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Emergence of magnetic topological states in topological insulators doped with magnetic impurities
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Emergence of the topological invariant and the magnetic moment in topological insulators doped with magnetic
impurities is studied based on a mutual cooperation between the spin-orbit coupling of electrons and the spin
exchange of these electrons with magnetic impurity moments. The mutual cooperation is realized based on
the Kane-Mele model in the presence of magnetic impurities. The topological invariants and the spontaneous
magnetization are self-consistently determined within the dynamical mean-field theory. We find different magnetic
topological phase transitions, depending on the electron filling. At half filling an antiferromagnetic topological
insulator, which exhibits the quantum spin Hall effect, exists in the phase region between the paramagnetic
topological insulator and the trivially topological antiferromagnetic insulator. At quarter and three-quarter fillings,
a ferromagnetic topological insulator, which exhibits the quantum anomalous Hall effect, occurs in the strong
spin-exchange regime.
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I. INTRODUCTION

Recently, the quantum anomalous Hall effect (QAHE) has
been observed in topological insulators doped with magnetic
impurities [1–3]. It has attracted attention to study the
emergence of both topological and magnetic properties in
these materials. While the magnetic phase can be described
by the Landau phase theory, the topological state cannot. The
topological state is a novel concept that is characterized by
nontrivial topological invariants which are robust to interac-
tions and disorders [4–7]. Its first realization was found in the
quantum Hall effect (QHE) [8–10]. However, this realization
requires an external magnetic field that generates the Landau
levels. The topological state can also exist in systems without
the Landau levels. Haldane first proposed a theoretical model
which exhibits the QHE in a periodic lattice [11]. Recently,
the Haldane model was experimentally realized by loading
ultracold atoms into an optical lattice [12]. Inspired by the
Haldane idea, a novel class of topological states, namely, the
topological insulator, was discovered [4,5]. Its topological
invariant in two-dimensional systems is manifested in the
quantum spin Hall effect (QSHE). The topological insulator
has also been extended to three-dimensional systems [6,7].
Its topological property is induced by the spin-orbit coupling
(SOC) and is characterized generally by the topological
invariant number Z2 [4–7]. In contrast, the spontaneous
magnetization is described by an order parameter of the
Landau theory. It can act inside the bulk of materials like
an external magnetic field that can induce an anomalous Hall
effect [13]. The quantized version of the anomalous Hall effect
was a long standing problem until its recent discovery in
topological insulators doped with magnetic impurities [1–3].
In these materials, the spontaneous magnetization occurs due
to the spin exchange (SE) between electrons and magnetic

impurities [1–3]. The SOC together with the SE emerge and
give rise to the quantization of anomalous Hall effect [1–3].
It is thus desirable to study the mutual cooperation between
the SOC and SE as well as their emergence, which possibly
causes the QSHE and/or the QAHE.

In this paper, we address the emergence of topological
and magnetic properties in topological insulators doped with
magnetic impurities. We propose a minimal model that could
possibly describe both topological and magnetic properties.
The SOC is an essential ingredient for the topological property.
It causes a band inversion that induces a nontrivial topological
invariant [4–7]. However, the spontaneous magnetization can
be induced by different sources, for instance, the SE, the
Coulomb interaction, or the superexchange. The QAHE was
observed in materials doped with magnetic impurities and
the SE between electrons and magnetic impurities is its
natural origin [1–3]. Moreover, it does not seem possible
that the Coulomb interaction between electrons can induce
a topological state with a long-range magnetic order [14–16].
Therefore, in the proposed model, the SE is the other essential
ingredient for a long-range magnetic order, which possibly
coexists with the topological invariants. A realistic band model
with the SE has been theoretically proposed for searching
the QAHE in topological insulators [1]. It was studied by a
combination of the first-principles calculations for determining
the band structure and a mean-field approximation for treating
the SE [1]. The QAHE was found in a ferromagnetic (FM)
state [1]. However, in the mean-field approximation only a
uniform FM order parameter is assumed, and it was treated
merely as an input parameter in determining the topology
invariant [1]. In this paper we study the mutual cooperation
of the SOC and the SE in a self-consistent manner that
possibly stabilizes magnetic topological states. We consider
a theoretical model, which describes both the SOC and the
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SE, namely, the Kane-Mele model [17] with the SE between
electrons and magnetic moments. We employ the dynamical
mean-field theory (DMFT) [18] to study the emergence of the
topological invariant and magnetic moment. The DMFT has
been widely used to treat the strong correlations in different
complex systems [19]. In particular, it was successfully used
to study the magnetically doped materials [20–25]. In contrast
to the previous mean-field study [1], in the present study
the spontaneous magnetization is self-consistently determined
without a priori assumption. We find different magnetic
topological states and, in particular, a coexistence of the QAHE
or of the QSHE with a long-range magnetic order, depending
on the electron filling. At half filling, the ground state is
antiferromagnetic (AFM), and the spin Hall conductance is
quantized in an intermedium regime of the SE, whereas at
quarter and three-quarter fillings the ground state is FM, and
the charge Hall conductance is quantized, providing strong SE.

The present paper is organized as follows. In Sec. II we
propose a model which describes both the SOC of electrons
and the SE between electrons and magnetic moments. In
that section we also present the application of the DMFT to
solve the proposed model. Numerical results of the magnetic
topological insulator solutions are presented in Sec. III.
Finally, the conclusions are presented in Sec. IV.

II. THE MODEL AND ITS DYNAMICAL MEAN-FIELD
THEORY

A minimal model that could describe a magnetic topologi-
cal insulator would consist of three terms. One term describes
the band energy of electrons. The second term that could
cause the topological property is the SOC. The last term is
essentially the SE between electrons and magnetic moments.
For simplicity, explicit magnetic interactions between mag-
netic moments can be switched off from the model. They are
implicitly present in the model through the SE. The model
Hamiltonian reads

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + iλ

∑
〈〈i,j〉〉,s,s ′

νij c
†
isσ

z
ss ′cjs ′

− J
∑
i,ss ′

Sic
†
isσ ss ′cis ′ , (1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator for

the electron with spin σ at site i. 〈i,j 〉 and 〈〈i,j 〉〉 denote
the nearest-neighbor and next-nearest-neighbor sites in the
lattice, respectively. t is the hopping parameter for the nearest-
neighbor sites. λ is the SOC which involves the spin and
direction dependent hopping between next-nearest-neighbor
sites. The sign νij = ±1 depends on the hopping direction as
shown in Fig. 1. The honeycomb lattice is chosen, since the
SOC in this lattice induces a topological insulator state [17].
Si is the spin of the magnetic impurity at site i, and σ

are the Pauli matrices. J is the SE between electron and
magnetic impurity. We consider only the substitutional doping
of magnetic impurities, and avoid any interstitial one. When
the magnetic impurities are densely doped, we assume that the
magnetic impurities occupy every lattice site. We also treat the
spin of magnetic impurities classically, as widely used in the
studies of materials doped with magnetic impurities [20–25].

A B A B

FIG. 1. The sign structure νij of the SOC term in the honeycomb
lattice.

This consideration excludes any possibility of the Kondo effect
[26–29]. Actually, we will only consider the ferromagnetic SE,
which blocks the Kondo effect, as confirmed by the quantum
Monte Carlo simulations [30]. When the SE is absent (J = 0),
the proposed model is the Kane-Mele model [17]. This model
has, in addition to the time-reversal symmetry, a U(1) symme-
try which preserves the z component of spin. This allows us to
classify the topological invariant of the insulating state by the
spin Chern number [17]. The Kane-Mele model can be viewed
as two copies of the Haldane model, in which the insulating
state has opposite z components of spin and opposite Chern
numbers [11]. This leads to a vanishing of the charge Chern
number, but a final integer of the spin Chern number, which
yields the QSHE. In the other limit, λ = 0, the Hamiltonian
in Eq. (1) is essentially the double exchange model [23]. It
exhibits a magnetic phase transition driven by the SE [20–23].
The double exchange model on frustrated lattices such as the
kagome or triangular lattices can also induce the QHE [31,32].
When both the SOC and the SE are present, their mutual coop-
eration may lead to an emergence of topological and magnetic
properties, that possibly causes the QSHE and/or the QAHE.

Before describing the DMFT, we analyze the magnetic
structure of the proposed model. The impurity classical spins
can be expressed via their azimuthal ϕi and polar θi angles:

Sx
i = S cos ϕi sin θi,

S
y

i = S sin ϕi sin θi,

Sz
i = S cos θi .

The SE term in the Hamiltonian in Eq. (1) can be diagonalized
by using the unitary transformation(

di↑
di↓

)
= U†

i

(
ci↑
ci↓

)
,

where

Ui =
(

cos θi

2 − sin θi

2 e−iϕi

sin θi

2 eiϕi cos θi

2

)
.

We obtain the SE term

HSE = −J
∑
i,ss ′

Sic
†
isσ ss ′cis ′ = −JS

∑
i,σ

σd
†
iσ diσ ,

where σ = ±1. The SE term is responsible for the spontaneous
magnetization. It is expected to occur in the regime J � t,λ.
In this regime, only di↑ is relevant to the ground state. The
effective Hamiltonian describing the hopping term and the
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SOC in the ground state reads [22]

Heff = −t
∑
〈i,j〉

�ijd
†
i↑dj↑ + iλ

∑
〈〈i,j〉〉

νij �̃ij d
†
i↑dj↑ + H.c., (2)

where

�ij = cos
θi

2
cos

θj

2
+ sin

θi

2
sin

θj

2
e−i(ϕi−ϕj ),

�̃ij = cos
θi

2
cos

θj

2
− sin

θi

2
sin

θj

2
e−i(ϕi−ϕj ),

sometimes referred to as Berry’s phases. For simplicity, we
will only consider the homogeneous ground state, in which
the azimuthal and polar angles of spins do not vary within
the two penetrating sublattices. Indeed, in the absence of the
SOC, the Monte Carlo simulations reveal the homogeneity
of the ground state in the honeycomb lattice [33]. For
the homogeneous ground state, the hopping magnitude is
maximized when θi − θj = 0 or ±π of nearest-neighbor sites.
These conditions indicate the spins at nearest-neighbor sites
are either parallel or antiparallel, which yields the double
exchange mechanism [22,23]. On the other hand, the SOC
magnitude is maximized when θi = 0 or π , or equivalently,
the spin is aligned in the z direction. One can also notice
that the SOC term vanishes when θi = π/2, i.e., when the
spin is aligned in the xy plane. In contrast to the frustrated
lattices [31,32], both the hopping and SOC terms in the
honeycomb lattice do not generate any frustration. From these
observations, we conclude that the ground-state energy is
minimized when the spins are aligned in the z direction.
This indicates the ground state has the U(1) symmetry, which
preserves the z component of spin.

We divide the honeycomb lattice into two penetrating
sublattices A and B, as shown in Fig. 1. Then we denote
aiσ (biσ ) the annihilation operator of the electron when site
i belongs to the sublattice A (B). We introduce a four-
dimensional spinor

	k =

⎛⎜⎝ak↑
bk↑
ak↓
bk↓

⎞⎟⎠,

where akσ and bkσ are the Fourier transforms of aiσ and biσ ,
respectively. The magnetic and topological properties will be
determined from the single-particle Green’s function:

G(k,z) = 〈〈	k|	†
k〉〉z.

The spontaneous magnetization of sublattice A and B is
defined as

mA = 1

2N

∑
i,σ

σ 〈a†
iσ aiσ 〉,

mB = 1

2N

∑
i,σ

σ 〈b†iσ biσ 〉,

where N is the number of sublattice sites. When mA = ±mB �=
0 the ground state is FM or AFM, respectively. Here we
consider only the spontaneous magnetization in the z direction,
because the ground state has the U(1) symmetry of the z

component of spin as we have already analyzed.

The topological property can be determined through the
Chern number, which can be calculated by

Cν = 1

2π

∫
d2kF ν

xy, (3)

where F ν
ij = ∂iAν

j − ∂jAν
i ,Aν

i = −i〈kν|∂ki
|kν〉, and |kν〉 is

the orthonormalized eigenstate of matrix G−1(k,i0), corre-
sponding to the eigenvalue Eν(k) [34]. The charge Chern
number Cc = ∑′

ν Cν , where this sum is taken over ν with
positive eigenvalue Eν(k) > 0. The spin Chern number Cs =∑′

ν σνCν , where σν is the spin of the eigenstate |kν〉. Note that
these Chern numbers are well defined only in the insulating
state, since it requires a gap separation between the positive
and negative eigenvalues. In numerical calculations we can use
the efficient method of discretization of the Brillouin zone to
calculate the Chern number in Eq. (3) [35]. In the topological
insulator, the Hall conductance is e2Cc/h, while the spin one
is e2Cs/h. Without the SE interaction, G−1(k,i0) = −H0(k),
where

H0(k) =
(

h↑(k) 0
0 h↓(k)

)
(4)

is the noninteraction Bloch Hamiltonian, and

hσ (k) =
(

σλξk −tγk
−tγ ∗

k −σλξk

)
.

Here we have used the notations γk = ∑
δ eik·rδ ,ξk =

i
∑

η νηe
ik·rη , where δ and η denote nearest-neighbor and next-

nearest-neighbor sites of a given site in the honeycomb lattice,
respectively. The noninteraction Bloch Hamiltonian has two
doubly degenerate bands. The SOC opens a band gap and
induces an integer spin Chern number at half filling [17]. One
can imagine −G−1(k,i0) as an effective Bloch Hamiltonian,
which determines the Chern number for interaction cases.

The proposed model in Eq. (1) can be solved by various
methods, which include both mean-field and dynamical mean-
field approximations as well as the exact diagonalization
and Monte Carlo simulations. The exact diagonalization
and the Monte Carlo simulations give the exact result, but
they are applicable only for small clusters and admit the
finite-size effect. The mean-field and dynamical mean-field
approximations are valid in the thermodynamical limit. In
contrast to the mean-field approximation, the DMFT treats the
local correlations exactly [19]. Without the SOC (λ = 0),
the phase diagram obtained by the DMFT agrees well with
the one obtained by the Monte Carlo simulations [21,22].
The mean-field approximation sometimes produces an artifact,
for instance, the canted state found by the de Gennes mean-
field approximation is not supported by the Monte Carlo
simulations [21,36]. The DMFT can serve as a complementary
method to finite cluster calculations such as the Monte Carlo
simulations. In this paper we use the DMFT. Within the DMFT,
the self-energy depends only on frequency. It is exact in the
infinite-dimension limit, but in two-dimensional systems it is
just an approximation. This approximation neglects nonlocal
correlations. In honeycomb lattice, the DMFT overestimates
the semimetal-insulator transition, but it is still capable of
detecting the insulating or magnetic states [37–40]. For the
ferromagnetic Kondo model, the DMFT reproduces well the
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Monte Carlo simulation results [21,22]. Within the DMFT the
Dyson equation for the Green’s function reads

G(k,z) = [z − H0(k) − �(z)]−1, (5)

where �(z) is the self-energy. Actually, �(z) is a 4 × 4 diago-
nal matrix. The local approximation of the self-energy does not
mix the two spin sectors of the effective Bloch Hamiltonian
−G−1(k,i0). For the topological invariants, the self-energy
just shifts the bands of the effective Bloch Hamiltonian, that
can cause topological transitions. The self-energy can be
determined by solving of an effective single site coupled with
a dynamical mean field. The dynamical mean field can be
represented by a Green’s function, which serves as the bare
Green’s function of the effective single site. It connects with
the local Green’s function and the self-energy via the Dyson
equation

G−1
aσ (z) = G−1

aσ (z) + �aσ (z), (6)

where a denotes the sublattice notation of the single site.
Gaσ (z) = ∑

k Gaσ (k,z)/N is the local Green’s function. The
action of the effective single site of sublattice a = A,B is

Sa = −
∑

s

∫ β

0

∫ β

0
dτdτ ′	†

as(τ )G−1
as (τ − τ ′)	as(τ

′)

− J
∑
αss ′

∫ β

0
dτSα(τ )	†

as(τ )σα
ss ′	as ′ (τ ). (7)

For classical impurity spin S, we can exactly solve the effective
single-site action. One can find the partition function of the
effective single site:

Za =
∫ 2π

0
dϕ

∫ π

0
dθ sin θe−Sa (ϕ,θ), (8)

where

Sa(ϕ,θ )

= −
∑

n

ln

{ ∏
s

[
G−1

as (iωn) + sJS cos θ
] − (JS)2 sin2 θ

}
,

and ωn is the Matsubara frequency. The single-site Green’s
function can be calculated from the partition function:

〈〈	aσ |	†
aσ 〉〉iωn

= 1

Za

δZa

δG−1
aσ (iωn)

= 1

Za

∫ 2π

0
dϕ

∫ π

0
dθ sin θe−S(ϕ,θ)

×[
G−1

a,−σ (iωn) − σJS cos θ
]/

{∏
s

[
G−1

as (iωn) + sJS cos θ
] − (JS)2 sin2 θ

}
. (9)

Using again the Dyson equation in Eq. (6) we can determine
the self-energy, once the Green’s function of the single site is
computed by Eq. (9). So far, we have obtained a complete
system of equations which self-consistently determine the
self-energy and the Green’s function. This system of DMFT
equations can be solved numerically by simple iterations [19].

III. EMERGENCE OF MAGNETIC TOPOLOGICAL
STATES

In numerical calculations, we take t = 1 as the energy unit.
At zero temperature, we use a fine mesh for frequency, and the
mesh size serves as a fictitious temperature. Actually, we take
the mesh size 2πT with T = 0.01 in numerical calculations.
First, we find out the conditions for the existence of the
insulating state, because in the model under consideration only
the insulator can possibly exhibit the topological properties.
In Fig. 2 we plot the electron filling n and the sublattice
magnetization mA,mB as a function of the chemical potential
μ for increasing values of the SE at a given SOC. Whenever
the μ dependence of the electron filling n exhibits a plateau, it
indicates an insulating state. For SE JS = 0, the ground state
is the insulator at half filling n = 1. Since mA = mB = 0,
this insulator is paramagnetic (PM), as expected. Weak SEs
do not change this ground state. However, when the SE
is larger than a certain value, a spontaneous magnetization
occurs, mA = −mB �= 0, at half filling, and it indicates an
AFM insulating state. With further increasing SE, additional
insulating states appear at quarter (n = 0.5) and three-quarter

FIG. 2. The electron filling n and the sublattice magnetization
mA,mB via the chemical potential μ for different values of the SE
at fixed SOC λ = 0.5. The horizontal dotted lines indicate fillings
n = 0.5,1.0,1.5.
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(n = 1.5) fillings. These insulating states are FM due to
mA = mB �= 0. Actually, the quarter and three-quarter fillings
are equivalent via the particle-hole symmetry. So far, we
have observed the insulating state only at half, quarter, and
three-quarter fillings. For other fillings the ground state is
metallic or phase separation. The phase separation appears
at the discontinuities of n(μ). It occurs between PM and FM
(or AFM) phases. At half filling the SE drives the ground
state from PM insulator to AFM insulator, whereas at quarter
and three-quarter fillings it drives the ground state from PM
metal to FM metal, and then to FM insulator, as shown in
Fig. 2. In materials doped with magnetic impurities such as
the colossal magnetoresistance materials or diluted magnetic
semiconductors the spontaneous magnetization is induced by
the SE through the double exchange mechanism [22,23]. How-
ever, in the insulator there are no mediated itinerant electrons,
hence the double exchange cannot be realized. Actually, the
spontaneous magnetization in the insulating states can also be
generated by direct coupling between the magnetic moment
and electron spin through the van Vleck mechanism [1]. Such
direct coupling is possible because the SOC can connect the
conduction and the valence bands [1]. Without the SOC, the
spontaneous magnetization hardly exists in the insulating state.
The SOC is an essential source that maintains the spontaneous
magnetization in the insulating state. From the SOC emerge
the topology and magnetism of the system. In contrast to the
mean-field approximation [1], the spontaneous magnetization
within the DMFT is self-consistently determined, and it can
be PM, AFM, or FM. Since within the considered model
nontrivial topological invariants can only exist in the insulating
state, we will consider the half- and quarter- (three-quarter-)
filling cases separately.

A. Antiferromagnetic topological insulator

In this subsection we consider the half-filling case in detail.
In Fig. 3 we plot the sublattice magnetizations mA,mB and
the spin Chern number Cs at a given value of the SOC. We
always obtain mA = −mB at half filling. For weak SEs the
ground state is PM. It becomes AFM when the SE is larger
than a certain value JM . In contrast to the Mott insulator [41],

FIG. 3. The sublattice magnetization mA = −mB and the spin
Chern number Cs at half filling and fixed SOC λ = 0.5.

the self-energy �(iω) at half filling does not diverge in the
limit ω → 0, and we can calculate the Chern number by the
formula in Eq. (3). The charge Chern number always vanishes
at half filling. Figure 3 also shows that the spin Chern number
Cs = 1 until a certain value JC of the SE. This means that
the topological invariant is nontrivial for J < JC . We always
obtain JM < JC . Therefore, when JM < J < JC , the ground
state is AFM and it has Cs = 1. This is an emergence of
the magnetic topological insulating state. Indeed, the effective
Bloch Hamiltonian −G−1(k,i0), which determines the Chern
number for the interaction case, can be viewed as two copies
of the Haldane model with opposite phases [11]. When its
two lowest bands with opposite spins are occupied, i.e., the
negative eigenvalues of −G−1(k,i0), they have opposite Chern
numbers, therefore the charge Chern number vanishes, while
the spin Chern number is a finite integer. On the other hand, the
SE induces the spontaneous AFM magnetization. This AFM
magnetization can effectively play as an additional molecular
magnetic field which acts back to electrons. This effective
action of the AFM magnetization is similar to the staggered
field in the Haldane model [11]. With increasing SE, the AFM
magnetization increases. As a consequence, when J > JC , the
Chern number of the corresponding Haldane model vanishes,
since the staggered field is larger than the band gap opened by
the SOC [11]. This leads the ground state to be topologically
trivial. However, the spin Chern number can be a finite integer,
providing the staggered field is smaller than the threshold
value. The spin Chern number Cs = 1 yields the QSHE.

FIG. 4. The sublattice DOS for up-spin (blue solid line) and
down-spin (red dotted line) at half filling and fixed SOC λ = 0.5.
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In Fig. 4 we plot the density of states (DOS) for each
electron spin component at half filling. It shows an evolution
of the DOS when the SE increases. At half filling the DOS
clearly displays a gap at the chemical potential level, except
at the boundary between the topological AFM insulator and
the topologically trivial AFM insulator. At the boundary,
the DOS exhibits a semimetal behavior. It indicates a gap
closing when the system crosses the phase transition from the
topological AFM insulator to the topologically trivial AFM
insulator. Actually, this behavior is a result of the gapless edge
states, which occur at the boundary of two insulating states
with different topological invariants [6,7]. In the topological
insulating state, while the SOC maintains the band gap, the
spontaneous AFM magnetization reduces the band gap (see
also Fig. 2). When these two counteractions are balanced,
the gap vanishes and this yields the phase transition from
topological AFM insulator to a topologically trivial one. In
the topologically trivial AFM insulator, both SOC and the
spontaneous AFM magnetization increase the band gap. In
contrast to the FM magnetization in the QAHE, the AFM
magnetization does not induce the QSHE, because the QSHE
already occurs in the PM topological state. It rather destroys
the QSHE. However, the AFM long-range order can coexist
with the QSHE, providing it is not strong enough. In the strong
SE regime, the ground state is topologically trivial AFM.

We summarize the finding results at half filling in a phase
diagram, which is plotted in Fig. 5. The AFM topological
insulator occurs in the phase region between the PM topolog-
ical insulator and the topologically trivial AFM insulator. It
exhibits the QSHE. Actually, the QSHE is also present in the
PM topological insulating state. Note that in the line of λ = 0
the ground state is metallic, and the AFM magnetization occurs
due to the double exchange mechanism [22,23].

B. Ferromagnetic topological insulator

Since the quarter and three-quarter fillings are equivalent
through the particle-hole symmetry, in this subsection we
only consider the quarter-filling case. As we have previously
discussed, at quarter filling the SE drives the ground state from

FIG. 5. Phase diagram of the half-filling case. The abbreviations
AFMI, AFMTI, and PMTI denote the topologically trivial AFM
insulator, AFM topological insulator, and PM topological insulator,
respectively.

FIG. 6. The sublattice magnetization mA = mB and the band gap
� at quarter filling and fixed SOC λ = 0.5.

PM to FM metal, and then to the FM insulator. These phase
transitions are again confirmed by considering the dependence
of the sublattice magnetizations and the band gap on the SE
strength. In Fig. 6 we plot the the sublattice magnetizations
and the band gap via the SE at fixed SOC. The band gap is
determined by the width of the plateau, which occurs in the
line n(μ) (see Fig. 2). At quarter filling, we always obtain
mA = mB . The FM state occurs when the SE is larger than
a certain value. The band gap is opened only in the strong
SE regime. Therefore, the FM insulating state occurs in the
strong SE regime. In Fig. 7 we also plot the DOS for each
spin component at quarter filling and fixed SOC. This figure
shows an evolution of the DOS when the SE increases. In
contrast to the half-filling case, at quarter filling the chemical
potential does not lie inside the band gap, but in the lower band.
Therefore, for weak SEs, the ground state is metallic. The SE
shifts the DOS of the down-spin component, that causes the
FM spontaneous magnetization. With further increasing of
SE, a gap is opened at the position of the chemical potential
and it separates the lowest occupied band. This is indeed the
FM insulating state. Since the Chern number is well defined
only in the insulating state, we compute it only in the FM
insulating state. It turns out only the lowest band of the
effective Bloch Hamiltonian −G−1(k,i0) is occupied, i.e.,
the smallest negative eigenvalue of −G−1(k,i0), and it has
the Chern number Cc = 1. This indicates that the FM insulator
is topological and it exhibits the QAHE. Actually, one can
imagine the FM magnetization as an external magnetic field,
which acts back on electrons. A topological analysis of the
Kane-Mele model in the presence of a uniform magnetic field
shows the QSHE for weak magnetic fields and the QAHE
for strong ones [42]. The finding QAHE at quarter filling is
in agreement with this analysis. However, in contrast, we do
not observe any QSHE for weak SEs at quarter filling. This
happens because weak SEs are not strong enough to open a
gap at the chemical potential position. The QAHE is clearly
a consequence of the mutual cooperation of the SOC and the
SE. In contrast to the half-filling case, the FM magnetization
at quarter filling maintains the QAHE. Without it the QAHE
cannot exist.
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FIG. 7. The sublattice DOS for up-spin (blue solid line) and
down-spin (red dotted line) at quarter filling and fixed SOC λ = 0.5.

We summarize the finding results at quarter filling in a phase
diagram, which is plotted Fig. 8. The FM topological insulator,
which exhibits the QAHE, occurs only the strong SE regime.
When the SOC is absent (i.e., λ = 0), there is no insulating
state at quarter filling. The SE alone drives the phase transition
only from the PM to FM metals.

IV. CONCLUSION

In this paper we have studied the emergence of magnetic
topological states in the Kane-Mele model in the presence of
magnetic impurities. The emergence appears as a result of the

FIG. 8. Phase diagram of the quarter-filling case. The abbrevia-
tions FMTI, FM M, and PM M denote the FM topological insulator,
FM metal, and PM metal, respectively.

mutual cooperation of the SOC and the SE. The insulating
states are observed only at half, quarter, and three-quarter
fillings. The SOC essentially maintains the spontaneous
magnetization in the insulating states. It also favors the
magnetization in the z direction, that the ground state preserves
the U(1) symmetry of the z component of spin. At half
filling, the SE drives the ground state from the PM topological
insulator to AFM topological insulator, and then to topologi-
cally trivial AFM. Both PM and AFM topological insulators
exhibit the QSHE. The AFM topological insulator is another
example besides the topological superconductors, in which
both long-range order and topological invariant coexist [6,7].
We notice that the studies of the Kane-Mele model with the
local Coulomb interaction do not detect the coexistence of the
AFM long-range order and topological invariant [14–16]. At
quarter and three-quarter fillings, the FM topological insulator,
which exhibits the QAHE, occurs in the strong SE regime.
However, in our study the magnetic impurities are regularly
doped into the lattice. In realistic materials, which exhibit the
QAHE such as the Cr-doped Bi2(SexTe1−x)3, the magnetic
impurities are randomly doped [2,3]. We leave this problem
for further studies.
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