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We show that the mixing effect of the neutral gauge bosons in the 3-3-1-1 model comes from two
sources. The first one is due to the 3-3-1-1 gauge symmetry breaking as usual, whereas the second one
results from the kinetic mixing between the gauge bosons of Uð1ÞX and Uð1ÞN groups, which are used to
determine the electric charge and baryon minus lepton numbers, respectively. Such mixings modify the
ρ-parameter and the known couplings of Z with fermions. The constraints that arise from flavor-changing
neutral currents due to the gauge boson mixings and nonuniversal fermion generations are also given.
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I. INTRODUCTION

The standard model is incomplete since it leaves crucial
questions of the nature unsolved, namely the neutrino
masses, dark matter, matter-antimatter asymmetry, cosmic
inflation, and so on [1]. Many such difficulties of the
standard model can be solved by the recently proposed
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN (3-3-1-1) gauge
model, where SUð3ÞC is the ordinary color group,
SUð3ÞL is an extension of the weak-isospin symmetry
(SUð2ÞL), and the last two factors correspondingly define
the electric charge (Q) and baryon-minus-lepton charge
(B − L), respectively [2,3]. This is the most simple frame-
work that unifies the electroweak and B − L interactions in
a nontrivial way, analogously to the electroweak theory.
The new model also provides insights in the electric charge
quantization (which is due to the B − L dynamics in
general [3], while only the minimal 3-3-1-1 versions have
additional quantization condition that results from specific
fermion contents like the 3-3-1 models [4]) and flavor
questions (where the dangerous FCNCs due to the
unwanted vacuums and interactions are suppressed by
W-parity conservation [2], whereas the contribution of
Uð1ÞN gauge boson including the kinetic mixing effect
discussed below could relax those 3-3-1 model’s bounds
for the B physics anomalies [5]).
The 3-3-1-1 model contains four neutral gauge bosons,

the photon, Z, and new Z0, Z00. Their mixing effects due to
the 3-3-1-1 gauge symmetry breaking have been studied
[2,3]. However, since this theory includes two Uð1Þ factor
groups, the kinetic mixing [6] between the corresponding
gauge bosons is unavoidable, which might cause significant
effects and modify the well-measured parameters/
observables. It has not been examined yet. In this work,
we interpret this mixing and investigate its corrections to
the known parameters and constraints. The correlation
between the two kinds of mixings is also evaluated.

II. THE 3-3-1-1 MODEL AND KINETIC MIXING

Assume that all the left-handed fermion doublets of
SUð2ÞL are enlarged to the fundamental representations of
SUð3ÞL (i.e., triplets or antitriplets), while all the
right-handed fermion singlets of SUð2ÞL by themselves
transform as singlets of SUð3ÞL. The SUð3ÞL anomaly
cancellation requires the number of fermion triplets is equal
that of fermion antitriplets. Thus, the fermion content of the
3-3-1-1 model under consideration is given by [3]
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where a ¼ 1, 2, 3 and α ¼ 1, 2 are generation indices, the
quantum numbers in the parentheses are defined upon the
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3-3-1-1 symmetries, respectively, and the new fields kaL;R,
jaL;R, and νaR have been included to complete the repre-
sentations and cancel the other anomalies. For special
cases, kaR are excluded while kaL are replaced by either
ðeaRÞc or ðνaRÞc, called minimal 3-3-1-1 versions, respec-
tively. But, this does not work for quarks since the
symmetries, SUð3ÞC, SUð3ÞL, and space-time, commute.
Hence, ja are necessarily introduced. Note also that the
following discussions generally apply for all cases. The Q
and B − L charges of the new fermions are

QðνRÞ ¼ 0; QðkÞ ¼ q;

Qðj3Þ ¼
2

3
þ q; QðjαÞ ¼ −

1

3
− q; ð6Þ

½B − L�ðνRÞ ¼ −1; ½B − L�ðkÞ ¼ n;

½B − L�ðj3Þ ¼
4

3
þ n; ½B − L�ðjαÞ ¼ −

2

3
− n: ð7Þ

We see that ðq; nÞ are those charges defined for ka fields,
which satisfy −2.08011 < q < 1.08011 in order to have a
correct, effective Weinberg angle as explicitly shown
below, and n ≠ ð2m − 1Þ=3 for any integer m to have a
nontrivial, residual, discrete symmetry of the gauge sym-
metry, which stabilizes the dark matter candidates.
To break the 3-3-1-1 symmetry and generate appropriate

masses for the particles, the scalar content contains [3]
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where the superscripts define ðQ;B − LÞ values respec-
tively, while the subscripts indicate SUð3ÞL component
fields. The corresponding vacuum expectation values
(VEVs) are obtained as

hηi ¼ 1ffiffiffi
2

p

0
B@

u

0

0

1
CA; hρi ¼ 1ffiffiffi

2
p

0
B@

0

v

0

1
CA;

hχi ¼ 1ffiffiffi
2

p

0
B@

0

0

w

1
CA; hϕi ¼ 1ffiffiffi

2
p Λ: ð10Þ

The VEVs w, u, v break the 3-3-1-1 symmetry to
SUð3ÞC ⊗ Uð1ÞQ ⊗ Uð1ÞB−L, while the VEV Λ breaks
B − L to a discrete symmetry, Uð1ÞB−L → P. The residual
operators can be identified as

Q ¼ T3 þ βT8 þ X;

B − L ¼ β0T8 þ N;

P ¼ ð−1Þ3ðβ0T8þNÞþ2s; ð11Þ

where β ¼ −ð1þ 2qÞ= ffiffiffi
3

p
, β0 ¼ −2ð1þ nÞ= ffiffiffi

3
p

, and s is
spin. Note that β is bounded by −1.82455 < β < 1.82455
due to the q constraint, and β0 ≠ 4m

3
ffiffi
3

p for any m integer. The

weak hypercharge is Y ¼ βT8 þ X. Furthermore, because
w, Λ give the masses for the new particles, whereas u, v are
for the ordinary particles, to be consistent with the standard
model, we assume u; v ≪ w;Λ.
Up to the gauge fixing and ghost terms, the total

Lagrangian takes the form,
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F
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X
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where F and S run over all fermion multiplets and scalar
multiplets respectively, and δ is a dimensionless parameter.
LYukawa and Vðη; ρ; χ;ϕÞ are Yukawa Lagrangian and
scalar potential respectively, which their explicit forms
are easily obtained. The covariant derivative and field
strength tensors are given by

Dμ¼∂μþ igstiGiμþ igTiAiμþ igXXBμþ igNNCμ; ð13Þ

Giμν ¼ ∂μGiν − ∂νGiμ − gsfijkGjμGkν; ð14Þ

Aiμν ¼ ∂μAiν − ∂νAiμ − gfijkAjμAkν; ð15Þ

Bμν ¼ ∂μBν − ∂νBμ; Cμν ¼ ∂μCν − ∂νCμ; ð16Þ

where fgs; g; gX; gNg, fti; Ti; X; Ng, and fGi; Ai; B; Cg
stand for coupling constants, generators, and gauge bosons

P. V. DONG and D. T. SI PHYSICAL REVIEW D 93, 115003 (2016)

115003-2



of the 3-3-1-1 groups, respectively. Notably, the δ term,
called kinetic mixing, was omitted in the previous studies,
in spite of the fact that it is gauge invariant and also cannot
be transformed away by rescaling the gauge fields. Even if
its tree-level value vanishes, it can be radiatively induced.
The existence of the δ term is a new observation of this
work. We should impose jδj < 1 in order to have a
definitely positive kinetic energy.
Because of the kinetic mixing term, the two Uð1Þ gauge

bosons Bμ and Cμ are generally not orthogonal and
normalized. Let us rewrite the kinetic terms of Bμ and
Cμ as

L ¼ � � � − 1

4
B2
μν −

1

4
C2
μν −

δ
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4
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which takes the canonical form by a nonunitary trans-
formation ðBμ; CμÞ → ðB0

μ; C0
μÞ as

B0 ¼ Bþ δC; C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
C: ð18Þ

Substituting, C ¼ 1ffiffiffiffiffiffiffi
1−δ2

p C0 and B ¼ B0 − δffiffiffiffiffiffiffi
1−δ2

p C0, into the

covariant derivative, it becomes
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which is given in terms of the physical (orthogonal and
normalized) fields ðB0

μ; C0
μÞ.

The 3-3-1-1 gauge symmetry breaking also leads to
mixings among A3, A8, B0, and C0. Their mass Lagrangian
arises from

P
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where the mass matrix M2 is symmetric and its elements
M2 ¼ fm2

ijg are given by
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where we have defined tX ¼ gX=g and tN ¼ gN=g.
It is easily obtained that M2 has a zero eigenvalue (the

photon mass) with corresponding eigenstate (the photon
field), given by

A ¼ sWA3 þ cWðβtWA8 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

q
B0Þ; ð21Þ

where sW ¼ e=g ¼ tX=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ β2Þt2X

p
is the sine of the

Weinberg angle, which can explicitly be identified from
electromagnetic interaction vertices [7]. The last relation
further implies s2W < 1=ð1þ β2Þ or jβj < cotW, which

yields the mentioned q bounds, since β¼−ð1þ2qÞ= ffiffiffi
3

p
and s2W ¼ 0.231, effectively given at the weak scales ðu; vÞ
[3]. Note that the field in the parenthesis of (21) is properly
coupled to the weak hypercharge Y ¼ βT8 þ X. Therefore,
we can define the standard model Z and new Z0 as follows

Z ¼ cWA3 − sWðβtWA8 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

q
B0Þ; ð22Þ

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

q
A8 − βtWB0; ð23Þ
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which are given orthogonally to A, as usual. At this stage, C0 is always orthogonal to A; Z; Z0.
Let us change to the new basis ðA3; A8; B0; C0Þ → ðA; Z; Z0; C0Þ,
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The mass matrix M2 becomes then
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We see that the photon field is physical and decoupled, while Z; Z0; C0 mix via the 3 × 3 mass submatrix M02
s with the

elements given by
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diagonalized by using the seesaw formula [8] to separate the light state Z from the heavy states Z0, C0, which is given by
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where Z1 is physical and decoupled, while Z0 and C0 mix via M002
s , and
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m2
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Further, we approximate Ei ≃ E0
i þ Eδ

i due to u; v ≪ w;Λ again, where i ¼ 1, 2, and

E0
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ββ0t2Wðu2 þ v2Þ
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The parameters E0
i determine the mixings of Z with Z0, C0 due to the gauge symmetry breaking, which are like those in the

ordinary 3-3-1-1 model without the kinetic mixing [2,3]. Whereas, the parameters Eδ
i characterize those mixings coming

from the kinetic mixing term. Because δ is finite, the magnitudes of the two E0
i and Eδ

i contributions are equivalent.
However, all of them, E0

i and Eδ
i , are negligibly small due to u; v ≪ w;Λ.

Finally, it is easily to diagonalize the mass matrix M002
s to yield two remaining physical gauge bosons, called Z2 and Z3,

such that
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The Z0 − C0 mixing angle and Z2, Z3 masses are given by
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1 − δ2

p
ðδβtW − β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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It is clear that the kinetic mixing term also contributes to the
Z0 and C0 mixing angle with a magnitude equivalent to that
due to the gauge symmetry breaking. Unlike the previous
case, these mixings are radically large, supposed that
Λ ∼ w. However, the mixing effects on the new neutral
gauge bosons will cancel when ξ ¼ 0, or

δ ¼ β0tN
βtX

; ð35Þ

where note that tX ¼ tW=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p
.

At this stage, let us summarize that the canonical gauge
states are related to the mass eigenstates, ðA3A8B0C0ÞT ¼
U0ðAZ1Z2Z3ÞT , by the unitary matrixU0 ¼ U1U2U3, while
the original gauge states are connected to the mass

eigenstates, ðA3A8BCÞT ¼ UðAZ1Z2Z3ÞT , by the nonuni-
tary matrix U ¼ UδU0, where

Uδ ¼

0
BBBBB@

1 0 0 0

0 1 0 0

0 0 1 − δffiffiffiffiffiffiffi
1−δ2

p

0 0 0 1ffiffiffiffiffiffiffi
1−δ2

p

1
CCCCCA: ð36Þ

The fields A, Z1 can be identified like those of the standard
model, whereas Z2 and Z3 are the new, heavy neutral gauge
bosons, originating from Z0 of the 3-3-1model [9,10] andC
of Uð1ÞN symmetry. The mixings of the standard model
gauge bosons with the new gauge particles are small due to
jE1;2j ≪ 1 or u; v ≪ w;Λ, while the mixings within the
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new gauge bosons Z0 and C may be large since ξ is finite,
provided that w ∼ Λ.

III. ρ AND E1;2 PARAMETERS

The ρ-parameter (or Δρ≡ ρ − 1 used below) that is due
to the contribution of the new physics comes from two
distinct sources, denoted as Δρ ¼ ðΔρÞtree þ ðΔρÞrad,

where the first term results from the tree-level mixing of
Z with Z0 and C0, while the second term originates from the
dominant, radiative correction of a heavy non-Hermitian
gauge doublet ðX−q;−1−n ¼ A4−iA5ffiffi

2
p ; Y−1−q;−1−n ¼ A6−iA7ffiffi

2
p Þ,

similarly to the 3-3-1 model case [11]. The two kinds of
these contributions are suppressed by ðu2; v2Þ=ðw2;Λ2Þ,
which can become comparable, and are given by

ðΔρÞtree ¼
m2

W

c2Wm
2
Z1

− 1 ¼ m2
Z

m2
Z − Eðm2

ZZ0m2
ZC0 ÞT − 1≃ Eðm2

ZZ0m2
ZC0 ÞT=m2

Z

≃ ½ð1þ ffiffiffi
3

p
βt2WÞu2 − ð1 − ffiffiffi

3
p

βt2WÞv2�2
4ðu2 þ v2Þw2

þ β2β02t4Wðu2 þ v2Þ
16ð1 − δ2ÞΛ2

þ δtW
16

ffiffiffi
3

p ð1 − δ2ÞcWt2N
×

� ffiffiffi
3

p �
1þ ββ0tWtNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2t2W
p �

u2 þ v2

Λ2
þ
�
β − β0tN þ β2β0tWtNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2t2W
p �

u2 − v2

Λ2

�
; ð37Þ

ðΔρÞrad ¼ 3
ffiffiffi
2

p
GF

16π2

�
m2

Y þm2
X −

2m2
Ym

2
X

m2
Y −m2

X
ln
m2

Y

m2
X

�
þ α

4πs2W

�
m2

Y þm2
X

m2
Y −m2

X
ln
m2

Y

m2
X
− 2 −

ffiffiffi
3

p
βt2W ln

m2
Y

m2
X

�
; ð38Þ

where m2
W ¼ g2

4
ðu2 þ v2Þ, m2

X ¼ g2

4
ðu2 þ w2Þ, m2

Y ¼
g2

4
ðv2 þ w2Þ, ffiffiffi

2
p

GF ¼ 1=ðu2 þ v2Þ, and α ¼ g2s2W=ð4πÞ.
Note that the mass of W boson implies u2 þ v2 ¼
v2w ¼ ð246 GeVÞ2.
We first remark that if Λ ≫ w,Δρ depends only on β and

w, not on Λ, tN , β0, and δ, which is analogous to that of the
corresponding 3-3-1 model. If Λ ∼ w, all the mentioned
parameters contribute to Δρ. In this case, without loss of
generality, we will take Λ ¼ 2w and tN ¼ 0.5 into account.
To set other inputs, we are primarily interested in the
3-3-1-1 models that provide dark matter candidates, so
q¼ 0 or q¼−1, i.e. β¼−1=

ffiffiffi
3

p
or β¼ 1=

ffiffiffi
3

p
, respectively

[3]. Also, the candidates are stabilized if P is nontrivial, as
mentioned, so let n ¼ 0, thus β0 ¼ −2=

ffiffiffi
3

p
, for simplicity.

Furthermore, we would also be concerned with the 3-3-1-1
models that have a low Landau pole [12], such that q ¼ 1

or q ¼ −2, thus β ¼ −
ffiffiffi
3

p
or β ¼ ffiffiffi

3
p

, respectively.

Although these two models possess the distinct new
physics regimes, we will only investigate the one with
q ¼ 1, so β ¼ −

ffiffiffi
3

p
. From the global fit, the ρ-parameter is

bounded by 0.00016 < Δρ < 0.00064 [1]. Since
u2 þ v2 ¼ ð246 GeVÞ2, u will vary from 0 to 246 GeV,
while v is followed.
In Fig. 1, we contour Δρ as a function of two variables

ðu; wÞ for the case Λ ≫ w. It is clear from the figure that the
bounds are independent of the new physics associated with
Uð1ÞN and the kinetic mixing term, which coincide with
those of the 3-3-1 models. The cases of Λ ∼ w are given in
Figs. 2, 3, and 4 for β ¼ −1=

ffiffiffi
3

p
, β ¼ 1=

ffiffiffi
3

p
, and β ¼ −

ffiffiffi
3

p
,

respectively. We see that the bounds on the new physics
scales w, Λ increase when δ increase. Therefore, the kinetic
mixing effect is important when the new physics is
considered. It is noteworthy that in all cases of β ¼
−

ffiffiffi
3

p
(also valid for the models of a seminal large jβj)

FIG. 1. The ðu; wÞ regime that is bounded by the ρ parameter for β ¼ −1=
ffiffiffi
3

p
, Λ ≫ w (left panel), β ¼ 1=

ffiffiffi
3

p
, Λ ≫ w (middle panel),

and β ¼ −
ffiffiffi
3

p
, Λ ≫ w (right panel). For the last case, the Landau pole, e.g. w ¼ 5 TeV, should be imposed.
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the weak scales u, v are very constrained since the new
physics regime is limited below a low Landau pole (see also
[12]). Furthermore, the new physics scales w, Λ from the
mentioned figures are also subjected to other constraints,
e.g. see the one in the next section, by which they would be
larger than some TeV. These two extra bounds if applied

will be neglected, which should be understood, for the
following discussion to keep a simplicity.
Further, the constraints from the ρ-parameter on the

3-3-1-1 breaking scales w, Λ also depend significantly on u
and can even approach zero for certain values of u, when δ
is small and negative. Correspondingly, since Δρ is

FIG. 2. The ðu; wÞ regime that is bounded by the ρ parameter for β ¼ −1=
ffiffiffi
3

p
, β0 ¼ −2=

ffiffiffi
3

p
, tN ¼ 0.5, and Λ ¼ 2w, where the panels,

ordering from left to right in raws and then from the top raw down to the bottom raw, correspond to δ ¼ −0.9;−0.5;−0.1, 0.1, 0.5, and
0.9, respectively.

FIG. 3. The ðu; wÞ regime that is bounded by the ρ parameter for β ¼ 1=
ffiffiffi
3

p
, β0 ¼ −2=

ffiffiffi
3

p
, tN ¼ 0.5, and Λ ¼ 2w, in which the panels,

reading from left to right in raws and from the top raw down to the bottom raw, are for δ ¼ −0.9;−0.5;−0.1, 0.1, 0.5, and 0.9,
respectively.
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proportional to E—the mixing of Z with Z0 and C0—at the
tree-level, the new physics is always decoupled from the
standard model when w, Λ tend to the weak scales and then
to zero, where we see that the mixing effects and Z-
coupling corrections vanish. Apparently, this property is
always protected at loop levels since this regime of the
theory preserves a good custodial symmetry, SUð2ÞLþR, as
in the standard model. Therefore, we can close the 3-3-1-1
symmetry at the weak scales, which is similar to the 3-3-1
models studied in [13], as also seen from Fig. 1. The
conclusion is valid for any β; β0, and w − Λ relation. Only if
the kinetic mixing parameter is positive and large (δ → 1),
such closing effects are relaxed and even lost.
Generalizing the results in the second article of [2], we

obtain the standard model Higgs boson H ≃ ðuS1 þ vS2Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, given at the leading order, u; v ≪ w;Λ;−μ,

where S1 ¼
ffiffiffi
2

p
Reðη1Þ − u, S2 ¼

ffiffiffi
2

p
Reðρ2Þ − v, and μ is

the triple coupling of η, ρ, χ. The other scalars include nine
massless Goldstone bosons as eaten by nine massive gauge
bosons and ten new heavy Higgs bosons with masses in w,ffiffiffiffiffiffiffiffiffijμwjp

, or Λ scale. The mass of H can fit 125 GeV
independent of v=u ratio. At the leading order, the H
couplings coincide with those of the standard model,

L ⊃ − mf

vw
f̄fH þ g2vw

2
ðWþ

μ W−μ þ 1
2c2W

ZμZμÞðH þ 1
2vw

H2Þ,
where mf ¼ −hf uffiffi

2
p for f ¼ t, d, s, mf ¼ −hf vffiffi

2
p for

f ¼ b, e, μ, τ, and mf ¼ hf vffiffi
2

p for f ¼ u, c. The mod-

ifications to those couplings due to the mixing of H with
new scalars are easily evaded since they are suppressed by
ðu; vÞ=ðw;Λ;−μÞ [2]. We conclude that the standard model
Higgs couplings and Higgs and fermion masses can be

recovered at the leading order, without imposing any
constraint on the ratio of the weak scales v=u, which is
unlike the minimal supersymmetric standard model. The
constraint on v=u can only come from some of the
following sources: (i) the ρ-parameter; (ii) when μ is
low, by contrast; (iii) the perturbative limit of quark
couplings with new scalars relevant to the top coupling,
e.g. mt

vw
v
u t̄tH1 and − mt

vw
v
u b̄LtRH

−
2 þ H:c:, where H1 is

orthogonal to H while H2 is a combination of ρ1, η2;
and (iv) collider bounds on the new Yukawa, gauge, and
scalar couplings. The last three cases are merely assump-
tions, which will be not considered in this work.
The mixing of the standard model Z boson with the new

neutral gauge bosons will modify the well-measured
couplings of the Z with fermions. In the aforementioned
basses, we have Z ¼ Z1 þ E1Z0 þ E2C0, Z0 ¼ −E1Z1 þ Z0,
and C0 ¼ −E2Z1 þ C0. Hence, the couplings of Z1 to
fermions include the corrections that come from the
beginning Z0, C0 couplings, which are proportional to E1

and E2, and obviously independent of the Z0 and C0 mixing
angle. The various f̄fZ1 couplings have been examined
[1], and the new physics contributions are safe if the mixing
parameters are typically proportional to 10−3, by which we
will take the bound jE1;2j ¼ 10−3 into account.
We observe that the sensitivity of the mixing parameters

to the weak scales u, v is only one term in E1 that is identical
to the corresponding 3-3-1 model, since u2 þ v2 ¼
ð246 GeVÞ2 is fixed. Also, if Λ ≫ w, E2 ¼ 0, while E1

becomes that of the corresponding 3-3-1 model, E0
1.

Therefore, these two cases are not investigated in this
work, which should be well understood. Our concern is the

FIG. 4. The ðu; wÞ regime that is bounded by the ρ parameter for β ¼ −
ffiffiffi
3

p
, β0 ¼ −2=

ffiffiffi
3

p
, tN ¼ 0.5, and Λ ¼ 2w. Here, the panels,

arranging from left to right in raws and then from the top raw down to the bottom raw, are for δ ¼ −0.8;−0.3;−0.1, 0.1, 0.5, and 0.9,
respectively. In this case, the Landau pole, which is roundly w ¼ 5 TeV, is imposed.
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change of the new physics scales in terms of the kinetic
mixing contribution, and for this case we can set u ¼ v. The
previous inputs, Λ ¼ 2w, tN , β, β0 are also used. In Fig. 5,
the viable new physics region is given above both lines of
E1;2. Notably, the case of β ¼ −

ffiffiffi
3

p
is subjected to the

Landau pole limit, which implies that the new physics
regime is very narrow.

IV. FLAVOR-CHANGING NEUTRAL CURRENTS

The fermion generations are generally not repeated (or
universal) under the SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN sym-
metry, therefore there could be FCNCs. With the aid of
X ¼ Q − T3 − βT8 and N ¼ B − L − β0T8, the neutral
currents take the form

LNC ¼ −gF̄γμ½T3A3μ þ T8A8μ þ tXðQ − T3 − βT8ÞBμ

þ tNðB − L − β0T8ÞCμ�F; ð39Þ

where F is summed on all the fermion multiplets.
It is clear that the leptons, including new particles νR
and k, and the exotic quarks do not flavor change,
because the corresponding flavors that potentially mix
such as ðν1L; ν2L; ν3LÞ, ðe1L; e2L; e3LÞ, ðe1R; e2R; e3RÞ,
ðν1R;ν2R;ν3RÞ, ðk1L; k2L; k3LÞ, ðk1R; k2R; k3RÞ, ðj1L; j2LÞ,
and ðj1R; j2RÞ are identical under the gauge charges,
respectively. (Note that j3 does not mix with j1;2 due to
the difference of electric charges). Additionally, the terms
of T3, Q, and B − L are also not flavor changing, because
all the repetitive flavor structures, including the mentioned
ones and ðu1L; u2L; u3LÞ, ðu1R; u2R; u3RÞ, ðd1L; d2L; d3LÞ,
and ðd1R; d2R; d3RÞ, are identical under those charges,
respectively. Hence, the FCNCs are only associated with
the ordinary quarks and T8, by which we come with
concerned interactions,

LNC ⊃ −gq̄LγμT8qqLðA8μ − βtXBμ − β0tNCμÞ; ð40Þ

where q denotes either up-type quarks q ¼ ðu1; u2; u3Þ
or down-type quarks q ¼ ðd1; d2; d3Þ, and T8q ¼
1

2
ffiffi
3

p diagð−1;−1; 1Þ is the corresponding T8 values.

Let us work in the mass eigenstates, qL;R ¼ VqL;qRq0L;R,
q0 ¼ ðu; c; tÞ or q0 ¼ ðd; s; bÞ, and ðA3A8BCÞT ¼
UðA; Z1; Z2; Z3ÞT , which yields

LNC ⊃ −q̄0LγμðV†
qLT8qVqLÞq0Lðg1Z1μ þ g2Z2μ þ g3Z3μÞ;

¼ −
1ffiffiffi
3

p q̄0iLγ
μq0jLðV�

qLÞ3iðVqLÞ3jðg1Z1μ

þ g2Z2μ þ g3Z3μÞ; ð41Þ

which implies the FCNCs for i ≠ j. We also see that the
photon always conserves flavors. The couplings of Z1;2;3

are given by

g1 ¼ g

�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p E1 þ
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ2
p ðβ0tN − δβtXÞE2

�
;

ð42Þ

g2 ¼ g

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2t2W
p cξ þ

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p ðβ0tN − δβtXÞsξ
�
;

ð43Þ

g3 ¼ g2ðsξ → −cξ; cξ → sξÞ: ð44Þ

The meson mixings are determined by the effective
Lagrangian after integrating out Z1;2;3,

Leff
FCNC ¼ 1

3
ðq̄0iLγμq0jLÞ2½ðV�

qLÞ3iðVqLÞ3j�2

×

�
g21
m2

Z1

þ g22
m2

Z2

þ g23
m2

Z3

�
: ð45Þ

It is easily verified that the Z1 contribution is negligible,
because ðg21=m2

Z1
Þ=ðg22=m2

Z2
þ g23=m

2
Z3
Þ is proportional to

ðu2; v2Þ=ðw2;Λ2Þ that is suppressed at the leading order.
Therefore, only Z2 and Z3 govern the FCNCs, which
leads to

FIG. 5. The bounds on the new physics scales as functions of δ, contoured by jE1;2j ¼ 10−3, for the three kinds of the models
β ¼ −1=

ffiffiffi
3

p
, β ¼ 1=

ffiffiffi
3

p
, and β ¼ −

ffiffiffi
3

p
, respectively.
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Leff
FCNC ≃ 1

3
ðq̄0iLγμq0jLÞ2½ðV�

qLÞ3iðVqLÞ3j�2
�

g22
m2

Z2

þ g23
m2

Z3

�
:

ð46Þ

The strongest bound comes from the B0
s − B̄0

s mixing,
which is given by [1]

1

3
½ðV�

dLÞ32ðVdLÞ33�2
�

g22
m2

Z2

þ g23
m2

Z3

�
<

1

ð100 TeVÞ2 : ð47Þ

Supposing that the up-type quarks are flavor diagonal, we
have the Cabibbo-Kobayashi-Maskawa (CKM) factor
jðV�

dLÞ32ðVdLÞ33j≃ 3.9 × 10−2 [1]. Hence, it follows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22
m2

Z2

þ g23
m2

Z3

s
<

1

2.25 TeV
; ð48Þ

which yields mZ2
>2.25×g2TeV and mZ3

>2.25×g3TeV,
which are in the TeVorder, assumed that the g2;3 couplings
are proportional to unity.
Considering two conditions:
(1) Z3 is more superheavy than Z2, i.e. Λ ≫ w. We

have m2
Z2

≃ g2w2

3ð1−β2t2WÞ, m2
Z3

≃ 4g2NΛ
2, ξ≃ 0, g2 ≃

g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p
, and g3 ≃ −gðβ0tN − δβtXÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
.

The above bound becomes w > 3.9 TeV, which is
given independent of β, β0, g, gX, gN and δ. This is
also the common bound for every 3-3-1 model with
arbitrary β.

(2) Z3 and Z2 are comparable in mass, so we take
Λ ¼ 2w. The other inputs as given previously, tN , β,
and β0, are also used for this case. Since u; v ≪ w;Λ,
the left-hand side of (48) depends only on the new
physics scales, not on the weak scales. Additionally,
the constraint (48) obeys the dependence of w, Λ
bounds in terms of the kinetic mixing parameter, δ,
which is depicted in Fig. 6. The figure shows that the
new physics regime changes (although, slightly in a
large region of δ for the left and middle panels),

when δ varies. Those bounds are obviously lower
than that given by the Λ ≫ w case above.

V. CONCLUSION

Generally, if a theory contains two Uð1Þ gauge groups,
the corresponding kinetic mixing term arises. Such term
for the 3-3-1-1 model has been investigated, which is
between the gauge bosons of Uð1ÞX and Uð1ÞN , where
these groups are used to define the electric charge Q and
baryon-minus-lepton charge B − L as well as the necessary
algebraic closure of these charges with SUð3ÞL, respec-
tively. The kinetic mixing modifies the neutral gauge boson
spectrum of the original 3-3-1-1 model, which has been
diagonalized in detail. The physical photon and Z1 boson
that belong to the standard model have been identified. The
new physical neutral gauge bosons Z2, Z3 that mainly relate
to those of the 3-3-1 model and Uð1ÞN have been achieved,
which all are heavy in w, Λ scales, where w is the 3-3-1
breaking scale, while Λ is the B − L breaking scale. The
mixing of Z boson with new Z0; C0 neutral gauge bosons are
small, as governed by a seesaw-like mechanism, in spite of
the fact that the kinetic mixing parameter δ contributes and
is finite. By contrast, the mixing between the new neutral
gauge bosons Z0, C0 is generally large, supplied by both
sources, the 3-3-1-1 symmetry breaking and kinetic mixing
term. In particular, the Z0 − C0 mixing effect disappears
when such contributions are canceled out, implying an
interesting relation, δ ¼ ðβ0gNÞ=ðβgXÞ, where gN and gX are
the gauge couplings of Uð1ÞN and Uð1ÞX, while β0 and β
are used to determine the B − L and Q embedding in the
3-3-1-1 symmetry, respectively.
The new physics regime is changed when the kinetic

mixing contributes. The well-measured couplings of the
standard model Z boson are modified by the mixing
parameters E1;2, which come from both the sources of
the mixings, and they are properly suppressed by the
mentioned seesaw like mechanism. The numerical inves-
tigation for the typical bounds, E1;2 ¼ 10−3, with a par-
ticular choice of the input parameters yields a solution for
w≡ Λ=2 around 3 TeV, as given in the most range of
−1 < δ < 1. The Z − Z0 mixing (E1) is slightly varying in

FIG. 6. The bounds on the new physics scales as functions of δ, given by the constraint (48), for the three kinds of the models,
β ¼ −1=

ffiffiffi
3

p
, β ¼ 1=

ffiffiffi
3

p
, and β ¼ −

ffiffiffi
3

p
, respectively.
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δ, whereas the Z − C0 mixing (E2) is strongly sensitive to δ.
The new physics contribution to the ρ-parameter results
from the tree-level mixings of Z with Z0, C0 bosons (due to
both the sources, the 3-3-1-1 breaking and the kinetic
mixing) as well as from the dominant one-loop corrections
of the new non-Hermitian gauge bosons. Using the exper-
imental data on ρ-parameter, the viable ðu; wÞ regions have
been given, which are more sensitive to δ too. The new
physics scale, w, is typically in TeV scale, while the weak
scale, u, is correspondingly restricted. When jβj is large,
close to its bounds, the Landau pole might approach the
weak scales, and in this case the VEVs u, v are strongly
definite, since their viable regimes are very narrow. Note
that in this case, the new physics may be still decoupled
from the standard model due to a good custodial sym-
metry SUð2ÞLþR.
We have calculated the flavor-changing neutral currents

due to the discrimination of the third generation quarks
from the first two as well as due to the mixing of the neutral
gauge bosons. These currents are dominantly governed by
the new Z2;3 bosons, whereas the contribution of Z1 boson
is negligible. The experimental constraint on the B0

s − B̄0
s

mixing sets the strongest bound on the new physics scales
ðw;ΛÞ. If Λ ≫ w, the 3-3-1 breaking scale is bounded by
w > 3.9 TeV. If Λ ¼ 2w, the 3-3-1 breaking scale w is
around 3–3.5 TeV. The new physics scales are obviously
changed when δ varies. When β is large so that the Landau
pole is presented, close to TeV scale, the new physics
regime due to both the constraints (the Landau pole and
B0
s − B̄0

s mixing) may be very narrowed, as already seen
for β ¼ −

ffiffiffi
3

p
.

Finally, we emphasize that the kinetic mixing effect must
be taken into account when the new physics in the 3-3-1-1
model is examined. With the implication for dark matter,
neutrino masses, cosmological inflation, and leptogenesis
as well as the theoretical advantages over the known 3-3-1
models [2,3], the current 3-3-1-1 model warrants further
studies.
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