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We show that an interplay of double exchange and impurity randomness can explain the competition between
metal-ferromagnetic and insulating charge ordered states in doped manganites. The double exchange is simplified
in the Ising type, whereas the randomness is modeled by the Falicov-Kimball binary distribution. The combined
model is considered in a framework of dynamical mean-field theory. Using the Kubo-Greenwood formalism, the
transport coefficients are explicitly expressed in terms of single-particle spectral functions. Dividing the system
into two sublattices we have pointed out a direct calculation to the checkerboard charge order parameter and the
magnetizations. Numerical results show us that the checkerboard charge order can settle inside the ferromagnetic
state at low temperature. An insulator-metal transition is also found at the point of the checkerboard charge
order-ferromagnetic transition.
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I. INTRODUCTION

Observations of the complex phase structures in doped man-
ganites T1−xDxMnO3 (T = trivalent rare earth, D = divalent
alkaline) have stimulated enormous attention recently [1–3].
In a wide range of doping x and temperature, the competition
of various degrees of freedom leads to a very rich phase
diagram involving spin, charge, and orbital orders [4–7].
Particularly, in some regimes of the phase diagram, an interplay
between the charge and the spin orders has triggered various
anomalies of the transport properties observed in experiments
[4–7]. In doped manganites with perovskite structure, the
Mn fivefold 3d levels are split into triply degenerate t2g and
higher energy doubly degenerate eg levels. The t2g electrons
are usually localized. Meanwhile, the eg electrons are able
to hop between Mn sites, building the conducting band.
The itinerant electrons and local spins are correlated by the
double-exchange (DE) mechanism, in which two motions
involving an itinerant electron moving from an oxygen atom to
Mn4+ ions and another from Mn3+ to the oxygen atom happen
simultaneously [8]. The main feature of DE is interactive
cooperation between the ferromagnetic (FM) ordering of the
local spin and the motion of the itinerant electrons. The DE
model has successfully described some magnetic properties of
manganites, in such a way that it provides a well-established
starting point toward understanding the complex phase orders.

However, considering the DE model alone, only the
ferromagnetic state stabilizes at low temperature and in
the whole temperature range, one finds only the metallic
state [9]. In experiment, the electron diffraction analysis for
La1−xCaxMnO3, in a narrow region around x = 0.5, shows us
that the charge order (CO) occurs below the Curie temperature,
i.e., inside the FM state [10]. In the so-called CO-FM phase,
a band gap opens and the system is an insulator [10]. To
explain the complexity of the phase structures and also the
transport properties in the entire temperature range, the DE
model thus needs to be improved. One possible amendment
addressing the coexistence of CO and FM states is to involve
a large Jahn-Teller lattice distortion coupling to the itinerant
electrons. This distortion causes a metal-insulator transition

(MIT) via strong polaronic narrowing of the conduction
electron band. However, the Jahn-Teller lattice distortion
makes the CO phase stabilize above the FM transition [11].
This is not the situation observed in experiments [5,10,12].
Alternatively, the interplay between the CO and FM states
might also be explained by adding a random local potential
to the DE model [13,14]. The random local potential comes
from the D2+ doping, arising from random substitution of
T 3+ by D2+. This so-called diagonal-disorder is inevitable
in doped manganites [4,5,15]. In the present paper, we use
the key idea that the diagonal-disorder can be modeled
by the Falicov-Kimball (FK) model [16]. Although the FK
model is simple, it contains a rich variety of phases possibly
controlled by the electronic interaction [17,18]. Incorporating
the FK-type diagonal-disorder into the DE model, one expects
that an interplay between the electronic correlation and the
disorder might trigger the complex anomalies observed in the
systems that the DE model alone fails to interpret. The phase
structure observed in the combined model shows us that at
low temperature a checkerboard CO state stabilizes below the
Curie temperature, i.e., inside the FM state [13,14]. However,
there is lack of evidence to clarify the existence of an MIT, in
particular, its relation with the CO-FM transition as observed
in the experiments [10]. In our work, detailed signatures of the
electronic density of states (DOS) and transport properties in
a large range of temperatures are addressed to discuss the MIT
in connection with the CO-FM transition.

To analyze the electronic DOS of the DE model including
the diagonal disorder, we employ a dynamical mean-field
theory (DMFT) [19]. The DMFT has been extensively used
for investigating strongly correlated electron systems [19]. It
is based on the fact that the self-energy depends only on the
frequency in the infinite dimensional limit. Dividing the system
into two sublattices, DMFT permits us to evaluate explicitly
the electronic Green functions and then the carrier densities
for individual spins on each sublattice site. The magnetization,
CO order parameter as well as the transport coefficients in the
Kubo-Greenwood formalism therefore are straightforwardly
evaluated. The MIT accompanied by the FM-CO transition is
then discussed. At extremely low temperatures, it is found that
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a finite disorder drives the checkerboard CO state inside the FM
regime. In the CO state, the electronic resistivity is extremely
enhanced while the thermal conductivity is suppressed. Those
qualitative features typify an insulating state. Whereas at large
temperature the system stabilizes in the metallic state. The
FM-CO transition temperature is exactly the MIT temperature.

This paper is organized as follows. In Sec. II, we in-
troduce a microscopic Hamiltonian essentially applied to
doped manganites. Dividing the system into two sublattices,
transport coefficients calculated to the Hamiltonian in the
Kubo-Greenwood formalism are derived. Section III outlines
the DMFT application, an explicit single-particle Green’s
function for an individual sublattice is then calculated. In
Sec. IV, we present the numerical results and their discussion.
Our conclusions can be found in Sec. V.

II. MODEL AND TRANSPORT COEFFICIENTS

The DE model combined with the diagonal disorder is
proposed in the following Hamiltonian:

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ − 2J

∑
i

Sz
i s

z
i

+U
∑
iσ

niσ n
f

i + Ef

∑
i

n
f

i , (1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator for an

itinerant electron with spin σ at lattice site i. The first term in
the Hamiltonian (1) represents the electron hopping between
nearest-neighbor sites, t is the hopping integral, and in the limit
d → ∞, it scales with the spatial dimension d as t = t∗/2

√
d

[19]. In the following, t∗ = 1 is taken as the unit of energy
[19]. Sz

i and sz
i = ∑

σ σc
†
iσ ciσ /2 are the z component of the

localized magnetic ion spin and of the itinerant electron spin,
respectively. The third term in Eq. (1) therefore illustrates
the Ising-type Hund coupling of the local and the itinerant
electrons, J is the strength of the coupling. In the last two
terms, niσ = c

†
iσ ciσ is the itinerant electron occupation number

operator and n
f

i is a classical variable. n
f

i takes the value
1 (0) if site i is occupied (nonoccupied) by a D2+ ion. Note
here that a doped manganite is a mixed-valance compound
such as T3+

1−xD2+
x Mn3+

1−xMn4+
x O2−

3 , the density of unfavorable

Mn4+ sites therefore is x that reads x = ∑
i〈nf

i 〉/N (N is the
number of lattice sites). U is the strength of the local disorder
and is mapped onto the difference in the local potential, which
splits energetically in favor of Mn3+ and Mn4+ ions. Note
here that the disorder between these two valance states of the
manganese ions is not exactly the original disorder generated
by doping of D. It looks like a binary alloy disorder. In this
work, we model the binary alloy disorder by a variable (i.e.,
n

f

i ) of the Falicov-Kimball model. The chemical potential μ

controls the carrier doping, while Ef is included to control the
fraction of the sites having the additional local potential. The
first three terms in the Hamiltonian describe a simplified DE
(SDE) model [9], whereas the last two terms together with the
hopping term form the FK model [16,20,21]. In the framework
of DMFT, the individual simplified DE or FK model, and
also their combination have been considered in the literature
[13,14,18,22]. In particular, by analyzing the charge and spin

susceptibilities of the combined model, the CO has been found
to exist inside the FM phase [13,14]. In the present work, we
adopt the DMFT to study the CO transition in competition
with the FM state but in a different way. Here, the CO and
FM states are characterized by a CO order parameter and
the magnetization, respectively. Signatures of the phases are
also discussed by analyzing the density of states (DOS) of
the itinerant electrons for an individual spin at a different
sublattice site. Thus it is convenient to divide the system into
two sublattices A and B. Assuming that the number of lattice
sites are equal in the two sublattices [23], the Hamiltonian (1)
can be rewritten in four terms like

H = HAB + HBA +
∑

η={A,B}
Hη, (2)

where

Hη = U
∑
iσ

n
f

iηniησ − 2J
∑

i

Sz
iηs

z
iη + Ef

∑
i

n
f

iη (3)

is the on-site interaction term, whereas

HAB = −t
∑
iσ

a
†
iσ biσ and HBA = −t

∑
iσ

b
†
iσ aiσ , (4)

correspond to the hopping between A and B sublattice sites.
a
†
iσ and aiσ (b†iσ and biσ ) are the creation and annihilation

operators of the itinerant electron with spin σ at site i,
respectively, in sublattice A(B). Here the sum runs over all
lattice sites of one sublattice.

To study the transport properties, in our work, we follow
the Kubo-Greenwood formalism [24]. The electrical resistivity
ρ, the thermal conductivity κ , and the thermopower S are
calculated by linear response theory. At temperature T , this
gives

ρ = T

e2L11
, (5)

κ = 1

T 2

[
L22 − (L12)2

L11

]
, (6)

S = − 1

eT

L12

L11
, (7)

where L11,L12, and L22 are the transport coefficients which
are determined from the analytic continuation of the respective
correlation functions at zero frequency, i.e.,

Lαβ = lim
ν→0

T Im
L̄αβ(iνn → ν + i0+)

ν
. (8)

Here, L̄αβ(iνn), where α,β = {1,2}, are the current-current
correlation functions and iνn = (2n + 1)πT is the fermionic
Matsubara frequency. Explicit expressions of L̄αβ(iνn) read

L̄11(iνn) =
∫ β

0
dτeiνnτ 〈Tτ j(τ )j(0)〉, (9)

L̄12(iνn) =
∫ β

0
dτeiνnτ 〈Tτ j(τ )jQ(0)〉, (10)

L̄22(iνn) =
∫ β

0
dτeiνnτ 〈Tτ jQ(τ )jQ(0)〉, (11)
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where β = 1/T and Tτ is the time-ordering operator. In
Eqs. (9)–(11), j and jQ are the particle-current and the
head-current operators, respectively. A key point therefore in a
calculation of the transport coefficients is to evaluate explicitly
expressions of the current operators. The particle-current
operator in corresponding to the Hamiltonian H is defined by

j = i[H,P], (12)

where P = ∑
i Rini is the polarization operator [24]. For the

Hamiltonian given in Eq. (2) one obtains an expression of the
particle-current operator depending on time

j(τ ) =
∑
qσ

vq[a†
qσ (τ )bqσ (τ ) + b†qσ (τ )aqσ (τ )]. (13)

Here we have written the creation and annihilation operators
in momentum space by using the Fourier transformations
[i.e., a†

qσ = ∑
j a

†
jσ exp(iRj q)/N , for instance]. vq = �qε(q)

means the velocity and ε(q) is the dispersion of the noninter-
acting electrons. The heat-current operator jQ is determined by
jQ = jE − μj, where jE is the energy current operator which
is constructed by taking a commutator of the Hamiltonian
with the energy polarization operator

∑
i Rihi (note here that

H = ∑
i hi). Based on the equation of motion technique, [20]

the time dependence of the heat-current operator reads

jQ(τ ) = lim
τ ′→τ−

1

2

∑
qσ

(
∂

∂τ
− ∂

∂τ ′

)
vq

× [a†
qσ (τ )bqσ (τ ′) + b†qσ (τ )aqσ (τ ′)]. (14)

From the expressions of j(τ ) and jQ(τ ), respectively, in
Eqs. (13) and (14), we can evaluate the current-current
correlation functions given in Eqs. (9)–(11). From Eq. (8), the
transport coefficients read in a form [9,23,25]

Lαβ =
∫

dω

(
−∂f (ω)

∂ω

)
τ (ω)ωα+β−2, (15)

where

τ (ω)=T
∑

σ

∫
dερ(ε)

[
AA,σ (ε,ω)AB,σ (ε,ω) + A2

AB,σ (ε,ω)
]
,

(16)

plays the role of the exact many-body relaxation time [23].
τ (ω) in Eq. (16) has been written in units of 2πσ0, where σ0

is the unit of conductivity, which is defined in Ref. [26]. In
Eq. (16), ρ(ε) is the density of states of noninteracting electrons
and AA(B),σ (ε,ω) and AAB,σ (ε,ω) are spectral functions. In
our problem, the spectral functions are evaluated directly from
Green’s functions of the itinerant electrons defined below
in Eqs. (19) and (20), i.e., Aη,σ (ε,ω) = −ImGη,σ (ε,ω)/π
(η = {A,B}) and AAB,σ (ε,ω) = −ImGAB,σ (ε,ω)/π . In the
derivation of the expression in Eq. (15), we have neglected
the vertex corrections which actually vanish in the limit
of infinite dimensions. In the limit of infinite dimensions,
another exact expression of the relaxation time τ (ω) for the
spinless Falicov-Kimball model can be found in Ref. [23].

The expression of the transport coefficients in Eq. (15) looks
similar to the Mott-Thellung noninteracting form [27]. Here,
f (ω) = 1/[exp(ω/T ) + 1] is the Fermi-Dirac distribution
function. From the analytical expression of τ (ω) in Eq. (16),
one realizes that to evaluate the transport coefficients one needs

to determine the single-particle Green’s functions Gη,σ (ε,ω)
and GAB,σ (ε,ω). In the next section, we will point out a
calculation of the Green’s functions in the framework of DMFT
applying to the Hamiltonian written in Eq. (2).

III. DYNAMICAL MEAN-FIELD THEORY

Our aim in this section is to evaluate the Green’s function
of the itinerant electrons in the ideas of DMFT. The key point
of the DMFT is that, in the infinite dimensional limit, the self-
energy of the electrons is local and depends on the frequency
only [19]. For a system involving two sublattices A and B, the
Green’s function of the itinerant electrons can be determined
via the Dyson equation

Ĝσ (k,iωn) =
(

GA,σ (k,iωn) GBA,σ (k,iωn)

GAB,σ (k,iωn) GB,σ (k,iωn)

)

=
(

ξA
σ (iωn) −ε(k)

−ε(k) ξB
σ (iωn)

)−1

, (17)

where

ξη
σ (iωn) = iωn + μ − �η

σ (iωn), (18)

and �η
σ (iωn) is the self-energy of the itinerant electrons on

sublattice η, which depends on the frequency only. Here we
have assumed that each sublattice still can be considered as an
infinite dimensional system. By taking the matrix inverse of
Eq. (17) one arrives at the momentum or energy dependence
of elements of the Green’s functions:

GA(B),σ (k,iωn) = ξB(A)
σ (iωn)

ξA
σ (iωn)ξB

σ (iωn) − ε(k)2
, (19)

GAB,σ (k,iωn) = GBA,σ (k,iωn)

= ε(k)

ξA
σ (iωn)ξB

σ (iωn) − ε(k)2
. (20)

In the DMFT framework, the self-energies are determined
by solving an effective single-site problem. The effective
action of our system reads

S
η

eff[S
z
η,n

f
η ]

= −
∫

dτ

∫
dτ ′ ∑

σ

c†ησ (τ )G−1
η,σ (τ − τ ′)cησ (τ ′)

−
∫

dτ
∑

σ

(
JSz

ησ − Unf
η

)
c†ησ (τ )cησ (τ ) + Ef nf

η ,

(21)

where cησ (τ ) and c†ησ (τ ) are Grassmann variables, and
Gη,σ (τ − τ ′) is the Green’s function of the effective medium
according to sublattice η. The local Green’s function Gη,σ (iωn)
of the effective single-site problem satisfies the Dyson equation

G−1
η,σ (iωn) = G−1

η,σ (iωn) − �η
σ (iωn). (22)

The local Green function is solely determined within the
dynamics of the effective single-site impurity embedded in
the dynamical mean-field medium,

Gη,σ (iωn) = δZη

eff

δG−1
η,σ (iωn)

, (23)
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whereZη

eff is the effective partition function for the sublattice η.
Within the effective single-site problem, the partition function
can be determined from the effective action as

Zη

eff = Tr
∫

Dc†ησ Dcησ e−S
η

eff[S
z
η,n

f
η ], (24)

where the trace is taken over Sz
η and n

f
η . For the effective action

of the problem addressed in Eq. (21), the partition function can
be evaluated straightforwardly. Indeed, there is no coupling
between the local spin Sz

η and the impurity density n
f
η dynamics

involved in the effective action, and one can take the trace over
Sz

η and n
f
η in (24) independently. This task in fact is only a

simple combination of dealing with the DMFT individually to
the SDE and FK models. Finally, we obtain

Zη

eff = 4
∑
m,n

f
η

exp

[
−Ef nf

η β

+
∑
nσ

ln
G−1

η,σ (iωn) + Jσm − Un
f
η

iωn

]
, (25)

where m takes all possible values of the local spin Sz
η on the

z axis, m = −3/2, − 3/2 + 1, . . . ,3/2 and n
f
η = 0,1. From

Eq. (23), one derives an explicit expression of the local Green’s
function

Gη,σ (iωn) =
∑
m,n

f
η

wmη

(
n

f
η

)
G−1

η,σ (iωn) + Jσm − Un
f
η

, (26)

where

wmη(nf
η ) = 4

Zη

eff

exp

[
−Ef nf

η β

+
∑
nσ

ln
G−1

η,σ (iωn) + Jσm − Un
f
η

iωn

]
. (27)

The self-consistent condition of the DMFT requires that the
local Green’s function in Eq. (26) must coincide with the
single-site Green’s function of the original lattice in Eq. (17).
That means

Gη,σ (iωn) = 1

N

∑
k

Gη,σ (k,iωn). (28)

Here we have written the single-site Green’s function of the
itinerant electrons for an individual sublattice η. From the
expression in Eq. (19), one easily arrives at a frequency
dependence only of the single-site Green’s function

GA(B),σ (iωn) =
∫

dερ(ε)
ξB(A)
σ (iωn)

ξA
σ (iωn)ξB

σ (iωn) − ε2
, (29)

where the summation over momentum k in Eq. (28) has
been replaced by an integration over energies weighted by the
density of states of noninteracting itinerant electrons, ρ(ε). In
the infinite dimensional hypercubic lattice, it has a Gaussian
form, i.e., ρ(ε) = exp(−ε2)/

√
π . Equations (22), (26), and

(29) form a complete set of equations, which self-consistently
determines the self-energy and the Green’s function of the
itinerant electrons.

IV. NUMERICAL RESULTS

In this section, we present numerical solutions of the
self-consistent DMFT Eqs. (22), (26), and (29). In the
calculation, we shall use the condition n + x = 1, where n =∑

iση〈niησ 〉/N is the carrier density and x = ∑
iη〈nf

iη〉/N .

From Eq. (27), one can show that x = ∑
mη wmη(nf

η = 1) [14].
In doped manganites, the ferromagnetic coupling between the
localized magnetic spin and the itinerant electron spin always
plays a prerequisite role deciding their physical properties
[28,29]. In the following, therefore, we analyze numerical
results only for large Hund coupling, i.e., J 
 1. To proceed
with the task in the real frequency ω, we use the analytical
continuation by replacing iωn = ω + i0+, all summations of
the Masubara frequencies in Eqs. (25)–(27) thus would be
changed to integrals of the real frequency [9].

First of all, we take a short view of the complex phases
by analyzing the DOSs of the itinerant electrons. The DOS
with respect to each spin σ and sublattice η is evalu-
ated straightforwardly from its Green’s function following
Aησ (ω) = −ImGησ (ω)/π . The carrier density then would be
evaluated by taking a summation of DOS magnitudes of all
possible states below the Fermi level. The signature of the
DOS therefore could be different when the system settles on
a different phase. For example, the checkerboard CO state is
indicated by a difference of the electronic densities on each
sublattice while in the FM state one finds a difference between
spin-up and spin-down electronic densities. Figure 1 shows the
DOSs of the itinerant electrons for different temperatures at
n = 0.5, J = 8, and U = 0.4. At low temperature [T = 0.001,
panel (a)], we see that all four DOSs accounting for each
spin up and down electrons on each sublattice A and B are
distinguished and as a consequence, the system stabilizes in
the CO-FM state.

Increasing temperature up to T = 0.04 [panel (b)] the DOSs
on sublattices A and B for a distinct spin totally merge into each
other. However, in this situation, we still can see a discrepancy
between the DOSs of spin-up and spin-down electrons. This
evidence indicates that the system now settles in the charge
homogeneous FM state. As a function of temperature, we
can conclude that the CO state exists inside the FM state.
Enlarging temperature further, DOSs of the spin-up and spin-
down carriers start developing an overlap [see panel (c)] and
they completely consolidate when the temperature is larger
than a critical value. At T = 0.15 [see panel (d)], for instance,
the system stabilizes in the charge homogeneous paramagnetic
(PM) state. Inspecting the DOSs at energies close to the Fermi
level we also realize that at very low temperature [panel (a)]
there is a gap open at the Fermi level. An insulating state
therefore is found when the system stabilizes in the CO state.
Increasing the temperature [panel (b)–(d)], the gap disappears
and the system is in the charge homogeneous-metallic state.

Discussing the effects of the disorder strength in the
association of the CO and the insulating states, in Fig. 2, we
show the DOSs of the spin-up electrons by only inspecting
the energies around the Fermi level for some values of U at
very low temperature, T = 0.001. For small U , the DOSs of
the itinerant electrons on sublattices A and B are identical,
the electronic densities on all sites thus are the same or the
system is in the charge homogeneous state. Increasing U , the
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0.0

0.5

1.0

1.5

A
ασ
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ω
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T=0.09

(a) (b)

(d)(c)

FIG. 1. Density of states Aησ (ω) of the itinerant electrons with spin σ in sublattice η = A and B for n = 0.5 at different temperatures T .
Here, we fix J = 8 and U = 0.4.

two DOSs are separated from each other, this indicates the
transition to the CO state. In this case, we see a gap opening at
the Fermi level. This marks the insulating state. The size of the
gap grows with U , thus the insulating state here is driven by the
strength of the disorder. Unlike the Mott insulator transition
in the hypercubic lattice where we can see a tail in the DOS,
in this MIT, the gap opens sharply. The signature of the MIT
related to the CO-FM transition will be discussed in detail later.

To detect the interplay of the CO and the FM states in a more
explicit way, we discuss the properties of magnetizations and
the CO order parameter. They are respectively defined by

mη = 1

N

∑
i∈η

|〈ni↑〉 − 〈ni↓〉|, (30)

-2.4 -1.2 0 1.2 2.4
ω

0

1

2

3

A
α↑

U=0.1

U=0.2

U=0.4

(ω
)

FIG. 2. Density of states of the itinerant spin-up electrons in
sublattices A (solid lines) and B (dashed lines) at n = 0.5 and
T = 0.001 for J = 8 and different disorders U .

� = 1

N

∣∣∣∣∣
∑
σ,i∈A

〈niσ 〉 −
∑
σ,i∈B

〈niσ 〉
∣∣∣∣∣, (31)

where 〈niσ 〉 is the density of the spin σ itinerant electrons on
site i. In Fig. 3(a), we illustrate the magnetization mA(B) of
sublattice A(B), and the CO order parameter � as functions
of temperature in the case of n = 0.5 and J = 8 for different
disorders U . At small disorder (U = 0.1) it shows that the CO
order parameter is identical to zero in the whole temperature
range. In the meanwhile, both magnetizations differ from zero
at low temperature and then go to zero when the temperature
is larger than a critical value. One can conclude that, if the
disorder strength is small, only the charge homogeneous FM
state stabilizes at low temperature. At temperatures larger than
the critical value, the system is in the charge homogeneous
PM state. Increasing U , to U = 0.2 for instance, on the one
hand, � is nonzero at low temperature, on the other hand, in
this regime, mA and mB are nonzero but they differ from each
other. This point of view once more verifies the existence of
the CO state inside the FM phase. At T > TCO, the CO order
parameter vanishes, TCO therefore indicates a CO transition
temperature. In this range of temperatures, one still finds
nonzero magnetizations indicating that the system stabilizes in
the FM state only. Increasing temperature further depresses the
magnetizations and if T > TC the magnetizations disappear
and the system is in the PM state. TC therefore indicates the
FM-PM transition or the Curie temperature. When enhancing
the disorder, the CO transition temperature rapidly increases
whereas the Curie temperature is slightly depressed. Of course,
here we have pointed out the result only for small disorder U ,
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FIG. 3. Dependence of the CO order parameter � (black lines),
magnetizations mA (lines with red filled symbols) and mB (lines with
blue open symbols) on temperature for some values of U at n = 0.5
(a) and some values of n at U = 0.5 (b). Here, we have fixed J = 8.

the behavior of the transition temperatures in a wider range of
disorder will be revisited in Fig. 6 below.

The interplay of the CO and the FM states when the
itinerant electronic density deviates from n = 0.5 is illustrated
in Fig. 3(b). Here we have plotted additionally the temperature
dependence of �, mA, and mB for J = 8 and U = 0.5 at
n = 0.6 and 0.7. In the case of infinite Hund coupling,
analyzing the temperature dependence of the static charge and
spin susceptibilities indicates that both the CO transition and
Curie temperatures reach a maximum at n = 0.5 [13]. In the
present case with large Hund coupling, this scenario remains.
Moreover, it shows that a slight deviation of the itinerant
electronic densities induces significant wiggles of � and
therefore in TCO, whereas the FM-PM transition temperature
TC is not strongly affected. In the current work, we further-
more indicate that, at low temperature, the magnetizations
significantly increase when enhancing the electronic density.
This can be explained if we note that increasing the on-site
electronic density results in domination of the one type spin
density at extremely low temperature, the magnetization thus
is built up.

We start to discuss the transport properties in the system
by examining the electronic resistivity depending on the
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FIG. 4. (a) The electronic resistivity ρ, (b) the thermal-
conductivity κ , and (c) the thermopower S as functions of temperature
T for some values of U at n = 0.5 and J = 8. TC and TCO,
respectively, indicate the Curie and CO transition temperatures.

temperature for different disorders at J = 8 and n = 0.5
depicted in Fig. 4(a). Here the electronic resistivity ρ is
evaluated following Eq. (5) where the coefficient L11 is given
in Eq. (15). Apparently, the panel shows us that, outside the
CO phase, the system settles in the metallic state, indicated by
dρ/dT > 0. Whereas in the CO state, an opposite situation
with dρ/dT < 0 happens and the system is an insulator. The
TCO here exactly means the MIT temperature. Inside the FM
state only, i.e., at temperatures TCO < T < TC , the resistivity
declines rapidly by decreasing temperature. That signature can
be understood if we note that in the FM state, the magnetic
correlation significantly lowers the electronic scattering or
enlarges the mean-free path of the itinerant electrons. As
addressed in Fig. 2, we again get a feedback that small disorder
does not break the metallic state in the whole temperature
range. In this limit, our results can recover those of the SDE
model [9]. At large disorder, the DE model with diagonal
disorder describes both metallic and insulating states. The
kinks at TC and TCO of the ρ(T ) curves respectively indicate the
FM-PM and CO transition temperatures. The last two panels
(b and c) of Fig. 4 show us the temperature dependence of the
thermal conductivity, κ , and the thermopower, S, respectively,
for the same parameters given in the panel (a). Lowering the
temperature, the thermal conductivity abruptly increases when
the system enters the FM state. The enhancement of the thermal
conductivity can be understood if one notes that the mean-free
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FIG. 5. (a) The electronic resistivity ρ, (b) the thermal-
conductivity κ , and (c) the thermopower S as functions of temperature
T for some values of n at U = 0.5 and J = 8. TC and TCO,
respectively, indicate the Curie and CO transition temperatures.

path of the conducting electrons is enlarged inside the FM
state [4]. Entering the CO state, on the other hand, a gap opens
at the Fermi level and the electrons become localized, and as
a consequence, the charge and also the heat conductivities
are rapidly suppressed. In the whole temperature range,
increasing the disorder apparently reduces the electric and
also the thermal conductivities. The behavior of the thermal
conductivity displayed in Fig. 4(b) agrees qualitatively with
observations for La1−xCaxMnO3 in experiment [30].

It is well known that the thermopower vanishes when-
ever there is an electron-hole symmetry [cf. Eq. (15) with
α = 1 and β = 2]. At extremely low temperature, our case
with n = 0.5 can be considered to be nearly perfect electron-
hole symmetric. The high energy spectrum in this case plays
a less important role and would be counted out [cf. Fig. 2].
That results in the thermopower being negligibly small [see
Fig. 4(c)] at low temperature. However, at large temperature,
the nearly perfect electron-hole symmetric scenario is invalid,
the thermopower thus is nonzero. The thermopower changes
its sign in the metallic state.

Next, we continue discussing the transport properties of
the system by plotting in Fig. 5 the electronic resistivity, the
thermal conductivity, and the thermopower versus temperature
for some itinerant electronic densities n at U = 0.5 and J = 8.
Similar to the behavior of the electronic resistivity discussed

0 1 2 3 4
U

0.00

0.05

0.10

0.15

T

J=6
J=8

FM-CO

FM

homogeneous

FIG. 6. Curie temperature TC (filled symbols) and CO transition
temperature TCO (opened symbols) depending on U for J = 6 (circle)
and J = 8 (square) at n = 0.5.

in Fig. 4(a) before, one still finds the MIT at the CO transition
temperature [see Fig. 5(a)]. The MIT temperature decreases
if the itinerant electronic density is increased. Temperature
dependence of the thermal conductivity and the thermopower
shown in Figs. 5(b) and 5(c) also provides us a significant
difference of thermodynamics signatures between the CO-FM
and the FM-only states. At low temperature, the checkerboard
CO-FM state stabilizes itinerant electrons, which blocks the
hopping of the itinerant electrons between sublattice sites, and
therefore suppresses the particle and thus the heat transfers.
In the insulating phase, the thermal conductivity becomes
exponentially dependent on temperature. That is completely
different to the power-law temperature dependence like in
the homogeneous charge situation [23]. In the CO-FM state
we find a negligibly small negative thermopower. However,
outside the CO state, it changes sign and then strongly
monotonically increases with temperature. Increasing the
electronic density from n = 0.5, the chemical potential shifts
away from the maximum of the lower band [cf. Fig. 1(b)],
indicating an imbalance of the states below and above around
the Fermi level. This gives rise to the thermopower and
provides an interpretation of the thermodynamics properties
in the “bad metal” [25].

Finally, let us summarize the complex structure of the CO
and the FM states in the system by plotting a phase diagram in
the (T ,U ) plane. Figure 6 presents a disorder U dependence
of the transition temperatures TCO and TC for large given
Hund coupling J (J = 6 and J = 8) at n = 0.5. Increasing
the disorder, on one hand, increases TCO until it reaches a
maximum and then decreases, on the other hand, suppresses
TC in its whole range. At very strong disorder (U 
 1), the two
critical temperatures reach each other but TC is always above
TCO, the CO state therefore is only found inside the FM phase.
Richer phase diagrams in the model given in Hamiltonian
(1) have been studied by investigating the static charge and
spin susceptibilities, the charge ordered and segregated phases
coexistence with ferromagnetism depending on doping and
disorder have been also discussed [14]. Note here that an
investigation for the phase separations directly, as done for
the CO and the FM states in this present work, is beyond the
scope of this paper.
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V. CONCLUSION

To summarize, we have adopted the dynamical mean-field
theory to discuss the transport properties in an interplay of
the checkerboard charge order and the ferromagnetism states
in the double exchange model with a diagonal disorder. By
considering the disorder in the form of the Falicov-Kimball
model and simplifying the Hund coupling to Ising type, explicit
single-particle Green’s functions for the itinerant electrons
on each sublattice have been found. Magnetizations and the
checkerboard charge order parameter therefore are directly
evaluated. Following the Greenwood formalism, the transport
coefficients have been written in terms of the single-particle
spectral functions in the infinite-dimensional limit. This is a
simple way to evaluate the electronic resistivity (inverse of
the electronic conductivity), the thermal conductivity, and the
thermopower. At extremely low temperature, it is found that
the checkerboard charge ordering state always exists inside
the ferromagnetic regime for finite disorder. In the charge
ordering state, the itinerant electrons are blocked and we

find a negative derivative of the electronic resistivity with
respect to temperature, typifying an insulating state. Whereas,
outside the charged ordering phase, in contrast, the system
stabilizes in the metallic state. The checkerboard charge
ordering-ferromagnetic transition temperature is exactly the
MIT temperature. Examining the thermal conductivity, we
also find a similar scenario. Indeed, in the checkerboard charge
ordering state, the carriers are blocked and then the thermal
conductivity is suppressed, whereas it is enhanced in the
homogeneous charged state. At extremely low temperature,
the thermopower is negligibly small. At large temperature,
it changes the sign and then increases, especially if the
electronic density deviates from n = 0.5. That typifies the
thermodynamics scenario of the “bad metal.”
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