplings of new
particles such as scalars and new leptons in order to generate
neutrino masses from loop contributions. There is an
interesting property that dictates that the loop suppression
factors appearing in the expression of neutrino masses lead
to the alleviation of the hierarchy in couplings. Hence,
the aforementioned models will allow large Yukawa cou-
plings, which may result in large BR values for many LFV
processes. By investigating a specific model with three-loop
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neutrino mass introduced in [17], we try to make clear how
large theBRof the LFVHDcan reach in the allowed regions.
Furthermore, the contributions from active neutrino medi-
ations may be enhanced because the Glashow-Iliopoulos-
Maiani (GIM) mechanism does not work. Using the ’t
Hooft–Feynman gauge where loop contributions from
private Feynman diagrams are all finite, we can compute
and compare them.As a result, the best regions for largeBRs
of the LFVHD can be found with precise conditions of free
parameters. The contributions from active neutrino media-
tions are divided completely into independent contributions
ofW� and new singly charged Higgs bosons. As wewill see
later, the active neutrino loops in the radiative neutrino mass
model may give significant contributions to LFV processes.
This is different from all of the other models, where these
contributions are either ignored or are difficult to estimate
when active neutrinosmixwith new leptons, as in the case of
the (inverse) seesaw models.
Our paper is arranged as follows. Section II will collect

all needed ingredients for calculating the BR of the
LFVHD. Section III concentrates on detailed expressions
of the LFVHD amplitudes and partial widths. The con-
straints given in [17] will be discussed to find the allowed
regions of parameter space. A numerical discussion is

conducted and the main results are summarized in Secs. IV
and V. Finally, the Appendixes A and B list analytic
expressions of Passarino-Veltman (PV) functions and
LFVHD form factors. The divergence cancellations of
particular one-loop Feynman diagrams in the ’t Hooft–
Feynman gauge are proved in Appendix B.

II. REVIEW OF THE MODEL

A. Particle content

Following Ref. [17], the particle content of the model is
listed in Table I, where the last row represents charges of an
additional global symmetry, Uð1Þ. Aside from the SM
particles, new particles are all gauge singlets, including
three Majorana fermions, NR1;2;3

; one neutral Higgs boson,
Σ0; four singly charged Higgs bosons, ðh�1 ; h�2 Þ; and two
doubly charged Higgs bosons, k��. After the breaking of
the Uð1Þ symmetry, a remnant Z2 symmetry keeps NR1;2;3

and h�2 as negative parity particles. The remaining particles
are trivial. An interesting consequence is that the lightest
Majorana neutrino, which has negative parity, will be stable
and can be a dark matter candidate.
The Yukawa sector LY respecting all mentioned sym-

metries is given as

−LY ¼ ðylÞijL0
Li
ΦeRj

þ 1

2
ðyLÞijðL0

Li
ÞcL0

Lj
hþ1 þ ðyRÞijNRi

ðeRj
Þch−2 þ 1

2
ðyNÞijΣ0ðNRi

ÞcNRj
þ H:c: ð1Þ

In addition, when symmetries are broken, an effective Yukawa term appears after we take into account the loop
contributions for generating active neutrino masses, namely,

−Leff
Y ¼ ðmνÞabffiffiffi

2
p

v0
× ðνLa

ÞcνLb
× Σ0; ð2Þ

corresponding to the active neutrino mass term derived in [17].
The Higgs potential is

V ¼ m2
ΦjΦj2 þm2

ΣjΣ0j2 þm2
h1
jhþ1 j2 þm2

h2
jhþ2 j2 þm2

kjkþþj2 þ ½λ11Σ�
0h

−
1 h

−
1 k

þþ þ μ22h
þ
2 h

þ
2 k

−− þ H:c:� þ λΦjΦj4
þ λΦΣjΦj2jΣ0j2 þ λΦh1 jΦj2jhþ1 j2 þ λΦh2 jΦj2jhþ2 j2 þ λΦkjΦj2jkþþj2 þ λΣjΣ0j4 þ λΣh1 jΣ0j2jhþ1 j2 þ λΣh2 jΣ0j2jhþ2 j2
þ λΣkjΣ0j2jkþþj2 þ λh1 jhþ1 j4 þ λh1h2 jhþ1 j2jhþ2 j2 þ λh1kjhþ1 j2jkþþj2 þ λh2 jhþ2 j4 þ λh2kjh2j2jkþþj2 þ λkjkþþj4: ð3Þ

The scalar fields are parametrized as

Φ ¼
� Gþ

w
vþϕþiGzffiffi

2
p

�
; Σ0 ¼

v0 þ σffiffiffi
2

p eiG=v
0
; ð4Þ

where v≃ 246 GeV, v0 is a new vacuum expectation value
(VEV), and G�

w and GZ are Goldstone bosons ofW� and Z
bosons, respectively.
The above lepton and Higgs sectors show that the singly

charged Higgs bosons contribute mainly to the BR of the

TABLE I. Lepton and scalar fields proposed in [17]. The
notations L0

Li
and ν0Li

denote the flavor states, in contrast to
the mass state νLi

used later.

Lepton fields Scalar fields

Characters L0
Li
¼

�
ν0Li
eLi

�
eRi

NRi
Φ Σ0 hþ1 hþ2 kþþ

SUð3ÞC 1 1 1 1 1 1 1 1
SUð2ÞL 2 1 1 2 1 1 1 1
Uð1ÞY −1=2 −1 0 1=2 0 1 1 2
Uð1Þ 0 0 −x 0 2x 0 x 2x
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LFVHD, while the doubly charged Higgs bosons do not.
Because all of the charged Higgs bosons are SUð2ÞL
singlets, they do not couple with W bosons like new
Higgs multiplets in other models. At the one-loop level
and ’t Hooft–Feynman gauge, the Feynman diagrams for
the LFVHD are shown in Fig. 1.
In order to investigate the LFVHD, the amplitudes will

be calculated using the ’t Hooft–Feynman gauge. The
amplitudes are formulated as functions of the PV functions
analyzed in [10]. The notations of four-component (Dirac)
spinors are used for leptons. Specifically, the charged
leptons are ei, so that the left-handed component is eLi

¼
PLei and the right-handed one is eRi

¼ PRei, where PR;L ≡
ð1� γ5Þ=2 are chiral operators. The corresponding charge
conjugations are eci ≡ CeiT ¼ ðecLi

; ecRi
ÞT , which satisfies

ecLi
¼ PLeci ¼ CeRi

T ≡ ðeRi
Þc and ecRi

¼ PReci ¼ CeLi
T≡

ðeLi
Þc. For the Majorana leptons such as active and exotic

neutrinos, the four-spinors are ν0i ¼ ν0ci ¼ ðν0Li
; ðν0Li

ÞcÞT ¼
ðν0Li

; ν0cRi
ÞT and Ni ¼ Nc

i ¼ ððNRi
Þc; NRi

ÞT ¼ ðNc
Li
; NRi

ÞT .
To reduce the second and third terms of (1) to more
convenient forms, we will use equalities like eci PLν

0
j ¼

ν0cjPLei ¼ ν0jPLei and NRi
ðeRj

Þc ¼ NiPLecj ¼ ejPLNc
i ¼

ejPLNi (Appendix G of [18]).

B. Mass spectrum and LFVHD couplings

In the mass basis, the model consists of two CP-even
neutral Higgs bosons; a Nambu-Goldstone scalar boson G;
four singly charged Higgs bosons, h�1 , h

�
2 ; and two doubly

charged Higgs bosons, k��. At one-loop level, the LFVHD
involves only two CP-even neutral and four singly charged
Higgs bosons. The two CP-even neutral Higgs bosons are a
SM-like Higgs boson, h ðmh ¼ 125 GeVÞ and a new CP-
even one, H. They relate to the original Higgs components
ðϕ; σÞ via the transformation

�
ϕ

σ

�
¼

�
cα sα
−sα cα

��
h

H

�
; ð5Þ

where cα ≡ cos α, sα ≡ sin α, and α is defined as

sin 2α ¼ 2λΦΣvv0

m2
H −m2

h

: ð6Þ

The massesmh andmH are functions of the four parameters
λΦ, λΣ, λΦΣ, and v0. In the following calculations, we will fix
mh ¼ 125.1 GeV, while mH, sα, and v0 are taken as free
parameters. The original parameters are given as [17]

λΦΣ ¼ sαcαðm2
H −m2

hÞ
vv0

; λΦ ¼ c2αm2
h þ sαm2

HÞ
2v2

;

and λΣ ¼ s2αm2
h þ c2αm2

H

2v02
: ð7Þ

The perturbativity limit forces λΦ, λΣ, λΦΣ ≤ 4π and there-
fore gives an upper bound on mH with a large sα. For
example, jsαj ≤ 0.3 corresponds to mH ≤ 4 TeV.
The masses of the singly charged Higgs bosons are given

as

m2
h�
1

¼ m2
h1
þ 1

2
ðλΦh1v2 þ λΣh1v

02Þ;

m2
h�
2

¼ m2
h2
þ 1

2
ðλΦh2v2 þ λΣh2v

02Þ: ð8Þ

Regarding the lepton sector, the first and last terms in (1)
correspond to the mass terms of charged leptons and exotic
neutrinos, respectively. They are assumed to be diagonal,
i.e., the flavor basis and the mass basis coincide. Their
expressions are obtained as

mei ¼ ðylÞii
vffiffiffi
2

p ; mNi
¼ v0ffiffiffi

2
p ðyNÞii: ð9Þ

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 1. Feynman diagrams for the LFVHD h → μ�τ∓ decay, where h, l1 ≡ e2 ¼ μ, l2 ≡ e3 ¼ τ. The parentheses imply that Na and
h�2 couple with each other only.
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The active neutrino masses generated from three-loop
corrections can be expressed by the effective term (2).
The components of active neutrino mass matrix are given
as [17]

ðmνÞab ¼
μ11μ22
ð4πÞ6

X3
i;j;k¼1

1

M4
k

× ½ðyLÞaimeiðyTRÞikðMNk
ÞðyRÞkjmejðyTLÞjb�

×F1

�m2
hþ
1

M2
k

;
m2

hþ
2

M2
k

;
m2

li

M2
k

;
m2

lj

M2
k

;
MNk

2

M2
k

;
m2

k��

M2
k

�
; ð10Þ

where Mk is the maximal value among the quantities mh�
1
,

mh�
2
, mei , mej , MNk

, mk�� ; μ11 ≡ λ11v0=
ffiffiffi
2

p
; and F1 is the

three-loop function given in detail in [17].
All of the mass terms—together with the couplings hf̄f,

where f ¼ ei, νi, and Ni—are parts of Yukawa terms of
neutral Higgs bosons. The flavor states ν0Li

and mass states
νLi

(i ¼ 1, 2, 3) of active neutrinos are related by the
transformation ν0Li

¼ UL
ijνLj

, whereULUL† ¼ UL†UL ¼ 1.
The masses and mixing angles of the active neutrinos are
taken from the best-fit experimental data given in [19]. The
only unknown parameter is the lightest mass.
Concentrating only on the mass terms and couplings

involving the LFVHD of the SM-like Higgs boson, the
Yukawa interactions (1) and (2) are written as follows:

−L0
Y ¼meieiei þ

1

2
mνiνiνi þ

1

2
mNi

NiNi þ
mei

v
eieiðcαhÞ

−
�
mNi

2v0
NiNi þ

mνi

2v0
νiνi

�
sαhþ

ffiffiffi
2

p
mei

v
½UL

ijeiPLνjG−
w

þUL�
ij νjPReiGþ

w � þ ðyTLUL�ÞijνjPLeih
þ
1

þ ðyTLULÞijeiPRνjh−1 þ ðyTRÞijeiPLNjh−2

þ ðyTRÞijNjPReih
þ
2 : ð11Þ

The LFV couplings relating to the W� gauge boson only
occur in the covariant kinetic terms of SUð2ÞL doublets,
exactly the same as in the SM, namely,

Ll
kin ¼ iLLi

γμDμLLi
þ ðDμΦÞ†ðDμΦÞ; ð12Þ

where Dμ is the covariant derivative defined in the SM.
All relevant couplings of the LFVHD are collected in
Table II.

C. Parameter constraints from the previous work

For calculating the BR of the LFVHD, in the following
sections we will mainly use the constraints of parameters
obtained in [17]. The important points are reviewed as
follows. The parameters in the model were first investigated
to ensure that they satisfy the neutrino oscillation data, the
current bounds of the BR of the LFV processes, the
universality of the charged currents, and the vacuum
stability of the Higgs self-couplings. In addition, the doubly
charged Higgs bosons k�� are assumed to be light enough
that they could be detected at the LHC. The constraints on
parameters involved with the LFVHD are (i) the Dirac
phase of the active neutrino mixing matrix prefers the value
of δ ¼ π, while the Majorana phase is still free; (ii) the
masses of singly charged Higgs bosons should not be
smaller than 3 TeV; (iii) the value of jðyRÞ22j should be
around 9; (iv) the value of v0 should be on the order of
Oð1Þ TeV. The investigation in [17] also showed that the
heavier doubly charged Higgs bosons, k��, will allow the
lighter singly charged Higgs bosons. This leads to an
interesting consequence of large values of the BR of the
LFVHD, as we will show in the numerical investigation.
The constraint from the LHC Higgs boson search was

also discussed in [17], including the effects of the Uð1Þ
global Goldstone boson in the invisible decay of the SM-
like Higgs boson and the pair annihilation of the dark
matter (DM) candidate NR1

. From this, the constraint of the
mixing angle of neutral Higgs bosons is obtained as

TABLE II. Couplings of the LFVHD in the ’t Hooft–Feynman gauge. The momenta are incoming.

Vertex Coupling Vertex Coupling

heiei − imei
v cα hνiνi

imνi
v0 sα

hNiNi
imNi
v0 sα hWþ

μ W−
ν igmWcαgμν

hhþ1 h
−
1 ið−vcαλΦh1 þ v0sαλΣh1Þ hhþ2 h

−
2 ið−vcαλΦh2 þ v0sαλΣh2Þ

hðp0ÞWþ
μ G−

wðp−Þ ig
2
cαðp0 − p−Þμ hðp0ÞW−

μGþ
w ðpþÞ − ig

2
cαðp0 − pþÞμ

eiνjh−1 −iðyTLULÞijPR νjeih
þ
1 iðyTLULÞ�ijPL

eiνjG−
w −i

ffiffi
2

p
mei
v UL

ijPL νjeiGþ
w −i

ffiffi
2

p
mei
v UL�

ij PR

eiNjh−2 −iðyTRÞijPL Njeih
þ
2 −iðyTRÞijPR

eiνjW−
μ

igffiffi
2

p UL
ijγ

μPL νjeiWþ
μ

igffiffi
2

p UL�
ij γ

μPL

hGþ
wG−

w ið−2vcαλΦ þ v0sαλΦΣÞ
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jsin αj ≤ 0.3. Finally, the condition of the DM candidate
mentioned above leads to the conclusion that the NR1

mass
should be around the value ofmh=2 in order to successfully
explain the current relic density of DM; the VEV v0 was
found to be smaller than 10 TeV.
Many other issues involved with the global Uð1Þ

Goldstone boson were discussed in detail in [17], for
instance, anomaly induced interaction to two photons,
active-sterile neutral lepton mixing, and neutrinoless dou-
ble beta decay via W exchange. Possible bounds from
cosmological issues, such as the effect on the cosmic
microwave background via the cosmic string generated
by the spontaneous breaking down of the global Uð1Þ
symmetry, were also mentioned. None of these issues
change the constraints of the parameters indicated above.
Though new constraints on DM masses in the presence of
Uð1Þ global symmetry were addressed in [20], more studies
are needed for confirmation. Furthermore, the considered
global symmetry can be moved straight to the local one
[17], or replaced with a suitable discrete symmetry. That
discussion is beyond the scope of this work.
In the next section, we will focus on parameters affecting

the LFVHD and will discuss more clearly the relevant
constraints, if ones are needed.

III. FORMULAS OF THE LFVHD AND
PARAMETER CONSTRAINTS

The effective Lagrangian of the decay h → τ�μ∓
is written as LLFV ¼ hðΔLμ̄PLτ þ ΔRμ̄PRτÞ þ H:c:,
where ΔL;R are scalar factors arising from the loop
contributions. The decay amplitude is defined as iM ¼
iū1ðΔLPL þ ΔRPRÞv2 [6], where u1 ≡ u1ðp1; s1Þ and
v2 ≡ v2ðp2; s2Þ are the Dirac spinors of a muon and a
tauon, respectively. The partial width of the decay is
given as

Γðh → μτÞ≡ Γðh → μ−τþÞ þ Γðh → μþτ−Þ
¼ mh

8π
ðjΔLj2 þ jΔRj2Þ; ð13Þ

with the condition mh ≫ m1, m2, where m1, m2 are muon
and tauon masses, respectively. The on-shell conditions
for external particles are p2

i ¼ m2
i (i ¼ 1, 2) and p2

h ≡
ðp1 þ p2Þ2 ¼ m2

h.
The loop contributions can be separated into two parts,

ΔL ¼ Δν
L þ ΔN

L and ΔR ¼ Δν
R þ ΔN

R , corresponding to the
appearance of the active and exotic neutrinos in the loops.
In the ’t Hooft–Feynman gauge, the specific formulas of
contributions from the diagrams shown in Fig. 1 are listed
in Appendix B, where new notations such as EL;R factors
are used. The contribution of the loops with active
neutrinos Δν

L is obtained as

Δν
L ¼ 1

16π2
X3
a¼1

ðyTLULÞ2aðyTLULÞ�3a½ðv0λhh1h1ÞEνh1h1
L

þ sαE
h1νν
L þ ð−cαÞEh1ν

L � þ 1

16π2
X3
a¼1

UL
2aU

L�
3a

×

�
g3cαEνWW

L þ g2cα
2

ðEνGwW
L þ EνWGw

L Þ

þ ðv0λhGwGwÞEνGwGw
L þ sα

�
g2

2
EWνν
L þ EGwνν

L

�

− cα

�
g2

2
EWν
L þ EGwν

L

��
; ð14Þ

where ðv0λhh1h1Þ ¼ −vcαλΦh1 þ v0sαλΣh1 and ðv0λhGwGwÞ ¼
−2vcαλΦ þ v0sαλΦΣ.
The contribution from the exotic neutrino mediationsΔN

L
is given as

ΔN
L ¼ 1

16π2
X3
a¼1

ðyTRÞ2aðyTRÞ3a½ðv0λhh2h2ÞENh2h2
L

þ sαE
h2NN
L − cαE

Nh2
L �; ð15Þ

where ðv0λhh2h2Þ ¼ −vcαλΦh2 þ v0sαλΣh2 .
Similarly, we have Δν

R ¼ Δν
LðEL → ERÞ and ΔN

R ¼
ΔN

L ðEL → ERÞ.
As proved in Appendix B, the ΔL;R are convergent.

Specifically, in the ’t Hooft–Feynman gauge, the private
contributions from specific diagrams are always finite. In
addition, the limit p2

1, p
2
2 ≃ 0 results from the extremely

small contributions of the diagrams related to the two point
functions, namely, Figs. 1(g), 1(h), 1(i), and 1(j). Hence,
their contributions are ignored. Besides, it can be estimated
that the sum of the contributions in the two last lines in (14)
is very suppressed because of the GIM mechanism, con-
trolled by the factor

P
3
a¼1U

L
2aU

L�
3a. This is a general

property of all models where the neutrino masses are
generated from the seesaw mechanism. While the contri-
butions of the first lines of (14) and (15) may be large
because the appearance of yL and yR breaks the GIM
mechanism, nonzero contributions survive which do not
contain factors of very light neutrino masses.
In the numerical calculation, the following parameters

are taken from experimental data, for example, [21]:
v≃ 246 GeV, mh ¼ 125.1 GeV, mW ¼ 80.4 GeV, and
the muon and tauon masses are mμ ¼ 0.105 GeV,
mτ ¼ 1.776 GeV. The total decay width of the SM-like
Higgs boson Γh ¼ 4.1 × 10−3 GeV is used. Based on the
investigation of [17], relevant parameters of the active
neutrino masses are only considered in the normal hier-
archy scheme. For example, the mixing parameters UL are
expressed as follows:
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UL ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 −s13
0 1 0

s13 0 c13

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA; ð16Þ

where cij ≡ cos θij, sij ≡ sin θij and the Dirac CP phase δ
and the Majorana CP phase ϕ are taken as δ ¼ π and
ϕ ¼ 0. The best-fit values of the neutrino oscillation
parameters given in [19]

Δm2
21 ¼ 7.50 × 10−5 eV2; Δm2

31 ¼ 2.457 × 10−3 eV2;

s212 ¼ 0.304; s223 ¼ 0.452; s213 ¼ 0.0218 ð17Þ
are also used in our numerical calculations. The lightest
neutrino mass will be chosen as mν1 ¼ 10−10 GeV, sat-
isfying the condition

P
bmνb ≤ 0.5 eV obtained from the

cosmological constraint. The remain two neutrino masses
are m2

νb ¼ m2
ν1 þ Δm2

νb1 , where b ¼ 2, 3.
The other unknown parameters involving the LFVHD

are the VEV v0; the mixing angle of the two neutral Higgs
bosons α; the exotic neutrino masses mNa

; the new Higgs
masses mh�

1
, mh�

2
, mH; the Yukawa coupling matrices yL

and yR; and the trilinear Higgs self-couplings λΦh1 , λΦh2 ,
λΣh1 , λΣh2 .
In the numerical investigation, we focus first on the most

interesting regions of the parameter space indicated in [17],
where mN1

plays the role of a dark matter particle and the
doubly charged Higgs bosons k�� are light enough to be
observed at the LHC. The values of the relevant parameters

are summarized as follows: mh=2 ¼ mN1
< mN2

< mN3
,

jsαj ≤ 0.3; 3 TeV ≤ ðmh�
1
; mh�

2
Þ ∼ Oð1Þ TeV; and

v0 ∼Oð1Þ TeV. The matrix Yukawa coupling matrix yL
satisfies the following conditions [22]:

ðyLÞ13 ¼
�
s12c23
c12c13

−
s13s23
c13

�
ðyLÞ23 ¼ 0.394ðyLÞ23;

ðyLÞ12 ¼
�
s12s23
c12c13

þ s13c23
c13

�
ðyLÞ23 ¼ 0.56ðyLÞ23; ð18Þ

and jðyLÞ23j ≤ 1. The conditions of gauge coupling uni-
versalities also imply that

jðyLÞ23j <
0.3mh�

1

1 TeV
: ð19Þ

The most stringent constraint comes from the LFV decay of
a muon with Brðμ → eγÞ < 5.7 × 10−13. It gives the direct
upper bounds on the following products of the Yukawa
couplings: (i) ðyTLÞ23ðyTLÞ13 in the loop including virtual
active neutrinos and h�1 since yL is antisymmetric, and
(ii) ðyTRÞ2iðyTRÞ1i (i ¼ 1, 2, 3) in the loops including exotic
neutrinos and h�2 . The other constraints from the tauon
decays are less stringent and hence are omitted here. On the
other hand, Brðh → μτÞ depends on the products
ðyTRÞ2iðyTRÞ3i, with i ¼ 1, 2, 3. So, if jðyTRÞijj with ðijÞ ¼
fð11Þ; ð21Þ; ð31Þg is small enough, the values of ðyTRÞij
with ðijÞ ¼ fð22Þ; ð32Þ; ð33Þg may be large, without any
inconsistency in the upper bounds of the BR in the LFV
decays of charged leptons. In order to find the reasonable
regions of parameter space, the upper bounds must be
checked in the formula given in [17]:

P
3
a¼1 ½ðy†LÞafðyLÞia�2ðI1;aI2;a þ I21;aÞ þ

P
3
a¼1 ½ðyRÞafðy†RÞia�2ðI01;aI02;a þ I021;aÞ

16m4
h�
1

jP3
a¼1ðI1;aI2;a þ I21;aÞj

<
Cif

½TeV�4 ; ð20Þ

where ði; fÞ ¼ ðμ; eÞ ¼ ð2; 1Þ, Cif ¼ 1.6 × 10−6, and
many notations, including ðI1;a; I2;a; I01;a; I02;aÞ, are defined
in detail in [17]. For simplicity, we mention only the
following special cases. In the limit 0≃mνa ≪ mh�

1
and

mh�
2
≫ mN1

, we have

I1;a ≃ −
1

ð4πÞ2
1

36m2
h�
1

; I2;a ≃ −
1

ð4πÞ2
5

36m2
h�
1

;

I01;a ≃ −
1

ð4πÞ2
1

36m2
h�
2

; I02;a ≃ −
1

ð4πÞ2
5

36m2
h�
2

: ð21Þ

While a very large mNa
gives I01;a, I

0
2;a ≃ 0—for example,

when mN2;3
are larger than a few TeV—the bound (20)

affects only the products jðy†LÞ31ðyLÞ23j and jðyRÞ31ðyRÞ†23j.
Combining this with (18), we get new constraints:

jðyLÞ23j ≤ 0.149
mh�

1

1 TeV
;

and jðyRÞ31ðy†RÞ23j <
�
0.1mh�

2

1 TeV

�
2

: ð22Þ

This constraint of jðyLÞ23j is consistent with the numerical
investigation done in [17], where mh�

1
¼ 4.8 TeV prefers

ðyLÞ23 ¼ 0.5–0.6 < 0.7≃ 4.8 × 0.15. Interestingly, the
first inequality in (22) is more strict than the one given
in (19). The second constraint in (22) suggests that the
small jðyRÞ31j will allow for a large jðy†RÞ23j; i.e.,
the choice of jðyRÞ31j ≤ 10−3 × ðmh�

2
=1 TeVÞ2 will allow

jðy†RÞ23j ∼Oð1Þ. mh�
2
¼ 5ð3Þ TeV will give jðyRÞ31j ≤

0.25ð0.09Þ, consistent with the promoting regions indi-
cated in [17]. However, the absolute values of ðyRÞ22 and
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ðyRÞ23 should be smaller than the perturbative upper
bound 4π.
Another relevant constraint is the small upper bound of

BRðμ → 3eÞ. Following [17], all form factors relating to
ðyRÞij contain at least three factors, ðyRÞi1 or ðyRÞ1i.
Therefore, they result in very suppressed values of the
BR of the LFVHD if all jðyRÞi1;1ij’s are small enough,
without any conditions of small jðyRÞ23;32;33j’s.
Combining the above discussion with the analysis in

[17], the reasonable values of the free parameters can be
chosen as follows: sα ¼ 0.3, λ≡ 8λΦh1 ¼ 8λΦh2 ¼ λΣh1 ¼
λΣh2 ¼ 4, mh�

1
¼ mh�

2
¼ 3 TeV, mH ¼ 2 TeV, ðyLÞ23 ¼

0.14mh�
1

1 TeV , y0R ¼ ðyRÞ23 ¼ ðyRÞ32 ¼ ðyRÞ33 ¼ 3, ðyRÞ22 ¼ 8,
v0 ∈ f1; 2; 8; 10g TeV, mN1

¼ mh=2, mN2
¼ 1=2mN3

¼
5 TeV, and ðyRÞi;j ¼ 10−2, with at least one of the indices,
i or j, being 1. We would like to stress that the above
choices are also based on the following additional reasons.
The values of ðyLÞ23 and ðyRÞij always satisfy all recent
bounds of the BR of the LFV decays of charged leptons
(22) as well as gauge coupling universalities (19). The λ
parameter is positive and small enough to satisfy the
conditions of both the perturbative limit and vacuum
stability, whereas it is large enough to enhance the BR
of the LFVHD.
To investigate the variance of BRðh → μτÞ versus the

changing of free parameters, the ranges of free parameters
will be chosen as follows: jsαj ≤ 0.4, 0.1 < λ < 10,

jy0Rj ≤ 4, jðyLÞ23j ≤
0.15mh�

1

1 TeV , 1 TeV ≤ mh�
1
, mh�

2
, v0 <

10 TeV and 0.5 TeV ≤ mN2
≤ 6 TeV.

IV. NUMERICAL RESULT AND DISCUSSION

In this section, we will first investigate some private
contributions to the BR of the LFVHD, namely, the active
neutrino loops with W�=h�1 bosons, and the exotic lepton

loops. Based on this, the parameter space regions which
give the large total contribution will be further studied.
The contributions of active neutrinos are shown in Fig. 2.

The left panel shows two contributions to Brðh → μτÞ: the
sum of all diagrams relating to the W� gauge bosons and
their Goldstone bosons, and Fig. 1(f). The right panel
shows the contribution to Brðh → μτÞ from Fig. 1(d), with
a virtual h�1 in the loop. The figure emphasizes two points:
the tiny contributions in the left panel and the significantly
enhanced contribution in the right panel. Similarly to many
well-known models, the total contribution of electroweak
loops, including W� and their Goldstone bosons, is very
suppressed because of the GIM mechanism, arising from
the sum of two different flavors of external lepton fields:P

aU
L
2aU

L�
3a ¼ 0. This sum cancels the largest terms of the

contributions when they are expanded in terms of the
ðmνa=mWÞ2 series. Only terms containing the factors
ðmνa=mWÞ2 survive, but they are very suppressed. In
addition, this contribution does not depend on v0, leading
to the overlap lines in the left panel of the figure. The
second contribution in the left panel comes from the ννh�1
loops. Although the appearance of the Yukawa couplings
ðyLÞij removes the GIM mechanism, the contribution itself
contains a factor ofm2

νa ; therefore, it is suppressed, too. It is
even smaller than the electroweak-loop contribution
because mh�

1
is much larger than mW . νh�1 h

�
1 is much

enhanced because of the presence of both the large
coupling λhh�

1
h�
1

and yL. In the model considered,
jðyLÞ23j is significantly constrained from (22), where the
mh�

1
¼ 3 TeV gives the small jðyLÞ23j < 0.45. Also,

λhh�
1
h�
1
, as a function of v0ð<10 TeVÞ and Higgs self-

couplings (<4π), does not allow large values of
Brðh → μτÞ. Then the contribution of the ννh�1 loop to
the Brðh → μτÞ is not larger than 10−10. In any case, this
provides a hint for enhancing the contribution from active
neutrino loops, for example, in models with a four-loop (or

W :v' 2 TeV

W : v' 10 TeV

h1 : v' 2 TeV

h1 : v' 10 TeV

200 400 600 800 1000
mh1

GeV

10 71

10 67

10 63

10 59
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0.5
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12

0.4 0.2 0.2 0.4
yL 23

10 18

10 16

10 14

10 12

10 10
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FIG. 2. Private contributions of active neutrino loops only to the Brðh → μτÞ, where on the left-hand side it is assumed that ðyLÞ23 ¼
0.14mh�

1

1 TeV and the right-hand side corresponds to v0 ¼ 10 TeV.

LEPTON FLAVOR VIOLATING DECAY OF SM-LIKE … PHYSICAL REVIEW D 93, 115026 (2016)

115026-7



higher) neutrino mass and a smallmh�
1
, where the constraint

of yL may be released. This deserves further study.
The main contributions of exotic leptons to Brðh → μτÞ

come from the two diagrams Nh�2 h
�
2 and h�2 NN. They do

not depend on yL but depend strongly on jðyRÞijj, with
fi; jg ¼ f2; 3g. As illustrated in Figs. 3 and 4, the two
contributions have common properties. They increase with
a decreasing mh�

2
, in the same behavior shown in the right

panel of Fig. 3. Most important is that they are enhanced
strongly with an increasing jy0Rj; see the two left panels in
the two figures.
On the other hand, these two contributions behave in

opposing ways with the changes of v0 and mN2
ðmN3

Þ. The
contribution from the mN1

mediation is ignored because of
a very small jðyRÞi1;1ij (i ¼ 1, 2, 3). The Nh�2 h

�
2 mediation

relates with the Higgs self-coupling; hence, its contribution
is large with a small mN2

and a large v0. See Fig. 3 with its
four fixed values of v0, where the largest corresponds to
v0 ¼ 10 TeV. For the h�2 NN loops, their analytic expres-
sion containsm2

Na
=v0 factors separate from the C functions.

Therefore, the small v0 and large mNa
will give large

contributions; see the right panel of Fig. 4.

All of the above discussions suggest that Brðh → μτÞ
will be large with small singly charged Higgs masses and
large values of all of the following parameters: the coupling
jy0Rj, jðyLÞ23j, and the Higgs self-coupling λ. The depend-
ence of the BR on v0 and mN2;3

is a bit complicated. The
dependence on the mixing angle α of two CP-even neutral
Higgs bosons should also be mentioned. Figure 5 shows
more precisely the variations of Brðh → μτÞ on some
particular free parameters. We can realize that y0R affects
the change of this BR most significantly. It is larger than
10−6 only when jy0Rj ≥ 2. Brðh → μτÞ does not depend on
the signs of sα and y0R, but it does depend significantly on
the absolute values of these parameters. With λ ¼ 4,
mh�

2
¼ 3 TeV, and sα ¼ 0.3, the Brðh → μτÞ can reach

10−5 when all of these conditions are satisfied: jy0Rj ≥ 3,
v0 ≥ 8 TeV, and mN2;3

are small enough.
Finally, if the doubly charged Higgs bosons are heavy

enough, the investigation shown in [17] may allow the
presence of a light, singly charged Higgs boson h�2 , for
instance, with the mass of 1 TeV. Besides, if we define
mN2

¼ mN3
=2 ¼ f × v0, adopting also that sα ¼ 0.3 gives

v0 ≤ 9 TeV [17,23]. In addition, if y0R ¼ 4, thenBRðh → μτÞ

v' 1 TeV

v' 3 TeV

v' 8 TeV

v' 10 TeV

1 1 2 3 4
y'R

10 11

10 9

10 8

10 7

10 6

10 5

Br h
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v' 3 TeV

v' 8 TeV

v' 10 TeV

4000 6000 8000 10 000
mh2
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10 10
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10 8

10 7

10 6

10 5

Br h

FIG. 3. Private contributions of Nh�2 h
�
2 loops only, i.e., Fig. 1(d), to Brðh → μτÞ as a function of y0R (mh2 ) in the left (right) panel.
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y'R
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10 9
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10 5
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FIG. 4. Private contributions of the h�2 NN loops only, i.e., Fig. 1(f), to the Brðh → μτÞ as a function of y0R (mN2
) in the left (right)

panel.

THUC, HUE, LONG, and NGUYEN PHYSICAL REVIEW D 93, 115026 (2016)

115026-8



can reach the value of 10−4, very close to the value noted by
CMS. This conclusion is illustrated in Fig. 6, where the f
parameter is scanned in the range of 0.1 ≤ f ≤ 6

(0.1 ≤ f ≤ 2) in the left (right) panel. From our numerical
calculation, the values of y0R ¼ 4 and mh�

1
¼ 1 TeV are the

smallest ones to obtain values about 10−4 of Brðh → μτÞ.

Accordingly, this largevalue lies in the only regionwhere v0 is
larger than 4 TeV, while mN2

and mN3
should be as small as

possible. In this calculation,mN2
≥ 400 GeV and theNh�2 h

�
2

contribution is dominant. With a small v0 ≃ 1 TeV, the value
around 10−5 of Brðh → μτÞ may occur if mN2;3

are large
enough: mN2

≥ 3v0. Also, Brðh → μτÞ is unchanged, with
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v' 3 TeV

v' 8 TeV

v' 10 TeV
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FIG. 5. The total contribution to Brðh → μτÞ as a function of the single parameters mN2
, λ, sα, and yR0.
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FIG. 6. Contour plots of Brðh → μτÞ as functions of v0 and f ¼ mN2
=v0. The green and blue regions satisfy 10−5 ≤ BRðh → μτÞ ≤

10−4 and BRðh → μτÞ ≥ 10−4, respectively.
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the general condition mN2
≤ mN3

, instead of the MN2
¼

1=2MN3
one used above. In this case, the large LFVHD

corresponds to the dominant contribution from the h�2 NN
diagram. The heavy neutrinos may be detected in future
lepton colliders [24].
The singly charged Higgs bosons are now being

researched by experiments [21,25]. However, in the model
considered, none of them are their targets because they only
couple with leptons. In addition, the h�2 ’s hold negative
parities and hence cannot decay to only normal leptons. We
also believe that the condition (22) is enough to guarantee
constraints of LFV processes without the need for singly
charged Higgs bosons that are too heavy. Hence, the mass
around 1 TeVof h�2 is reasonable for stability of the lightest
NR1

as a dark matter candidate.

V. CONCLUSION

Radiative neutrino mass models are interesting ones for
explaining the tiny masses of active neutrinos. In the model
introduced in [17], the new parameters that generate
neutrino masses radiatively are strongly constrained from
recent experimental data such as neutrino oscillations, the
rare decay of charged leptons, gauge coupling universalities,
and other constraints from LHC Higgs boson physics.
Therefore, these parameters are very predictive for other
phenomenologies such as dark matter, the LFVHD, etc. In
this work, we have shown that, in the allowed region with
heavy, singly charged Higgs bosons, where their masses are
around 3 TeV, the BR of the LFVHD can reach a value of
10−5. If the mass of the h�2 is around 1 TeV, the Brðh → μτÞ
can reach 10−4. The additional necessary conditions are that
v0, jsαj, and all amplitudes of the Yukawa and trilinear Higgs
couplings must be large enough. For example, with the
largest sα ¼ 0.3 to satisfy the LHC Higgs boson constraint,
v0 should be in the range of 8 to 9 TeV. Also, λΣh2 ≥ 4 and
jy0Rj ≥ 3 (4) for the largest values 10−5 ð10−4Þ of the
Brðh → μτÞ. The masses of the two heavy exotic neutrinos
should be small, around 400 GeV for the lightermN2

. In the
model under consideration, a large BRðh → μτÞwill lead to
necessary consequences: the doubly charged Higgs bosons
k�� must be heavy and BRðh → eτÞ must be very small.
The latter can be explained from the constraint of μ → eγ.
This requires a large y0R ≃Oð1Þ to give a very small
jðyRÞ13;31j ≤ 10−3, implying that BRðh → eτÞ ≤ 10−10,
much smaller than the recent sensitivity of experiments
[4]. One more interesting property is that the contribution of
the virtual active neutrinos may be large if the upper bound
(22) is ignored. When this bound is considered, the private
contributions of νh�1 h

�
1 to Brðh → μτÞ are around 10−10,

which is much larger than the values predicted by canonical
seesaw models and [10]. In models with more than three-
loop neutrino mass such as [26], the bound (22) may
be released. We then guess that the active neutrino

contributions can reach 10−7 or higher, and hence they
should not be ignored. In conclusion, more precise pre-
dictions will be possible after we receive updated data from
experiments in the near future.

ACKNOWLEDGMENTS

The authors thankDr. Farinaldo Queiroz for his comments
on DM. This research is funded by the Vietnam National
Foundation for Science and Technology Development
(NAFOSTED) under Grant No. 103.01-2015.33.

APPENDIX A: ONE-LOOP PASSARINO-
VELTMAN FUNCTIONS

The calculation in this section relates to the one-loop
diagrams in Fig. 1. The analytic expressions of the PV
function are given in [10], and the needed formulas will be
summarized in this appendix. We would like to stress that
these PV functions were derived from the general form
given in [27], using only the conditions of very small
masses of tauons and muons. They are consistent with [28].
The denominators of the propagators are denoted as
D0 ¼ k2 −M2

0 þ iδ, D1 ¼ ðk − p1Þ2 −M2
1 þ iδ, and

D2 ¼ ðkþ p2Þ2 −M2
2 þ iδ, where δ is an infinitesimally

positive real quantity. The scalar integrals are defined as

Bð1Þ
0 ≡ ð2πμÞ4−D

iπ2

Z
dDk
D0D1

;

Bð2Þ
0 ≡ ð2πμÞ4−D

iπ2

Z
dDk
D0D2

;

Bð12Þ
0 ≡ ð2πμÞ4−D

iπ2

Z
dDk
D1D2

;

C0 ≡ C0ðM0;M1;M2Þ ¼
1

iπ2

Z
d4k

D0D1D2

; ðA1Þ

where i ¼ 1, 2. In addition, D ¼ 4 − 2ϵ ≤ 4 is the dimen-
sion of the integral; M0, M1, M2 are masses of virtual
particles in the loop. The momenta satisfy the conditions
p2
1 ¼ m2

1, p
2
2 ¼ m2

2, and ðp1 þ p2Þ2 ¼ m2
h. In this work,m1

and m2 are the respective masses of the muon and the
tauon, andmh is the SM-like Higgs boson mass. The tensor
integrals are

Bμðpi;M0;MiÞ ¼
ð2πμÞ4−D

iπ2

Z
dDk × kμ

D0Di
≡ BðiÞ

1 pμ
i ;

Bμðp1; p2;M1;MiÞ ¼
ð2πμÞ4−D

iπ2

Z
dDk × kμ

D1D2

≡ Bð12Þ
1 pμ

1 þ Bð12Þ
2 pμ

2;

Cμ ¼ CμðM0;M1;M2Þ

¼ 1

iπ2

Z
d4k × kμ

D0D1D2

≡ C1p
μ
1 þ C2p

μ
2;

ðA2Þ
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where BðiÞ
0;1 andC0;1;2 are PV functions. It is well known that

Ci is finite, while the remains are divergent. We define

Δϵ ≡ 1
ϵ þ ln 4π − γE þ ln μ2

m2
h
, where γE is the Euler constant.

The divergent parts of the above scalar factors can be
determined as

Div½BðiÞ
0 � ¼ Div½Bð12Þ

0 � ¼ Δϵ;

Div½Bð1Þ
1 � ¼ −Div½Bð2Þ

1 � ¼ 1

2
Δϵ: ðA3Þ

The finite parts of the PV functions such as B functions
depend on the scale of a μ parameter with the same
coefficient of the divergent parts.
The analytic formulas of the above PV functions are

BðiÞ
0;1 ¼ Div½BðiÞ

0;1� þ bðiÞ0;1; Bð12Þ
0;1;2 ¼ Div½Bð12Þ

0;1;2� þ bð12Þ0;1;2:

ðA4Þ

The expression of bð12Þ0 is

bð12Þ0 ¼ ln
m2

h − iδ
M2

1 − iδ
þ 2þ

X2
k¼1

xk ln

�
1 −

1

xk

�
; ðA5Þ

where xk, (k ¼ 1, 2) are solutions of the equation

x2 −
�
m2

h −M2
1 þM2

2

m2
h

�
xþM2

2 − iδ
m2

h

¼ 0: ðA6Þ

The C0 function was given in [10], consistent with that
discussed in [28], namely,

C0 ¼
1

m2
h

½R0ðx0; x1Þ þ R0ðx0; x2Þ − R0ðx0; x3Þ�; ðA7Þ

where

R0ðx0; xiÞ≡ Li2

�
x0

x0 − xi

�
− Li2

�
x0 − 1

x0 − xi

�
; ðA8Þ

Li2ðzÞ is the dilogarithm function, x1;2 are solutions of
Eq. (A6), and x0;3 are given as

x0 ¼
M2

2 −M2
0

m2
h

; x3 ¼
−M2

0 þ iδ
M2

1 −M2
0

: ðA9Þ

For simplicity of calculation, we use approximate forms of
PV functions where p2

1, p
2
2 → 0, namely,

bðiÞ0 ¼ 1 − ln
M2

i

m2
h

þ M2
0

M2
0 −M2

i
ln
M2

i

M2
0

;

bð1Þ1 ¼ −
1

2
ln
M2

1

m2
h

−
M4

0

2ðM2
0 −M2

1Þ2
ln
M2

0

M2
1

þ ðM2
0 −M2

1Þð3M2
0 −M2

1Þ
4ðM2

0 −M2
1Þ2

;

bð2Þ1 ¼ 1

2
ln
M2

2

m2
h

þ M4
0

2ðM2
0 −M2

2Þ2
ln
M2

0

M2
2

−
ðM2

0 −M2
2Þð3M2

0 −M2
2Þ

4ðM2
0 −M2

2Þ2
;

bð12Þ0 ¼ ln
m2

h − iδ
M2

1 − iδ
þ 2þ

X2
k¼1

xk ln

�
1 −

1

xk

�
;

C1 ¼
1

m2
h

½bð1Þ0 − bð12Þ0 þ ðM2
2 −M2

0ÞC0�;

C2 ¼ −
1

m2
h

½bð2Þ0 − bð12Þ0 þ ðM2
1 −M2

0ÞC0�:

If M1 ¼ M2, it can be seen that bð1Þ1 ¼ −bð2Þ1 , bð1Þ0 ¼ bð1Þ0 ,
and C1 ¼ −C2.

APPENDIX B: FORM FACTORS FOR THE
LFVHD IN ’t HOOFT–FEYNMAN GAUGE

In this section we will list all of the factors for calculating
the LFVHD in the model considered. The calculation is
done in the ’t Hooft–Feynman gauge. The Feynman rules
are given in Fig. 7. These factors were cross-checked using
FORM [29].
Contribution from Fig. 1(a):

iMð1aÞ ¼
ig2GhWW

16π2
X3
a¼1

UL
2aU

L�
3a × ð½u1PLv2� × EνWW

L þ ½u1PRv2� × EνWW
R Þ; ðB1Þ

where EνWW
L ¼ m1mWC1, EνWW

R ¼ −m2mWC2, and Ci ≡ Ciðmνa ; mW;mWÞ.
Contribution from Fig. 1(b):

iMðbÞ ¼
igGhWGw

16π2
X3
a¼1

UL
2aU

L�
3a × ð½u1PLv2�EνWGw

L þ ½u1PRv2�EνWGw
R Þ; ðB2Þ

where
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EνWGw
L ¼ −

m1m2
2

v
ð2C1 − C2Þ;

EνWGw
R ¼ −

m2

v
ðBð12Þ

0 þm2
νaC0 −m2

1C1 þ 2m2
2ð−C1 þ C2Þ þ 2m2

hC1Þ; ðB3Þ

and Bð12Þ
0 ≡ Bð12Þ

0 ðmW;mWÞ, Ci ≡ Ciðmνa ; mW;mWÞ.
Contribution from Fig. 1(c):

iMðcÞ ¼
igGhWGw

16π2
X3
a¼1

UL
2aU

L�
3a × ð½u1PLv2�EνGwW

L þ ½u1PRv2�EνGwW
R Þ; ðB4Þ

where

EνGwW
L ¼ −

m1

v
ðBð12Þ

0 þm2
νaC0 þ 2m2

1ð−C1 þ C2Þ þm2
2C2 − 2m2

hC2Þ;

EνGwW
R ¼ −

m2
1m2

v
ðC1 − 2C2Þ; ðB5Þ

and Bð12Þ
0 ≡ Bð12Þ

0 ðmW;mWÞ, Ci ≡ Ciðmνa ; mW;mWÞ.
Contribution from Fig. 1(d):

iMðdÞ ¼
iðv0λhSSÞ
16π2

X3
a¼1

V2aV�
3a × ð½u1PLv2�EFSS

L þ ½u1PRv2�EFSS
R Þ; ðB6Þ

where Ci ≡ Ciðma;mS;mSÞ, V ¼ fUL;K; yTRg, ma ¼ fmνa ; mNa
g for S ¼ fGw; h1; h2g, and

EνGwGw
L ¼ m1m2

2

v2
2C2; EνGwGw

R ¼ m2
1m2

v2
ð−2C1Þ; Eνh1h1

L ¼ −m1C1;

Eνh1h1
R ¼ m2C2; ENh2h2

L ¼ m2C2; ENh2h2
R ¼ −m1C1; ðB7Þ

Contribution from Fig. 1(e):

iMðeÞ ¼
ig2Ghνν

16π2
X3
a¼1

UL
2aU

L�
3a ð½u1PLv2�EWνν

L þ ½u1PRv2�EWνν
R Þ; ðB8Þ

FIG. 7. Feynman rules for h → μ�τ∓ in the ’t Hooft–Feynman gauge. Notations are (i) S ¼ Gw, h�1 , h
�
2 ; (ii) Kab ¼ ðyTLULÞab and

ðyTRÞab, for active and exotic neutrinos, respectively; and (iii) f ¼ ea, νa, Na, Fa ¼ νa; Na.
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where

EWνν
L ¼ −

m1m2
νa

v0
ðC0 − 2C1Þ; EWνν

R ¼ −
m2m2

νa

v0
ðC0 þ 2C2Þ; ðB9Þ

and Ci ≡ CiðmW;mνa ; mνaÞ.
Contribution from Fig. 1(f):

iMðfÞ ¼
iGhFF

16π2
X3
a¼1

V2aV�
3að½u1PLv2�ESFF

L þ ½u1PRv2�ESFF
R Þ; ðB10Þ

where Ci ≡ CiðmS;ma;maÞ, V ¼ fUL;Kg, ma ¼ fmνa ; mNa
g for S ¼ fGw; h1; h2g, and

EGwνν
L ¼ −

m1m2
νa

v0

�
m2

2

v2
2ðC0 þ 2C2Þ

�
; EGwνν

R ¼ −
m2m2

νa

v0

�
m2

1

v2
2ðC0 − 2C1Þ

�
; Eh1νν

L ¼ −
m1m2

νa

v0
ðC0 − 2C1Þ;

Eh1νν
R ¼ −

m2m2
νa

v0
ðC0 þ 2C2Þ; Eh2NN

L ¼ −
m2m2

Na

v0
ðC0 þ 2C2Þ; Eh2NN

R ¼ −
m1m2

Na

v0
ðC0 − 2C1Þ; ðB11Þ

Contribution from the sum of Figs. 1(g) and 1(h):

iMðghÞ ¼
ig2Ghee

16π2
X3
a¼1

UL
2aU

L�
3a ð½u1PLv2�EνW

L þ ½u1PRv2�EνW
R Þ; ðB12Þ

where

EνW
L ðmF;mWÞ ¼ −

m1m2
2

ðm2
1 −m2

2Þv
½Bð1Þ

1 þ Bð2Þ
1 �; EνW

R ðmF;mWÞ ¼
m1

m2

EνW
L ; ðB13Þ

BðiÞ
1 ≡ BðiÞ

1 ðmνa ; mWÞ.
Contribution from the sum of Figs. 1(i) and 1(j):

iMðikÞ ¼
iGhee

16π2
X3
a¼1

V2aV�
3að½u1PLv2�EFS

L þ ½u1PRv2�EFS
R Þ; ðB14Þ

where BðiÞ
1 ≡ BðiÞ

1 ðma;mSÞ, V ¼ fUL;K; yTRg, ma ¼ fmνa ; mNa
g for S ¼ fGw; h1; h2g, and

EνGw
L ¼ −

2m3
1m

2
2

ðm2
1 −m2

2Þv3
ðBð1Þ

1 þ Bð2Þ
1 Þ; EνGw

R ¼ m2

m1

EνGw
L ; Eνh1

L ¼ −m1m2
2

ðm2
1 −m2

2Þv
ðBð1Þ

1 þ Bð2Þ
1 Þ;

Eνh1
R ¼ m1

m2

Eνh1
L ; ENh2

L ¼ −
m2

1m2

ðm2
1 −m2

2Þv
ðBð1Þ

1 þ Bð2Þ
1 Þ; ENh2

R ¼ m2

m1

ENh2
L : ðB15Þ

The divergence cancellation of the total amplitudes of the LFV decays is proved as follows. The divergences appear only in
the expressions listed in (B3), (B5), (B13), and (B15). The expressions in (B3) and (B5) will vanish after inserting them into
(B2) and (B4), where the GIM mechanism works. The divergences in each contribution given in (B13) and (B15) cancel

each other because Div½Bð1Þ
1 � ¼ −Div½Bð2Þ

1 �. Furthermore, the limit p2
1, p

2
2 → 0 results in Bð1Þ

1 ¼ −Bð2Þ
1 ; therefore, all of the

aforementioned contributions are very suppressed.
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