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Abstract

The one loop contribution to the lepton flavor violating decay h0 → μτ of the SM-like neutral Higgs 
(LFVHD) in the 3-3-1 model with neutral lepton is calculated using the unitary gauge. We have checked in 
detail that the total contribution is exactly finite, and the divergent cancellations happen separately in two 
parts of active neutrinos and exotic heavy leptons. By numerical investigation, we have indicated that the 
one-loop contribution of the active neutrinos is very suppressed while that of exotic leptons is rather large. 
The branching ratio of the LFVHD strongly depends on the Yukawa couplings between exotic leptons 
and SU(3)L Higgs triplets. This ratio can reach 10−5 providing large Yukawa couplings and constructive 
correlations of the SU(3)L scale (v3) and the charged Higgs masses. The branching ratio decreases rapidly 
with the small Yukawa couplings and large v3.
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1. Introduction

The observation the Higgs boson with mass around 125.09 GeV by experiments at the Large 
Hadron Collider (LHC) [1–5] again confirms the very success of the Standard Model (SM) at 
low energies of below few hundred GeV. But the SM must be extended to solve many well-
known problems, at least the question of neutrino masses and neutrino oscillations which have 
been experimentally confirmed [6]. Neutrino oscillation is a clear evidence of lepton flavor vi-
olation in the neutral lepton sector which may give loop contributions to the rare lepton flavor 
violating (LFV) decays of charged leptons, Z and SM-like Higgs bosons. Therefore, these are 
the promoting subjects of new physics which have been hunted by recent experiments [7–9]. 
Especially, the latest experimental results of LFVHD have been reported recently by CMS 
and ATLAS. Defining Br(h0 → μτ) ≡ Br(h0 → μ+τ−) + Br(h0 → μ−τ+), the upper bound 
Br(h0 → μτ) < 1.5 ×10−2 at 95% C.L. was announced by CMS, in agreement with 1.85 ×10−2

at 95% C.L. from ATLAS. These sensitivities are not far from the recent theoretical prediction 
and is hoped to be improved soon, as discussed in [10].

The LFVHD of the neutral Higgses have been investigated widely in the well-known models 
beyond the SM [11,12,10], including the supersymmetric (SUSY) models [13–15]. The SUSY 
versions usually predict large branching ratio of LFVHD which can reach 10−4 or higher, even up 
to 10−2 in recent investigation [13], provided the two following requirements: new LFV sources 
from sleptons and the large tanβ-ratio of two vacuum expectation values (vev) of two neutral 
Higgses. At least it is true for the LFVHD h0 → μτ under the restrict of the recent upper bound 
of Br(τ → μγ ) < 10−8 [16]. In the non-SUSY SU(2)L ×U(1)Y models beyond the SM such as 
the seesaw or general two Higgs doublet (THDM), the LFVHD still depends on the LFV decay 
of τ lepton. The reason is that the LFVHD is strongly affected by Yukawa couplings of leptons 
while the SU(2)L × U(1)Y contains only small Yukawa couplings of normal charged leptons 
and active neutrinos. Therefore, many of non-SUSY versions predict the suppressed signal of 
LFVHD.

Based on the extension of the SU(2)L × U(1)Y gauge symmetry of the SM to the SU(3)L ×
U(1)X , there is a class of models called 3-3-1 models which inherit new LFV sources. Firstly, 
the particle spectra include new charged gauge bosons and charged Higgses, normally carrying 
two units of lepton number. Secondly, the third components of the lepton (anti-) triplets may be 
normal charged leptons [17,18] or new leptons [19–23] with non-zero lepton numbers. These 
new leptons can mix among one to another to create new LFV changing currents, except the case 
of normal charged leptons. The most interesting models for LFVHD are the ones with new heavy 
leptons corresponding to new Yukawa couplings that affect strongly to the LFVHD through the 
loop contributions. This property is different from the models based on the gauge symmetry of 
the SM including the SUSY versions. In the 3-3-1 models, if the new particles and the SU(3)L
scale are larger than few hundred GeVs, the one-loop contributions to the LFV decays of τ
always satisfy the recent experimental bound [24]. While this region of parameter space, even at 
the TeV values of the SU(3)L scale, favors the large branching ratios of LFVHD. The one-loop 
contributions on LFV processes in SUSY versions of 3-3-1 models were given in [25,14], but the 
non-SUSY contributions were not mentioned.

The 3-3-1 models were first investigated from interest of the simplest expansion of the SU(2)L
gauge symmetry and the simplest lepton sector [17]. They then became more attractive by a 
clue of answering the flavor question coming from the requirement of anomaly cancellation for 
SU(3)L × U(1)X gauge symmetry [18]. The violation of the lepton number is a natural property 
of these models, leading to the natural presence of the LFV processes and neutrino oscillations. 
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Many versions of 3-3-1 models have been constructed for explaining other unsolved questions in 
the SM limit: solving the strong CP problem [26] with Peccei–Quinn symmetry [27]; allowing 
the electric charge quantization [28]. . . More interesting, the neutral heavy leptons or neutral 
Higgses can play roles of candidates of dark matter (DM) [23]. Besides, the models with neutral 
leptons are still interesting for investigation of precision tests [19].

From the above reasons, this work will pay attention to the LFVHD of the 3-3-1 with left-
handed heavy neutral leptons or neutrinos (3-3-1LHN) [23]. It is then easy to predict which 
specific 3-3-1 models can give large signals of LFVHD. As we will see, the 3-3-1 models usually 
contain new heavy neutral Higgses, including both CP-even and odd ones. But the recent lower 
bound of the SU(3)L scale is few TeV, resulting the same order of these Higgs masses. At recent 
collision energies of experiments, the opportunity to observe these heavy neutral Higgses seems 
rare. We therefore concentrate only on the SM-like Higgs.

Our work is arranged as follows. The section 2 will pay attention on the formula of branch-
ing ratio of LFVHD which can be also applied for new neutral CP-even Higgses, listing the 
Feynman rules and the needed form factors to calculate the amplitudes for general 3-3-1 mod-
els. In the section 3, the model constructed in [23] will be improved including adding new LFV 
couplings; imposing a custodial symmetry on the Higgs potential to cancel large flavor neutral 
changing currents in the Higgs sector and simplify the Higgs self-interactions. From this both 
masses and mass eigenvectors of even-CP neutral Higgses are found exactly at the tree level. 
The section 4 represents numerical results of LFVHD, where the most interesting region of the 
parameter space will be chosen based on the latest experimental results relating to lower bounds 
of new gauge bosons and charged Higgses. We concentrate on the roles of Yukawa couplings of 
exotic neutral leptons, the charged Higgses and the SU(3)L scale. We summarize our main re-
sults in the conclusion section. The appendices show notations of Passarino–Veltman functions, 
the detail of calculating one-loop contributions to LFVHD amplitude in the 3-3-1LHN and the 
divergent cancellation.

2. Formulas for decay rates of neutral Higgses

For studying the LFVHD, namely h0 → τ±μ∓, we consider the general form of the corre-
sponding LFV effective Lagrangian as follows

−LLFV = h0 (�LμPLτ + �RμPRτ) + h.c., (1)

where �L,R are scalar factors arisen from the loop contributions. In the unitary gauge, the one-
loop diagrams contributing to �L,R are listed in the Fig. 1. They can be applied for the models 
beyond the SM where the particle contents include only Higgses, fermions and gauge bosons. 
The amplitude decay is [10]:

iM = −iū1 (�LPL + �RPR)v2, (2)

where u1 ≡ u1(p1, s1) and v2 ≡ v2(p2, s2) are respective Dirac spinors of the μ and τ . The 
partial width of the decays is

�(h0 → μτ) ≡ �(h0 → μ−τ+) + �(h0 → μ+τ−)

= 1

8πmh0
×
√√√√[1 −

(
m1 + m2

mh0

)2
][

1 −
(

m1 − m2

mh0

)2
]

×
[(

m2
0 − m2

1 − m2
2

)(
|�L|2 + |�R|2

)
− 4m1m2Re

(
�L�∗

R

)]
, (3)
h
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Fig. 1. Feynman diagrams contributing to the H 0 → μ±τ∓ decay in the unitary gauge, where H 0 is an arbitrary even-CP 
neutral Higgs in the 3-3-1 models, including the SM-like one.

Fig. 2. Feynman rules for the h0 → μ±τ∓ in the unitary gauge, where all momenta are incoming.

where mh0 , m1 and m2 are the masses of the neutral Higgs h0, muon and tauon, respectively. 
They satisfy the on-shell conditions for external particles, namely p2

i = m2
i (i = 1, 2) and p2

0 ≡
(p1 + p2)

2 = m2
h0 .

In the unitary gauge, the relevant Feynman rules for the LFV decay of h0 → l±1 l∓2 are repre-
sented in the Fig. 2.

For each diagram, there is a corresponding generic function expressing its contribution to the 
LFVHD. These functions are defined as

EFVV
L (mF ,mV ) = mV m1

{
1

2m4
V

[
m2

F (b
(1)
1 − b

(1)
0 − b

(2)
0 )

− m2
2b

(2)
1 +

(
2m2

V + m2
h0

)
m2

F (C0 − C1)
]

−
(

2 + m2
1 − m2

2

m2

)
C1 +

(
m2

1 − m2
h0

m2
+ m2

2m
2
h0

2m4

)
C2

}
, (4)
V V V
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EFVV
R (mF ,mV ) = mV m2

{
1

2m4
V
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F

(
b

(2)
1 + b
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0 + b

(2)
0

)

+ m2
1b
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h0)m

2
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]
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(
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2
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)
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(
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h0
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V

+ m2
1m

2
h0

m4
V

)
C1

}
, (5)

EFVH
L (a1, a2, v1, v2,mF ,mV ,mH )

= m1

{
−a2

v2

m2
F

m2
V

(
b

(1)
1 − b

(1)
0

)
+ a1

v1
m2

2

[
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(
1 + m2

h − m2
h0
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V

)
C2

]

+ a2

v2
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F

[
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V
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]}
, (6)

EFVH
R a1, a2, v1, v2,mF ,mV ,mH )

= m2

{
a1
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[
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1b
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F b
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0
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+
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, (7)

EFHV
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{
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EFHH
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[
a1a2

v1v2
m2

F C0 − a2
1

v2
1

m2
2C2 + a2

2

v2
2

m2
F C1

]
, (10)
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EFH
R (a1, a2, v1, v2) = m2

v1(m
2
1 − m2

2)

[
m2

1

(
m2

2
a2

1

v2
1

+ m2
F

a2
2

v2
2

)(
b

(1)
1 + b

(2)
1

)

+ m2
F

a1a2

v1v2

(
−2m2

1b
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The notations are introduced as follows. All the b- and C-functions are defined in the Ap-
pendix A, where C-functions are well-known as Passarino–Veltman (PV) functions of one-loop 
three points and b-functions are the finite parts of the two-point functions. For convenience, mea

and meb
in the Feynman rules are denoted as m1, m2, corresponding to the masses of the final 

leptons in the LFV decays h0 → l−1 l+2 . Other parameters are masses of the neutral Higgs mh0 , 
and the virtual particles in the loops, including gauge boson mass mV , charged Higgs mass mh

and fermion masses mF . Specially, the masses of the virtual fermions are denoted as ma ≡ mF

for convenience. The parameters a1, a2, v1 and v2 given in the Feynman rules in the Fig. 2, where 
v1, v2 are VEVs giving masses for normal and exotic leptons/active neutrinos; a1, a2 relate the 
mixing parameters of the charged Higgses coupling with these leptons.

The set of the form factors (4)–(19) was calculated in details in the Appendix B which we find 
them consistent with calculations using Form [29]. These form factors are simpler than those 
calculated in the appendix because they contain only terms contributing to the final amplitude 
of the LFVHD. The excluded terms are come from the two reasons: i) those do not contain 
the neutral leptons in the loop so they vanish after summing all virtual leptons, reflecting the 
GIM mechanism; ii) the divergent terms defined by (A.3). The second is true only when the 
final contribution is assumed to be finite. This is right for the models having no tree level LFV 
couplings of μ–τ . The 3-3-1LHN model we will consider in this work satisfies this condition 
and the divergent cancellation is checked precisely in the Appendix B. Another remark is that 
the divergent term (A.3) contains a conventional choice of lnμ2/m2

h in which mh can be replaced 
by an arbitrary fixed scale. We find that only the contributions of the diagram 1d) and sum of two 
diagrams 1g) and 1h) are finite.

Now the form factors �L,R can be written as the sum of all EL,R functions. The one loop 
contributions to the LFV decays such as �L,R are finite without using any renormalization pro-
cedure to cancel divergences. In addition, �L,R do not depend on the μ parameter arising from 
the dimensional regularization method used to derive all above scalar EL,R functions in this 
work. But in general contributions from the separate diagrams in the Fig. 1 do contain the diver-
gences and therefore the particular finite parts EL,R do depend on μ, so it will be nonsense for 
computing separate contributions.

Using the Feynman ’t Hooft gauge, similar expressions of the LFVHD amplitudes as functions 
of PV-function were introduced in [12,10]. They were applied for LFVHD in the seesaw models, 
where there are no new contributions from new physical charged Higgses or new gauge bosons. 
The contributions in this case correspond to those of only four diagrams a), e) g) and h) in the 
Fig. 1 of this work. So choosing the unitary gauge is more advantageous for calculating LFVHD 
predicted by models having complicated particle spectra.

There is another simple analytic expressions given details in [15], updated from previous 
works [30]. It can be applied for not only SUSY models but also the models predicting new 
heavy scales including 3-3-1 models. The point is that this treatment uses the C-functions with 
approximation of zero-external momentums of the two charged leptons, i.e. p2

1 = p2
2 = 0. Un-

like the case of LFV decays of τ → μγ , the LFVHD contains a large external momentum of 
neutral Higgs: 2p1.p2 � |(p1 ± p2)

2| = m2 ∼ O([100 GeV]2), which should be included in the 
h
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C-functions, as discussed in the Appendix A. This is consistent with discussion on C-functions 
given in [31].

3. 3-3-1 model with new neutral lepton

In this section we will review a particular 3-3-1 model used to investigate the LFVHD, namely 
the 3-3-1LHN [23]. We will keep most of all ingredients shown in Ref. [23], while add two new 
assumptions: i) in order to appear the LFV effects, we assume that apart from the oscillation 
of the active neutrinos, there also exists the maximal mixing in the new lepton sector; ii) The 
Higgs potential satisfies a custodial symmetry shown in [22] to avoid large loop contributions 
of the Higgses to precision tests such as ρ-parameter and flavor neutral changing currents. More 
interesting, the latter results a very simple Higgs potential in the sense that many independent 
Higgs self-couplings are reduced and the squared mass matrix of the neutral Higgses can be 
solved exactly at the tree level. The following will review the needed ingredients for calculating 
the LFV decay of h0 → l+i l−j .

3.1. Particle content

• Fermion. In each family, all left-handed leptons are included in the SU(3)L triplets while 
right-handed ones are always singlets,

L′
a =

⎛
⎜⎝ ν′

a

e′
a

N ′
a

⎞
⎟⎠

L

∼
(

1,3,−1

3

)
, e′

aR ∼ (1,1,−1), N ′
aR ∼ (1,1,0), (20)

where the numbers in the parentheses are the respective representations of the SU(3)C , 
SU(2)L and U(1)X gauge groups. The prime denotes the lepton in the flavor basis. Recall 
that as one of the assumption in [23], the active neutrinos have no right-handed components 
and their Majorana masses are generated from the effective dimension-five operators. There 
is no mixing among active neutrinos and exotic neutral leptons.

• Gauge boson. The SU(3)L × U(1)X includes 8 gauge bosons Wa
μ (a = 1, 8) of the SU(3)L

and the Xμ of the U(1)X , corresponding to eight SU(3)L generators T a and a U(1)X gen-
erator T 9. The respective covariant derivative is

Dμ ≡ ∂μ − ig3W
a
μT a − g1T

9XXμ. (21)

Denote the Gell-Mann matrices as λa , we have T a = 1
2λa, − 1

2λT
a or 0 depending on the 

triplet, antitriplet or singlet representation of the SU(3)L that T a acts on. The T 9 is defined 
as T 9 = 1√

6
and X is the U(1)X charge of the field it acts on.

• Higgs. The model includes three Higgs triplets,

ρ =
⎛
⎜⎝ ρ+

1

ρ0

ρ+

⎞
⎟⎠∼

(
1,3,

2

3

)
, η =

⎛
⎝ η0

1

η−
η0

⎞
⎠ , χ =

⎛
⎝ χ0

1

χ−
χ0

⎞
⎠∼

(
1,3,−1

3

)
. (22)
2 2 2
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As normal, the 3-3-1 model has two breaking steps: SU(3)L × U(1)X

〈χ〉︷︸︸︷→ SU(2)L ×
U(1)Y

〈ρ〉,〈η〉︷︸︸︷→ U(1)Q, leading to the limit |〈χ〉| � |〈ρ〉|, |〈η〉|. The non-zero U(1)G charged 
field η0

2 and χ0
1 have zero vacuum expectation (vev) values: 〈η0

2〉 = 〈χ0
1 〉 = 0, i.e.

η0
2 ≡ S′

2 + iA′
2√

2
, χ0

1 ≡ S3 + iA3√
2

. (23)

Others neutral Higgs components can be written as

ρ0 = 1√
2

(v1 + S1 + iA1) , η0
1 = 1√

2
(v2 + S2 + iA2) , χ0

2 = 1√
2

(
v3 + S′

3 + iA′
3

)
.

(24)

As shown in Ref. [22], after the first breaking step, the corresponding Higgs potential of the 
3-3-1 model should keep a custodial symmetry to avoid large FCNCs as well as the large 
deviation of ρ-parameter value obtained from experiment. This only involves to the ρ and η
Higgs scalars which generate non-zero vevs in the second breaking step. Applying the Higgs 
potential satisfying the custodial symmetry given in [32], we obtain a Higgs potential of the 
form,

V = μ2
1

(
ρ†ρ + η†η

)
+ μ2

2χ
†χ + λ1

[
ρ†ρ + η†η

]2 + λ2

(
χ†χ

)2

+ λ12

(
ρ†ρ + η†η

)(
χ†χ

)
− √

2f
(
εijkρ

iηiχk + h.c.
)

, (25)

where f is assumed to be real. Minimizing this potential leads to v1 = v2 and two additional 
conditions,

μ2
1 + 2λ1v

2
1 + 1

2
λ12v

2
3 = f v3,

μ2
2 + λ2v

2
3 + λ12v

2
1 = f v2

1

v3
. (26)

We stress that if the custodial symmetry is kept in this 3-3-1 model, the model automat-
ically satisfies most of the conditions assumed in Ref. [23] for purpose of simplifying or 
reducing independent parameters in the Higgs potential. For this work, which especially 
concentrates on the neutral Higgses, the most important consequence is that all of the mass 
basis of Higgses, including the neutral, can be found exactly without reduction of the number 
of Higgs multiplets.

In the following, we just pay attention to those used directly in this work, i.e. the mass spectra of 
leptons, gauge bosons and Higgses. Other parts have been mentioned in [23].

3.2. Mass spectra

3.2.1. Leptons
We use the Yukawa terms shown in [23] for generating masses of charged leptons, active 

neutrinos and heavy neutral leptons, namely

−LY
lepton = ye

abL
′
aρe′

bR + yN
abL

′
aχN ′

bR + yν
ab
(
(L′

a)
cη∗)(η†L′

b

)
+ h.c., (27)
�
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where the notation (L′)ca = ((ν′
aL)c, (e′

aL)c, (N ′
aL)c)T ≡ (ν′ c

aR, e′ c
aR, N ′ c

aR)T implies that ψc
R ≡

PRψc = (ψL)c with ψ and ψc ≡ CψT being the Dirac spinor and its charge conjugation, 
respectively. The � is some high energy scale. Remind that ψL = PLψ, ψR = PRψ where 
PR,L ≡ 1±γ5

2 are the right- and left-chiral operators. The corresponding mass terms are

−LY
lepton =

[
ye
abv1√

2
e′
aLe′

bR + yN
abv3√

2
NaLN ′

bR + h.c.

]
+ yν

abv
2
2

2�

[
(ν′ c

aRν′
bL) + h.c.

]
. (28)

This means that the active neutrinos are pure Majorana spinors corresponding to the mass ma-

trix (Mν)ab ≡ yν
abv

2
2

�
. This matrix can be proved to be symmetric [33] (chapter 4), therefore the 

mass eigenstates can be found by a single rotation expressed by a mixing matrix U that satisfies 
U†MνU = diagonal(mν1 , mν2, mν3), where mνi

(i = 1, 2, 3) are mass eigenvalues of the active 
neutrinos.

Now we define transformations between the flavor basis {e′
aL,R, ν′

aL, N ′
aL,R} and the mass 

basis {eaL,R, νaL, NaL,R}:
e′ −
aL = e−

aL, e′ −
aR = e−

aR, ν′
aL = UabνbL, N ′

aL = V L
abNbL, N ′

aR = V R
abNbR, (29)

where V L
ab, UL

ab and V R
ab are transformations between flavor and mass bases of leptons. Here un-

primed fields denote the mass eigenstates. Remind that ν ′ c
aR = (ν′

aL)c = Uabν
c
aR . The four-spinors 

representing the active neutrinos are νc
a = νa ≡ (νaL, νc

aR)T , resulting the following equalities: 
νaL = PLνc

a = PLνa and νc
aR = PRνc

a = PRνa . The upper bounds of recent experiments for the 
LFV processes in the normal charged leptons are very suppressed [7], therefore suggest that the 
two flavor and mass bases of charged leptons should be the same.

The relations between the mass matrices of leptons in two flavor and mass bases are

mea = v1√
2
ye
a, ye

ab = ye
aδab, a, b = 1,2,3,

v2
2

�
U†Y νU = Diagonal(mν1, mν2, mν3),

v3√
2
V L†YNV R = Diagonal(mN1 , mN2 , mN3), (30)

where Y ν and YN are Yukawa matrices defined as (Y ν)ab = yν
ab and (YN)ab = yN

ab.
The Yukawa interactions between leptons and Higgses can be written according to the lepton 

mass eigenstates,

−LY
lepton = meb

v1

√
2
[
ρ0

1 ēbPReb + U∗
baν̄aPRebρ

+
1 + V L∗

ba NaPRebρ
+
2 + h.c.

]
+ mNa

v3

√
2
[
χ0

2 N̄aPRNa + V L
baēbPRNaχ

− + h.c.
]

+ mνa

v2

[
S2νaPLνb + 1√

2
η+ (U∗

baνaPLeb + Ubae
c
bPLνa

)
+ h.c.

]
, (31)

where we have used the Marojana property of the active neutrinos: νc
a = νa with a = 1, 2, 3. In 

addition, using the equality ec
bPLνa = νaPLeb for this case the term relating with η± in the last 

line of (31) is reduced to 
√

2η+νaPLeb .
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3.2.2. Gauge bosons
It is simpler to write the charged gauge bosons in the form of WaT a with T a being the gamma 

matrices, namely

Wa
μT a = 1√

2

⎛
⎜⎝

0 W+
μ U0

μ

W−
μ 0 V −

μ

U0∗
μ V +

μ 0

⎞
⎟⎠ . (32)

The masses of these gauge bosons are:

m2
W = g2v2

4
, m2

U = m2
V = g2

4

(
v2

3 + v2

2

)
, (33)

where we have used the relation v1 = v2 = v√
2

and the matching condition of the W boson mass 
in 3-3-1 model with that of the SM.

The covariant derivatives of the leptons contain the lepton–lepton–gauge boson couplings, 
namely

LD
lepton = iL′

aγ
μDμL′

a

→ g√
2

[
U∗

baνaγ
μPLebW

+
μ + Uabebγ

μPLνaW
−
μ

+ V L∗
ba Naγ

μPLebV
+
μ + V L

abebγ
μPLNaV

−
μ

]
. (34)

3.2.3. Higgs bosons
• Singly charged Higgses. There are two Goldstone bosons G±

W and G±
V of the respective 

singly charged gauge bosons W± and V ±. Two other massive singly charged Higgses have 
masses

m2
H1

= (1 + t2)f v3, m2
H2

= 2f v3, (35)

where t ≡ v1
v3

= v

v3
√

2
= tan θ . Denoting sθ ≡ sin θ, cθ ≡ cos θ , we get some useful relations

mW = √
2mV sθ , v3 = 2mV

g
cθ , v1 = v2 = 2mV

g
sθ . (36)

The relation between two flavor and mass bases of the singly Higgses are(
ρ±

1

η±

)
= 1√

2

(−1 1
1 1

)(
G±

W

H±
2

)
,

(
ρ±

2

χ±

)
=
(−sθ cθ

cθ sθ

)(
G±

V

H±
1

)
. (37)

• CP-odd neutral Higgses. There are three Goldstone bosons GZ , GZ′ and G′
U0 , and two 

massive CP-odd neutral Higgses HA1 and HA2 with the values of squared masses are

m2
A1

= m2
H1

= (1 + t2)

2
m2

H2
, m2

A2
= (2 + t2)

2
m2

H2
. (38)
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The relations between the two bases are:

(
A3
A′

2

)
=
(

cθ −sθ
sθ cθ

)(
G3
HA2

)
,

⎛
⎝A1

A′
3

A2

⎞
⎠
⎛
⎜⎜⎜⎜⎜⎜⎝

−sθ
−c2

θ√
c2
θ+1

cθ√
c2
θ+1

cθ
−sθ cθ√
c2
θ+1

sθ√
c2
θ+1

0 1√
c2
θ+1

cθ√
c2
θ+1

⎞
⎟⎟⎟⎟⎟⎟⎠
⎛
⎝ G1

G2
HA1

⎞
⎠ . (39)

• CP-even neutral Higgses. Apart from the three exactly massive Higgses shown in the 
Ref. [22], the model predicts one more Goldstone boson GU and another massive Higgs. 
The masses and egeinstates of these Higgses are

m2
h0

1
= v2

3

2

[
4λ1t

2 + 2λ2 + t2f

v3
− √

�

]
,

m2
h0

2
= v2

3

2

[
4λ1t

2 + 2λ2 + t2f

v3
+ √

�

]
,

m2
h0

3
= m2

H±
1

, m2
h0

4
= m2

A2
, (40)

where � =
(

4λ1t
2 − 2λ2 − t2f

v3

)2 + 8t2
(
λ12 − f

v3

)2
. The transformations among the flavor 

and the mass bases are

(
S′

2
S3

)(−sθ cθ

cθ sθ

)
=
(

G′
U

h0
4

)
,

⎛
⎝ S2

S1
S′

3

⎞
⎠=

⎛
⎜⎜⎝

−cα√
2

sα√
2

− 1√
2

−cα√
2

sα√
2

1√
2

sα cα 0

⎞
⎟⎟⎠
⎛
⎜⎝

h0
1

h0
2

h0
3

⎞
⎟⎠ , (41)

where sα = sinα, cα = cosα defining by

sα =
4λ1t

2 − m2
h0

1
/v2

3√
2 (2λ1 − f/v3)

2 t2 +
(

4λ1t2 − m2
h0

1
/v2

3

)2
,

cα =
√

2 (2λ1 − f/v3) t√
2 (2λ1 − f/v3)

2 t2 +
(

4λ1t2 − m2
h0

1
/v2

3

)2
. (42)

In the limit t  1 the expression of the lightest neutral even-CP Higgs is

m2
h0

1
� v2

1

[
4λ1 − (λ12 − f/v3)

2

λ2

]
,

where both λ1 and λ2 must be positive to guarantee the vacuum stability of the potential (25). 
This Higgs is easily identified with the SM-like Higgs observed by LHC.

3.3. Couplings for LFV decay of the SM-like Higgs and the amplitude

From the detailed discussions on the particle content of the 3-3-1LHN, the couplings of SM-
like Higgs needed for calculating LFVHD are collected in the Table 1.
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Table 1
Couplings relating with LFV of SM-like Higgs decays in the 3-3-1LHN model, where λ

h0H1H1
= sαc2

θ λ12 + 2s2
θ λ2 −√

2(2cαc2
θ λ1 + s2

θ λ12)tθ − cθ sθ
f
v3

√
2. Here we only consider the couplings the unitary gauge.

Vertex Coupling Vertex Coupling

N̄aebH+
1 −i

√
2V L∗

ba

(
meb
v1

cθPR + mNa
v3

sθPL

)
ēaNbH−

1 −i
√

2V L
ba

(
meb
v1

cθPL + mNa
v3

sθPR

)
ν̄aebH+

2 −iUL∗
ba

(
meb

v1
PR + mνa

v2
PL

)
ēbνaH−

2 −iUL
ab

(
meb

v1
PL + mνa

v2
PR

)
N̄aNah0

1
−imNasα

v3
ēaeah0

1
imea
v1

cα√
2

N̄aebV +
μ

ig√
2
V L∗

ba
γ μPL ēbNaV −

μ
ig√

2
V L

ab
γ μPL

ν̄aebW+
μ

ig√
2
UL∗

ba
γ μPL ēbνaW−

μ
ig√

2
UL

ab
γ μPL

Wμ+W−
μ h0

1 −igmW cα V μ+V −
μ h0

1
igmV√

2
(
√

2sαcθ − cαsθ )

h0
1H+

1 V μ− ig

2
√

2
(cαcθ + √

2sαsθ )(p
h0

1
− p

H+
1

)μ h0
1H−

1 V μ+ ig

2
√

2
(cαcθ + √

2sαsθ )(p
H−

1
− p

h0
1
)μ

h0
1H+

1 H−
1 −iv3λ

h0H1H1
h0

1H+
2 H−

2 −iv1

[
−2

√
2cαλ1 + sαv3λ12+sαf

v1

]
ν̄aνah0

1
imνa
v2

cα√
2

h0
1H±

2 W±
μ 0

Matching the Feynman rules in the Fig. 2, we have the specific relations among the vertex 
parameters and the couplings in the 3-3-1LHN, namely for the exotic leptons

a1 → cθ , a2 → a3 = sθ , v1 = 2mV

g
sθ , v2 → v3 = 2mV

g
cθ ,

a1

v1
= g

2mV

cθ

sθ
,

a3

v3
= g

2mV

sθ

cθ

,
a1a3

v1v3
= g2

4m2
V

, (43)

and the active neutrinos,

a1, a2 → 1, v1, v2 → v1 = v2 = v√
2

=
√

2mW

g
,

a1

v1
= a2

v2
= g√

2mW

. (44)

The expression of �L is separated into two parts, namely

�N
L =

∑
a

V L
1aV

L∗
2a

1

64π2
√

2

[
2g3
(
−cαsθ + √

2sαcθ

)
× EFVV

L (mNa ,mV )

+ (−2g2)
(
cαcθ + √

2sαsθ

)
× EFVH

L (a1, a3, v1, v3,mNa ,mV ,mH±
1

)

+ (−2g2)
(
cαcθ + √

2sαsθ

)
× EFHV

L (a1, a3, v1, v3,mNa ,mV ,mH±
1

)

+
(
−4

√
2λh0H1H1

)
× EFHH

L (a1, a2, v1, v2,mνa ,mH±
2

)

+ g3sα
√

2

cθ

× EVFF
L (mV ,mνa )

+
(
−8

√
2sα

)
EHFF

L (a1, a3, v1, v3,mνa ,mH±)

1
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+ −g3cα

sθ
× EFV

L (mV ,mNa )

+ 8cα × EFH
L (a1, a3, v1, v3,mNa ,mH±

1
)
]

(45)

from neutral exotic leptons and

�ν
L =

∑
a

U1aU
∗
2a

1

64π2

[(
−2g3cα

)
EFVV

L (mνa ,mW)

+ (−4λh0H2H2
) × EFHH

L (a1, a2, v1, v2,mνa ,mH±
2

)

+
(
−g3cα

)
EVFF

L (mW ,mνa )

+ (2
√

2cα)EHFF
L (a1, a2, v1, v2,mνa ,mH±

2
)

+
(
−g3cα

)
EFV

L (mV ,mνa )

+ (2
√

2cα)EFH
L (a1, a2, v1, v2,mνa ,mH±

2
)
]
. (46)

Similarly for the �R we have

�N
R = �N

L (EL → ER), �ν
R = �ν

L(EL → ER). (47)

Before going to the numerical calculation we remind that the divergent cancellations in two 
separate sectors of neutrinos and exotic leptons are presented precisely in the second subsection 
of the Appendix B.

4. Numerical investigation

4.1. Setup parameters

In the model under consideration, the new parameters we pay attention to are the SU(3)L
scale v3, the mass of the lightest active neutrino, masses of the three neutral heavy leptons, 
Higgs masses and mixing parameters of leptons and Higgses. The Higgs part relates with the 
Higgs self-couplings in the scalar potential: λ1, λ2, λ12 and f . The first two free parameters we 
choose are the v3 and mass of the H2 given in (35). Then the f parameter can be determined by

f = m2
H2

2v3
. (48)

Another parameter that can be fixed is the mass of the neutral SM-like Higgs [5] with the value 
of about mh0

1
= 125.1 GeV. Note that two Higgs masses m2

h0
1

and m2
h0

2
shown in (40) are roots 

of the equation x2 + ax + b = 0, where −a = m2
h0

1
+ m2

h0
2
= v2

3

(
4λ1t

2 + 2λ2 + t2f/v3
)

and b =
m2

h0
1
m2

h0
2
= 2v2

1v2
3

[
2λ1 × (2λ2 + t2f/v3

)− (λ12 − f/v3)
2]. This means that m4

h0
1
+ a × m2

h0
1
+

b = 0, giving a relation among λ2, λ1 and λ12:

λ2 = t2
θ

2

⎛
⎝m2

h0
1

v2
1

− m2
H2

2v2
3

⎞
⎠−

(
λ12 − m2

H2
/2v2

3

)2

−4λ1 + m2
0/v

2
1

.

h1
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Because the λ1, λ2 and λ12 are factors of quartic terms in the Higgs potential (25), they must 
satisfy the unbounded from below (UFB) conditions that guarantee the stability of the vacuums 
of the considering model. According to the Ref. [42], these conditions are easily found as follows. 
Defining ρ†ρ + η†η = h2

1 and χ†χ = h2
2, the quartic part of the Higgs potential (25) has form of 

V4 = λ1(h
2
1)

2 + λ12h
2
1h

2
2 + λ2(h

2
2)

2. In the basis (h2
1, h

2
2) the V4 corresponds to the 2 × 2 matrix 

that must satisfy the conditionally positive conditions as follows:

λ1 > 0, λ2 > 0, and
λ12

2
+√λ1λ2 ≥ 0. (49)

In our calculation, apart from positive λ1 and λ2 we will choose λ12 > 0 so that all conditions 
given in (49) are always satisfied.

To identify h0
1 with the SM Higgs, the h0

1 must satisfy new constrains from LHC, as discussed 
in [43]. Namely, the mixing angle α of neutral Higgses, defined in (42), should be constrained 
from the h0

1W
+W− coupling. Following [43] the we can identify that −cα ≡ 1 + εW where 

εW = −0.15 ± 0.14 is the universal fit for the SM Higgs. This results the constraint of cα as

−0.99 ≤ cα ≤ −0.71. (50)

By canceling a factor of t in (42), we have a simpler expression

cα =
√

2

(
2λ1 − m2

H2
2v2

3

)
√

2

(
2λ1 − m2

H2
2v2

3

)2

+ t2

(
4λ1 − m2

h0
1
/v2

1

)2
,

which shows that cα < 0 when mH2 > 2v3
√

λ1 and cα → −1 when t  1. The lower constraint 
of cα in (50) gives a very interesting relation among λ1, v3 and mH2 , namely m2

H2
can be written 

as

m2
H2

= v2
3

⎡
⎣4λ1 +

∣∣∣∣∣∣4λ1 −
m2

h0
1

v2
1

∣∣∣∣∣∣×
√

2|cα|√
1 − c2

α

× v1

v3

⎤
⎦ . (51)

If the lower constraint in (50) is not considered, m2
H2

can be arbitrary large when |cα| → 1. 

In contrast, the constraint (50) gives a consequence 
√

2|cα |√
1−c2

α

∼ O(1). Combining with m2
h0

1
/v2

1 �
0.52, we obtain a rather strict relation mH2 � 2v3

√
λ1 if v3 � v1 � 246/

√
2 GeV and λ1 is 

large enough. On the other hand, this relation will not hold if the custodial symmetry assumed 
in the Higgs potential (25) is only an approximation. Hence in the numerical calculation, for the 
general case we will first investigate the LFVHD without the constraint (50). This constraint will 
be discussed in the final.

Regarding to the parameters of active neutrinos we use the recent results of experiment. In 
particularly, if the mixing parameters in the active neutrino sector are parameterized by

U(θ12, θ13, θ23) =
⎛
⎝ 1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23

⎞
⎠
⎛
⎝ cos θ13 0 sin θ13

0 1 0
− sin θ13 0 cos θ13

⎞
⎠

×
⎛
⎝ cos θ12 sin θ12 0

− sin θ12 cos θ12 0
0 0 1

⎞
⎠ . (52)
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Because UL has a small deviation from the well-known neutrino mixing matrix UMNPS so we 
ignore this deviation [34]. We will use the best-fit values of neutrinos oscillation parameters given 
in [35],

�m2
21 = 7.60 × 10−5 eV2, �m2

31 = 2.48 × 10−3 eV2,

sin2 θ12 = 0.323, sin2 θ23 = 0.467, sin2 θ13 = 0.0234, (53)

and mass of the lightest neutrino will be chosen in range 10−6 ≤ mν1 ≤ 10−1 eV, or 10−15 ≤
mν1 ≤ 10−10 GeV. This range satisfies the condition 

∑
b mνb

≤ 0.5 eV obtained from the cos-
mological observable. The remain two neutrino masses are m2

νb
= m2

ν1
+ �m2

νb1
. We note that 

the above case corresponds to the normal hierarchy of active neutrino masses. In the 3-3-1LHN, 
the inverted case gives the same result so we do not consider here.

The mixing matrix of the exotic leptons is also parameterized according to (52). In particularly 
it is unknown and defined as V L ≡ UL(θN

12, θ
N
13, θ

N
23). If all θN

ij = 0, all contributions from exotic 
leptons to �L,R will be exactly zero. In the numerical computation, we consider only the cases 
of maximal mixing in the exotic lepton sector, i.e. each θN

ij gets only the value of π/4 or zero. 

There are three interesting cases: i) θN
12 = π/4 and θN

13 = θN
23 = 0; ii) θN

12 = θN
13 = θN

23 = π/4; 
and iii) θN

12 = θN
13 = π/4 and θN

23 = −π/4. The other cases just change minus signs in the total 
amplitudes, and do not change the final results of LFVHD branching ratios. For example the 
mixing matrix of first case is

V L = U(π/4,0,0) =

⎛
⎜⎜⎝

1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

⎞
⎟⎟⎠ . (54)

Our numerical investigation will pay attention to the first case, where the third exotic lepton 
does not contribute to the LFVHD decays. The two other cases are easily deduced from this 
investigation.

From the above discussion, we chose the following unknown parameters as free parameters: 
v3, mH2 , λ1, λ12, mν1 and mNa (a = 1, 2, 3). The vacuum stability of the potential (25) results 
the consequence λ1,2 > 0. In order to be consistent with the perturbativity property of the theory, 
we will choose λ1, |λ12| < O(1). The numerical check shows that the LFVHD branching ratio 
depends weakly on the changes of these Higgs self-couplings in this range. Therefore we will fix 
λ1 = λ12 = 1 without loss of generality. These values of λ1 and λ12 also satisfy all UFB condi-
tions (49). In addition, the Yukawa couplings in the Yukawa term (27) should have a certain upper 
bound, for example in order to be consistent with the perturbative unitarity limit [36]. Because 
the vev v3 generates masses for exotic leptons from the Yukawa interactions (28), following [10]
we assume the upper bound of the lepton masses as follows

∣∣∣∣mNa

v3

∣∣∣∣2 ≤
∣∣∣∣∣ y

N
ij√
2

∣∣∣∣∣
2

< 3π. (55)

After investigating the dependence of the LFVHD on the Yukawa couplings through the ratio 
mNa

v3
we will fixed mN2/v3 = 0.7 and 2 corresponding to the two cases of lower and larger than 1 

of the Yukawa couplings.
Unlike the assumption in [23] where f = v3/2, we treat f as a free parameter relating with 

mH by the equation (48), so the condition of candidates of DM may be changed. We stress 
2
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that the correlation between mH2 and v3 is very important to get maximal values of LFVHD 
branching ratio. The singly charged Higgs bosons have been being searched at LHC, namely 
the decays H+ → cs̄ or H± → WZ with ATLAS [37], and decays to fermions with CMS [38]. 
The ATLAS gives a lower bound of 1 TeV while that from CMS is about 600 GeV. But in the 
3-3-1LHN model, there is no coupling H±

1 W∓Z, while the coupling H±
2 W∓Z is extremely 

small when v1 = v2. In addition, only the H2 decay has been searched by CMS so the lower 
bound of mH2 ≥ 600 GeV should be applied. The value of mH2 should also satisfy 

mH2
v3

≤O(1), 
resulting an upper bound depending on the SU(3)L scale.

The value of v3 should be consistent with the lower bound of Z′ mass from experimental 
searches [39], addressing directly for 3-3-1 models [19,40], where mZ′ must be above 2.5 TeV. 
It is enough using an approximate relation of mZ′ and v3: m2

Z′ � g2v2
3c2

W/(3 − 4s2
W) where 

sW = sin θW and cW = cos θW with θW being the Weinberg angle. Then v3 should be above 
6 TeV. For understanding the qualitative properties of the LFVHD, our investigation will pay 
attention on the range of 4 TeV < v3 < 10 TeV.

To see the correlation between singly charged Higgses, the neutral leptons and the v3, the 
range of mH2 will be chosen as 0.5 TeV < mH2 < 20 TeV. The default value of mN1 = 2 TeV is 
used. The value of mN2 is chosen later.

The other well-known parameters are fixed [41]: W boson mass mW = 80.385 GeV, the 
weak-mixing angle value s2

W = 0.231, the fine-structure constant at the electroweak scale 
α = e2/4π = 1/128, the total decay width of the SM Higgs �H � 4.07 GeV. The mass of this 
Higgs is fixed as mH = 125.09 GeV. These two values are assumed to be the total decay width 
and mass of the SM-like Higgs considered in this work.

A main point that can distinguish the LFVHD characteristics in the 3-3-1 models with the 
other well-known models beyond SM, including the seesaw and SUSY models, is the relation 
of new neutral lepton masses and the Yukawa couplings which directly relate to the LFVHD. 
In particular, because all neutral leptons in 3-3-1LHN receive masses from the Yukawa terms, 
so their masses must be bounded from above because of the inequality (55) and a similar one 
for active neutrinos. This also implies that maximal values of exotic lepton masses depend on 
the SU(3)L scale v3. While in the seesaw models with new singlets right-handed neutrinos, the 
mass terms of sterile neutrinos are mainly come from the private Majorana mass terms and no 
new Yukawa couplings appear. So the mass ranges of new sterile neutrinos may be very wide, 
even if their effects to the Yukawa couplings of the active neutrinos are included [10]. Similar, 
in the SUSY models, the appearance of the soft terms leads to the consequence that masses of 
new superpartners affecting to LFVHD are mainly come from these soft terms. In conclusion, 
the study of LFVHD in 3-3-1LHN can give some interesting information on Yukawa couplings 
of exotic leptons and the SU(3)L scale v3.

4.2. Numerical result

If the mixing parameters among all exotic leptons are zero or all of their masses are degener-
ate, then the contributions to the LFVHD of these exotic leptons are zero, too. Then branching 
ratio of the LFVHD h0

1 → μτ depends on only active neutrino sector, in which the mixing pa-
rameters as well as masses are almost known. The numerical results in this case are shown in the 
Fig. 3. The LFVHD does not depend on the value of the lightest active neutrino, but increases 
very slightly with the increasing of v3 and mH2 . Because both values of v3 and mH2 are in the 
TeV scale, the contribution of the active neutrinos is extremely small compared with the recent 
experimental sensitivity, so we can neglect it in the next calculation.
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Fig. 3. Branching ratio of LFVHD as function of mν1 (left panel) or mH2 (right panel) where contributions are come 
from only active neutrinos in the loops.

Fig. 4. Branching ratio of LFVHD as function of mN2 /v3, which is proportional to Yukawa couplings of exotic leptons, 
mH2 = 2 (20) TeV in the left (right) panel. The upper green lines correspond to the value of 10−4. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

Now we begin considering the contribution of exotic leptons. Firstly the dependence of the 
branching ratio of LFVHD on the Yukawa couplings, or the ratio of mN2/v3, is shown in the 
Fig. 4. The branching ratio enhances rapidly with the increasing of the Yukawa couplings. In 
addition, the branching ratio is small, below 10−6, with small mH2 = 2 TeV, and rather large 
with larger mH2 . In particular for mH2 = 20 TeV, the branching ratio can reach 10−5. Both of 
the largest values in the two panels correspond to the largest values of the Yukawa couplings. 
The deep wells show the zero values of the LFVHD branching ratio when the two exotic lepton 
masses are exactly degenerate at the default value of mN1 = 2 TeV. For the small value of mH2 , 
the small v3 (the black line in the left panel) gives larger BR(h0

1 → μτ). In contrast, the larger 
values of mH2 and v3 (the dot-dash line in the right panel) give large BR(h0

1 → μτ). The one 
more interesting property is that the branching ratio seems to be unchanged with very small 
values of mN2 , implies that the small exotic lepton masses give small contribution the to LFVHD. 
The constant values of LFVHD in the right-hands sides of the wells are from the contributions 
of mN1 = 2 TeV when mN2 is much smaller than mN1 .

For qualitative estimation, we have checked �L,R as functions of mass parameters as fol-
lows. We divide them into two parts: �L,R = f (mH , v3, mNa) +g(mH , v3, mNa) × ln(m2

Na
) and 

consider their behavior when one of the parameters approaches zero or infinity. Note that the 
logarithm factors are very important because they can give very large contributions even with the 
very small values of mNa . For the exotic lepton masses, there are two interesting properties:

lim
m →0

g(mH ,v3,mNa ) ln(m2
Na

) = 0 and lim
m →∞g(mH ,v3,mNa ) ln(m2

Na
) = ±∞, (56)
Na Na
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Fig. 5. Branching ratio of LFVHD as function of mH2 , mN2/v3 = 0.7 (2) in the left (right) panel.

Fig. 6. Branching ratio of LFVHD as function of v3, mN2/v3 = 0.7 (2) in the left (right) panel.

with the assumption that all other parameters are fixed and the exotic lepton masses do not 
have any upper bounds. The first limitation explains why small exotic leptons give suppressed 
contributions to LFVHD. If the upper bound of the Yukawa couplings, namely (55), is applied, 
the value of the second limitation in (56) becomes zero. In the well-known classes of models 
such as the models with singlet right-handed neutrinos or the SUSY models, the upper bounds 
of new lepton masses or superpartner masses do not relate with the vevs of Higgses, because 
these masses are also come from other sources as the singlet mass terms or the soft terms. So 
the Br(h0

1 → μτ) increases with increasing of the new mass scales [10]. Hence the upper bound 
of the LFVHD will result to the upper bound of these new mass scales. In contrast, in the frame 
work of the 3-3-1 models, the LFVHD will give much of important information of the Yukawa 
couplings of the exotic leptons.

As showed in the Fig. 4, the Br(h0
1 → μτ) depends clearly on mN2/v3 whether this ratio is 

larger or smaller than 1. From now we will consider two fixed values of mN2/v3 = 0.7 and 2, 
without any inconsistence in the final results.

The Fig. 5 shows the dependence of LFVHD on the mass of mH2 . The first property we can see 
is that the LFVHD branching ratio always has an upper bound that decreases with increasing v3. 
In other word, it has an maximal value depending strictly on the constructive correlation of v3

and mH2 . But if the Yukawa couplings are small, this maximum seems never reach the value 
of 10−6. The case of the large Yukawa couplings is more interesting because maximal LFVHD 
can be asymptotic 10−5, provided that v3 is small enough, see the right panel.

The effects of v3 on LFVHD are shown in the Fig. 6. Again we can see that the maximal 
values can reach 10−7 and 10−5 for respective small and large Yukawa couplings.
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Fig. 7. Contour plots of LFVHD as function of v3 and mH2 in the left (right) panel.

Combining both Figs. 5 and 6, we conclude that the construction correlation of mH2 and v3 is 
the necessary condition for maximal peaks and the appearance of vertices are independent with 
Yukawa couplings. But the maximal values of LFVHD branching ratio depend directly on the 
amplitudes of the Yukawa couplings and can reach 10−5.

The Fig. 7 represents some particular regions of the parameter space to get the large values of 
LFVHD Br(h0

1 → μτ). Especially the values larger than 10−5 are the maximal values of LFVHD 
that the 3-3-1LHN can predict when the lower bound of v3 is 6 TeV. In addition, the left panel 
shows the case of mN2/v3 = 2, the parameters satisfying Br(h0

1 → μτ) ≥ 0.5 × 10−6 is very 
narrow, implies a very strict relation of v3 and mH2 if this large amount of the branching ratio 
is observed. The right panel shows the dependence of Br(h0

1 → μτ) on the Yukawa couplings 
and mH2 with v3 = 7 TeV. Clearly, the maximal peak of LFVHD corresponds to mH2 � 14 TeV
and does not depend on the Yukawa couplings. But the maximal values do, in this case Br(h0

1 →
μτ) ≥ 0.5 × 10−5 if only mN2 ≥ 14.5 TeV. Furthermore, the region having Br(h0

1 → μτ) ≥
0.5 × 10−5 opens wider with larger Yukawa couplings.

Finally, we should pay attention to the case satisfying the constraint of universal Higgs 
fit (50). In the above numerical investigation, we have fixed λ1 = 1, which corresponds to 
mH2 � 2v3

√
λ1 = 2v3 satisfying the constraint. It is very interesting that all maximal peaks 

of LFVHD appearing in the numerical calculations correspond to this relation among mH2 , v3
and λ1. Therefore the universal Higgs fit confirms more strongly that the 3-3-1LHN predicts the 
large branching ratios of LFVHD.

5. Conclusion

For studying the LFVHD in the 3-3-1LHN model, we have introduced form factors expressing 
the one-loop contributions corresponding to relevant Feynman diagrams in the unitary gauge. We 
have checked that the total contribution is finite, all of the divergences appearing in particular 
diagrams cancel among one to another. Although the above form factors are calculated for the 
3-3-1LHN, they can be applied for other 3-3-1 models and in general for many other models 
beyond the SM with the same class of particles. In numerical investigation the LFVHD in the case 
of maximal mixing between the first two exotic neutral leptons, we find that the branching ratio 
Br(h0

1 → μτ) depends the mostly on Yukawa couplings of neutral exotic leptons and the SU(3)L

scale v3. For small yN
ij � 1, equivalently mN2/v3 � 0.7, this branching ratio is always lower 

than 10−6, and even that of about 10−7, the parameter space is very narrow. In contrast, with 
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large Yukawa couplings, for example yN
ij � 2

√
2 or mN2/v3 � 2, the largest LFVHD branching 

ratio can reach 10−5 and does not depend on the small values of mN1 . These largest values do also 
depend on the charged Higgs masses and the v3, thought these seem not as strongly as the Yukawa 
couplings. The values above 10−5 can be found in large region of parameter space with small v3. 
With the large v3, this region is very small, implying some strict relation between parameters of 
exotic lepton masses, charged Higgs masses and the SU(3)L scale v3. The relation arises from 
the present of both the custodial symmetry in the Higgs potential and the constraint from the 
universal fit of the Higgs property observed by LHC. This will give interesting information of 
the 3-3-1LHN model if the LFVHD branching ratio is discovered by experiments at the value 
of 10−5 or larger. Our calculation also indicates that only 3-3-1 models with new heavy leptons, 
such as [20], can predict large LFVHD. So when calculating the LFVHD in SUSY versions, the 
non-SUSY contributions must be included. In contrast, the 3-3-1 models with light leptons [21]
give suppressed signals of LFVHD, and the SUSY-contributions in [44] are dominant.
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Appendix A. Master integrals for one-loop integral calculation

A.1. Master integrals

The calculation in this section relates with one-loop diagrams in the Fig. 1. We introduce the 
notations D0 = k2 −M2

0 + iδ, D1 = (k −p1)
2 −M2

1 + iδ and D2 = (k +p2)
2 −M2

2 + iδ, where 
δ is infinitesimally a positive real quantity. The scalar integrals are defined as

A0(Mi) = (2πμ)4−D

iπ2

∫
dDk

Di

, B
(1)
0 ≡ (2πμ)4−D

iπ2

∫
dDk

D0D1
,

B
(2)
0 ≡ (2πμ)4−D

iπ2

∫
dDk

D0D2
, B

(12)
0 ≡ (2πμ)4−D

iπ2

∫
dDk

D1D2
,

C0 ≡ C0(M0,M1,M2) = 1

iπ2

∫
d4k

D0D1D2
, (A.1)

where i = 1, 2. In addition, D = 4 − 2ε ≤ 4 is the dimension of the integral. The notations 
M0, M1, M2 are masses of virtual particles in the loops. The momenta satisfy conditions: p2

1 =
m2

1, p2
2 = m2

2, and (p1 + p2)
2 = m2

h0 . The tensor integrals are

Aμ(pi;Mi) = (2πμ)4−D

iπ2

∫
dDk × kμ

Di

= A0(Mi)p
μ
i ,

Bμ(pi;M0,Mi) = (2πμ)4−D

iπ2

∫
dDk × kμ

D0Di

≡ B
(i)
1 p

μ
i ,

Bμ(p1,p2;M1,Mi) = (2πμ)4−D

2

∫
dDk × kμ

≡ B
(12)
1 p

μ
1 + B

(12)
2 p

μ
2 ,
iπ D1D2
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Cμ = Cμ(M0,M1,M2) = 1

iπ2

∫
d4k × kμ

D0D1D2
≡ C1p

μ
1 + C2p

μ
2 , (A.2)

where A0, B(i)
0,1, B(12)

i and C0,1,2 are PV-functions. It is well-known that Ci is finite while the 
remains are divergent. We define

�ε ≡ 1

ε
+ ln 4π − γE + ln

μ2

m2
h

, (A.3)

where γE is the Euler constant and mh is the mass of the neutral Higgs. The divergent parts of 
the above scalar factors can be determined as

Div[A0(Mi)] = M2
i �ε, Div[B(i)

0 ] = Div[B(12)
0 ] = �ε,

Div[B(1)
1 ] = Div[B(12)

1 ] = 1

2
�ε, Div[B(2)

1 ] = Div[B(12)
2 ] = −1

2
�ε. (A.4)

We remind that the finite parts of the PV-functions such as B-functions depend on the scale of μ
parameter with the same coefficient of the divergent parts.

The analytic formulas of the above PV-functions are:

A0(M) = M2

(
�ε + ln

m2
h − iδ

M2 − iδ
+ 1

)
≡ M2�ε + a0(M), (A.5)

B
(i)
0,1 = Div[B(i)

0,1] + b
(i)
0,1, B

(12)
0,1,2 = Div[B(12)

0,1,2] + b
(12)
0,1,2, (A.6)

where

b
(i)
0 = ln(m2

h − iδ) −
1∫

0

dx ln
[
x2p2

i − x(p2
i + M2

0 − M2
i ) + M2

0 − iδ
]
,

b
(12)
0 = ln(m2

h − iδ) −
1∫

0

dx ln
[
m2

hx
2 − x(m2

h + M2
1 − M2

2 ) + M2
1 − iδ

]
. (A.7)

The b(1)
0 can be found in a very simple form in the limit p2

i → 0. The b(12)
0 is determined by

b
(12)
0 = −

2∑
k=1

1∫
0

dx ln(x − xk), (A.8)

where xk (k = 1, 2) are solutions of the equation

x2 −
(

m2
h − M2

1 + M2
2

m2
h

)
x + M2

2 − iδ

m2
h

= 0. (A.9)

The final expression of b(12)
0 is

b
(12)
0 = ln

m2
h − iδ

M2
1 − iδ

+ 2 +
2∑

k=1

xk ln

(
1 − 1

xk

)
. (A.10)

The Bi , B(12) are calculated through the B0 and A0 functions, namely
1 i
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B
(i)
1 = (−1)i−1

2m2
i

[
A0(Mi) − A0(M0) + B

(i)
0 (M2

0 − M2
i + m2

i )
]
,

B
(12)
i = 1

2m2
h

[
A0(M1) − A0(M2) + B

(12)
0

(
M2

2 − M2
1 + (−1)i−1m2

h

)]
. (A.11)

The Ci functions can be found through the equation(
2m2

1 m2
h − m2

1 − m2
2

m2
h − m2

1 − m2
2 2m2

2

)(
C1
C2

)

=
(

B
(12)
0 − B

(2)
0 + (M2

0 − M2
1 + m2

1)C0

−
[
B

(12)
0 − B

(1)
0 + (M2

0 − M2
2 + m2

2)C0

] ) . (A.12)

The C0 function was generally calculated in [45], a more explicit explanation was given in [46]. 
In the limit p2

1, p
2
2 → 0, we get the following expression

C0 = −
1∫

0

dx

1−x∫
0

dy

(1 − x − y)M2
0 + xM2

1 + yM2
2 − xym2

h − iδ

= 1

m2
h

1∫
0

dx

x − x0

×
[

ln
m2

h − iδ′

M2
1 − M2

0 − iδ′ + ln(x − x1) + ln(x − x2) − ln(x − x3)

]

= 1

m2
h

ln
m2

h − iδ′

M2
1 − M2

0 − iδ′ × ln

(
1 − 1

x0

)

+ 1

m2
h

1∫
0

dx

x − x0
[ln(x − x1) + ln(x − x2) − ln(x − x3)] , (A.13)

where both δ and δ′ are positive and extremely small, x0 and x3 are defined as

x0 = M2
2 − M2

0

m2
h

, x3 = −M2
0 + iδ

M2
1 − M2

0

, (A.14)

and x1, x2 are solutions of the equation (A.9). The limit of p2
1, p

2
2 = 0 will be used in our work, 

even when the loops contain active neutrinos with masses extremely smaller than these quan-
tities, because of the appearance of heavy virtual particles. The explanation is as follows. The 
denominator in the first line of (A.13) has the general form of D = (1 − x − y)M2

0 + xM2
1 +

yM2
2 −xym2

h − iδ− (1 −x −y) 
[
xm2

1 + ym2
2

]
. Our calculation relates to the two following cases:

• Only M0 is the mass of the active neutrino, M0  M1, M2. We have D = (1 − x − y)M2
0 +

xM2
1

[
1 − (1 − x − y)m2

1/M
2
1

] + yM2
2

[
1 − (1 − x − y)m2

2/M
2
2

] − xym2
h − iδ � (1 − x −

y)M2 + xM2 + yM2 − xym2 − iδ.
0 1 2 h
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• M1 = M2 is the mass of the neutrino: M1 = M2  M0. Then we have D = (1 − x −
y)M2

0

[
1 − (xm2

1 + ym2
2)/M

2
0

] + xM2
1 + yM2

2 − xym2
h − iδ � (1 − x − y)M2

0 + xM2
1 +

yM2
2 − xym2

h − iδ.

We use the following result given in [45]

R(x0, xi) ≡
1∫

0

dx

x − x0
[ln(x − xi) − ln(x0 − xi)]

= Li2(
x0

x0 − xi

) − Li2(
x0 − 1

x0 − xi

), (A.15)

where i = 1, 2, 3 and Li2(z) is the di-logarithm defined by

Li2(z) ≡
1∫

0

−dt

t
ln(1 − tz).

We also use the real values of x0 to give the result η(−xi, 1
x0−xi

) ln x0
x0−xi

= η(1 − xi, 1
x0−xi

) ×
ln x0−1

x0−xi
= 0 for any complex xi . Now we introduce the function

R0(x0, xi) ≡ Li2(
x0

x0 − xi

) − Li2(
x0 − 1

x0 − xi

), (A.16)

leading to

1∫
0

dx ln(x − xi)

x − x0
= R0(x0, xi) + ln

(
1 − 1

x0

)
ln(x0 − xi). (A.17)

Using the following equalities

ln(AB − iδ) = ln(A − iδ′) + ln(B − iδ/A)

with any real A, B , δ, δ′ positive real and extremely small; and

x1x2 = m2
h − M2

1 + M2
2

m2
h

, x1x2 = M2
2 − iδ

m2
h

,

we can prove that

ln
m2

h − iδ′

M2
1 − M2

0 − iδ′ + ln(x0 − x1) + ln(x0 − x2) − ln(x0 − x3) = 0.

This results the very simple expression of C0 function

C0 = 1

m2
h

[R0(x0, x1) + R0(x0, x2) − R0(x0, x3)] , (A.18)

where x1,2 are solutions of the equation (A.9), and x0,3 are given in (A.14). This result is consis-
tent with that discussed on [31].
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For simplicity in calculation we will also use other approximations of PV-functions where 
p2

1, p
2
2 → 0, namely

a0(M) = M2

(
1 + ln

m2
h − iδ

M2 − iδ

)
, b

(i)
0 = 1 − ln

M2
i

m2
h

+ M2
0

M2
0 − M2

i

ln
M2

i

M2
0

,

b
(1)
1 = −1

2
ln

M2
1

m2
h

− M4
0

2(M2
0 − M2

1 )2
ln

M2
0

M2
1

+ (M2
0 − M2

1 )(3M2
0 − M2

1 )

4(M2
0 − M2

1 )2
,

b
(2)
1 = 1

2
ln

M2
2

m2
h

+ M4
0

2(M2
0 − M2

2 )2
ln

M2
0

M2
2

− (M2
0 − M2

2 )(3M2
0 − M2

2 )

4(M2
0 − M2

2 )2
,

b
(12)
0 = ln

m2
h − iδ

M2
1 − iδ

+ 2 +
2∑

k=1

xk ln

(
1 − 1

xk

)
,

where xk is the two solutions of the equation (A.9),

b
(12)
i = 1

2m2
h

[
M2

1

(
1 + ln

m2
h

M2
1

)
− M2

2

(
1 + ln

m2
h

M2
2

)]

+ b
(12)
0

2m2
h

[
M2

2 − M2
1 + (−1)i−1m2

h

]
,

C1 = 1

m2
h

[
b

(1)
0 − b

(12)
0 + (M2

2 − M2
0 )C0

]
,

C2 = − 1

m2
h

[
b

(2)
0 − b

(12)
0 + (M2

1 − M2
0 )C0

]
.

Appendix B. Calculations the one loop contributions

In the first part of this section we will calculate in details the contributions of particular contri-
butions of diagrams shown in the Fig. 1 which involve with exotic neutral lepton Na , a = 1, 2, 3. 
From this we can derive the general functions expressing the contributions of particular diagrams.

B.1. Amplitudes

It is needed to remind that the amplitude will be expressed in terms of the PV-functions, so 
the integral will be written as∫

d4k

(2π)4
→ i

16π2
× (2πμ)4−D

iπ2

∫
d4k,

where μ is a parameter with dimension of mass. This step will be omitted in the below calcu-
lation, the final results are simply corrected by adding the factor i/16π2. As an example in the 
calculation of contribution from the first diagram, we will point out a class of divergences that 
automatically vanish by the GIM mechanism. More explicitly for any terms which do not de-
pend on the masses of virtual leptons, they will vanish because of the appearance of the factor ∑

V LV L∗ = 0.
a 1a 2a
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The contribution from diagram 1a) is:

iMFVV
(a) =

∑
a

∫
d4k

(2π)4
× ū1

ig√
2
V1aγ

μPL

1(/k + ma)

D0

ig√
2
V ∗

2aγ
νPLv2

×
[
igmV√

2

(
−cαsθ + √

2sαcθ

)] −i

D1

×
[
gμα − (k − p1)μ(k − p1)α

m2
V

]
−i

D2

[
gνβ − (k + p2)ν(k + p2)β

m2
V

]

=
∑
a

V1aV
∗
2a(−1)

g3mV

2
√

2

(
−cαsθ + √

2sαcθ

)
×
∫

d4k

(2π)4

ū1γ
μ/kγ νPLv2

D0D1D2

× gαβ

[
gμα − (k − p1)μ(k − p1)α

m2
V

][
gβν − (k + p2)ν(k + p1)β

m2
V

]

≡
∑
a

V1aV
∗
2a(−1)

g3mV

2
√

2

(
−cαsθ + √

2sαcθ

)
[P1 + P2 + P3] , (B.1)

where

P1 =
∫

d4k

(2π)4

ū1γ
μ/kγ νPLv2

D0D1D2
gμν =

∫
d4k

(2π)4

(2 − d)ū1/kPLv2

D0D1D2

= ū1PLv2 × m1(−2C1) + ū1PLv2 × m2(2C2). (B.2)

We can see that P1 does not contain any divergent terms. The formula of P2 is

P2 = −1

m2
V

∫
d4k

(2π)4

ū1γ
μ/kγ νPLv2

D0D1D2

[
(k + p2)μ(k + p2)ν + (k − p1)μ(k − p1)ν

]

= −1

m2
V

∫
d4k

(2π)4

[
ū1(D0 + m2

a)(/k + 2/p2)PLv2 + ū1/p2/k/p2PLv2

D0D1D2

+ ū1(D0 + m2
a)(/k − 2/p1)PLv2 + ū1/p1/k/p1PLv2

D0D1D2

]

= −1

m2
V

{
ū1PLv2 × m1

[
2B

(12)
1 (mV ) − 2B

(12)
0 (mV )

− 2m2
aC0 + (2m2

a + m2
1 − m2

2)C1 + (m2
H0

− m2
1 − m2

2)C2

]
+ ū1PRv2 × m2

[
−2B

(12)
2 (mV ) − 2B

(12)
0 (mV )

− 2m2
aC0 − (2m2

a − m2
1 + m2

2)C2 − (m2
H0

− m2
1 − m2

2)C1

]}
. (B.3)

We can see that the terms like B(12)
1 (mV ), B(12)

1 (mV ) and B(12)
0 (mV ) do contain divergences 

but they do not depend on ma in the loop. Hence these terms will exactly cancel by the GIM 
mechanism. All of the other are finite.
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The contribution from P3 is

P3 = 1

m4
V

∫
d4k

(2π)4
× ū1γ

μ/kγ νPLv2

D0D1D2

[
(k − p1).(k + p2)(k − p1)μ(k + p2)ν

]

= 1

2m4
V

∫
d4k

(2π)4
×
[

ū1[D1 + D2 + 2m2
V − m2

H0
](D0 + m2

a)(/k + /p2 − /p1)PLv2

D0D1D2

+ m1m2
ū1[D1 + D2 + 2m2

V − m2
H0

]/kPLv2

D0D1D2

]

= 1

2m4
V

{
ū1PLv2 × m1

[
−A0(mV ) + (2m2

V − m2
H0

)
(
B

(12)
1 (mV ) − B

(12)
0 (mV )

)
− m2

2B
(2)
1 + m2

a

(
B(1)

1 − B(1)
0 − B(2)

0

)
+ (2m2

V − m2
H0

)
(

m2
a(C1 − C0) − m2

2C2

)]
+ ū1PRv2 × m2

[
−A0(mV ) + (2m2

V − m2
H0

)
(
−B

(12)
2 (mV ) − B

(12)
0 (mV )

)
+ m2

1B
(1)
1 + m2

a

(
−B(1)

0 − B(2)
0 − B(2)

1

)
+ (2m2

V − m2
H0

)
(

m2
1C1 − m2

a(C0 + C2)
)]}

. (B.4)

Again all terms in the first and third lines do not contribute to the amplitude. But the four 

terms m2
2B

(2)
1 , m2

1B
(1)
1 , m2

a

(
B

(1)
1 − B

(1)
0 − B

(2)
0

)
and m2

a

(
−B

(1)
0 − B

(2)
0 − B

(2)
1

)
do contain di-

vergences. The first two terms have divergent parts having the corresponding forms of (−m2
2�ε)

and m2
1�ε , which do not depend on the masses ma of the virtual leptons. Hence they also vanish 

by the GIM mechanism. The finite parts of these terms still contribute to the amplitude. The re-
main two terms include the most dangerous divergent parts. They have factors m2

a which can not 
cancel by the GIM mechanism. We remark them by the bold and will prove later that they finally 
vanish after summing all diagrams. From now on we can exclude all terms that do not depend on 
the masses of virtual leptons.

Based on definition M = − 
(
EFVV

L u1PLv2 + EFVV
R u1PRv2

)
, the expression of the total con-

tribution from the diagram 1a) is simply

MFVV
(a) = −g3

32π2
√

2

(
−cαsθ + √

2sαcθ

)∑
a

V1aV
∗
2a

[
(u1PLv2)EFVV

L + (u1PRv2)EFVV
R

]
,

(B.5)

where EFVV
L,R is defined in (4) and (5). Here we have added a factor of i

16π2 . All terms being 
independent on ma will cancel by the factor 

∑
a V1aV

∗
2a . If we assume all other divergences 

cancel among themselves after summing all of the diagrams, the analytic formulas of EFVV
L and 

EFVV
R can be written in terms of the finite parts of PV-functions, i.e. b

(i)
0 , b(12)

0 , bi
1, b(12)

i and 
C0,1,2. The following calculation for the remain diagrams will be done the same as what we have 
done above. We trace the divergence of each diagram in the bold text.
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The contribution from diagram 1b) is:

iMFVH
(b) =

∑
a

∫
d4k

(2π)4

× ū1
ig√

2
V1aγ

μPL

i(/k + ma)

D0
(−i

√
2V ∗

2a)

(
m2

v1
a1PR + ma

v3
a3PL

)
v2

× ig

2
√

2
(−k − 2p2 − p1)

α i

D2

−i

D1

[
gμα − (k − p1)μ(k − p1)α

m2
V

]

=
∑
a

V1aV
∗
2a

g2

2
√

2
(cαcθ + √

2sαsθ )

×
∫

d4k

(2π)4
×

m2
v1

a1ū1γ
μ/kPRv2 + m2

a

v2
a2ū1γ

μPLv2

D0D1D2

×
[
(k + 2p2 + p1)μ − (k + 2p2 + p1).(k − p1)(k − p1)μ

m2
V

]

=
∑
a

V1aV
∗
2a

[
g2

2
√

2
(cαcθ + √

2sαsθ )

]

×
⎧⎨
⎩ ū1PLv2 ×

⎡
⎣ −m1

m2
V

m2
a

v3
a3

(
B(1)

1 − B(1)
0

)

+ m2
a

v3
a3 × m1

(
C0 + C1 + (m2

HA
− m2

H0
)

m2
V

(C0 − C1)

)

+ m2

v1
a1 × m1m2

(
2C1 − C2 − m2

HA
− m2

H0

m2
V

C2

)⎤⎦
+ ū1PRv2 ×

[
−1

m2
V

m2

v1
a1

(
A0(mV ) + (m2

HA
− m2

H0
)B

(12)
0

)

+ m2

v1
a1B

(12)
0 + m2

1

m2
V

m2

v1
a1B

(1)
1 − m2

a

m2
V

m2

v1
a1B(1)

0 (ma,mV)

+ m2

v1
a1

(
m2

aC0 − m2
1C1 + 2m2

2C2 + 2(m2
H0

− m2
2)C1

− (m2
HA

− m2
H0

)

m2
V

(
m2

aC0 − m2
1C1

))

+ m2
a

v3
a3 × m2

(
−2C0 − C2 + (m2

HA
− m2

H0
)

m2
V

C2

)]⎫⎬
⎭ . (B.6)
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The contribution to the total amplitude is

MFVH
(b) = g2

32π2
√

2

(
cαcθ + √

2sαsθ

)∑
a

V1aV
∗
2a

[
(u1PLv2)EFVH

L + (u1PRv2)EFVH
R

]
.

(B.7)

The contribution from diagram 1c) is:

iMFHV
(c) =

∑
a

∫
d4k

(2π)4
× ū1(−i

√
2V1a)

(
m1

v1
a1PL + ma

v3
a3PR

)

× i(/k + ma)

D0

ig√
2
V ∗

2aγ
μPLv2 × ig

2
√

2
(cαcθ + √

2sαsθ )(−k + p2 + 2p1)
α

× i

D1

−i

D2
×
[
gμα − (k + p2)μ(k + p2)α

m2
V

]

=
∑
a

V1aV
∗
2a

g2

2
√

2
(cαcθ + √

2sαsθ )

∫
d4k

(2π)4

×
[
m1

v1
a1

ū1γ
μ/kPLv2

D0D1D2
+ m2

a

v3
a3

ū1γ
μPLv2

D0D1D2

]

×
[
(k − p2 − 2p1)μ − (k − p2 − 2p1).(k + p2)(k + p2)μ

m2
V

]

=
∑
a

V1aV
∗
2a

[
g2

2
√

2
(cαcθ + √

2sαsθ )

]
V1aV

∗
2a

×
{

ū1PLv2 ×
[

−1

m2
V

m1

v1
a1

(
A0(mV ) + (m2

HA
− m2

H0
)B

(12)
0

)

+ m1

v1
a1B

(12)
0 (mV ,mHA

) − m2
2

m2
V

m1

v1
a1B

(2)
1 (ma,mV )

− m2
a

m2
V

m1

v1
a1B(2)

0 (ma,mV)

+ m1

v1
a1

(
m2

aC0 − 2m2
1C1 + m2

2C2 − 2(m2
H0

− m2
1)C2

− (m2
HA

− m2
H0

)

m2
V

(m2
2C2 + m2

aC0)

)

+ m1
m2

a

v3
a3

(
−2C0 + C1 − (m2

HA
− m2

H0
)

m2
V

C1

)]

+ ū1PRv2

⎡
⎢⎣ m2

m2
V

m2
a

v3
a3

(
B(2)

1 + B(2)
0

)
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+ m1m2
m1

v1
a1

(
C1 − 2C2 + (m2

HA
− m2

H0
)

m2
V

C1

)

+ m2
m2

a

v3
a3

(
C0 − C2 + (m2

HA
− m2

H0
)

m2
V

(C0 + C2)

)]}
. (B.8)

The contribution to the total amplitude is

MFHV
(c) = g2

32π2
√

2

(
cαcθ + √

2sαsθ

)∑
a

V1aV
∗
2a

[
(u1PLv2)EFHV

L + (u1PRv2)EFHV
R

]
.

(B.9)

The contribution from diagram 1d) is:

iMFHH
(d) =

∑
a

∫
d4k

(2π)4
× (−iv3λh0H1H1

)
i

D1

i

D2
× ū1(−i

√
2V1a)

×
(

m1

v1
a1PL + ma

v3
a3PR

)
i(/k + ma)

D0
(−i

√
2V ∗

2a)

(
m2

v1
a1PR + ma

v3
a3PL

)
v2

=
∑
a

v3λh0H1H1
V1aV

∗
2a

∫
d4k

(2π)4

×
ū1

(
m1
v1

a1PL + ma

v3
a3PR

)
(/k + ma)

(
m2
v1

a1PR + ma

v3
a3PL

)
v2

D0D1D2

=
∑
a

v3λh0H1H1
V1aV

∗
2a

∫
d4k

(2π)4

×
[

m1m2

v2
1

a2
1
ū1/kPRv2

D0D1D2
+ m1m

2
a

v1v3
a1a3

ū1PLv2

D0D1D2

+ m2
a

v2
3

a2
3
ū1/kPLv2

D0D1D2
+ m2m

2
a

v1v3
a1a3

ū1PRv2

D0D1D2

]

=
∑
a

v3λh0H1H1
V1aV

∗
2a

×
{

ū1PLv2 × m1

[
m2

a

v1v3
a1a3C0 − m2

2

v2
1

a2
1C2 + m2

a

v2
3

a2
3C1

]

+ ū1PRv2 × m2

[
m2

a

v1v3
a1a3C0 + m2

1

v2
1

a2
1C1 − m2

a

v2
3

a2
3C2

]}
(B.10)

with λh0H1H1
shown in the Table 1. With the notations of EFHH

L and EFHH
R defined in (10) and 

(11), the contribution to the amplitude is

MFHH
(d) = 1

64π2
√

2
× (4

√
2λh0H1H1

)
∑
a

V1aV
∗
2a

[
(u1PLv2)EFHH

L + (u1PRv2)EFHH
R

]
.

(B.11)
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The contribution from diagram 1e) is:

iMVFF
(e) =

∑
a

∫
d4k

(2π)4
× ū1

ig√
2
V1aγ

μPL

i(−/k + /p1 + ma)

D1

(−igma

2mV

sα

cθ

)

× i(−/k − /p2 + ma)

D2

ig√
2
V ∗

2aγ
νPLv2

−i

D0

[
gμν − kμkν

m2
V

]

=
∑
a

−g3ma

4mV

sα

cθ

V1aV
∗
2a

∫
d4k

(2π)4

[
(2 − d)maū1(−2/k + /p1 − /p2)PLv2

D0D1D2

− ma

m2
V

ū1/k(−2/k + /p1 − /p2)/kPLv2

D0D1D2

]

=
∑
a

[
−g3ma

4mV

sα

cθ

]
V1aV

∗
2a

⎧⎨
⎩ ū1PLv2 × m1ma

⎡
⎣ 1

m2
V

(
B(12)

0 + B(1)
1

)

− 1

m2
V

(
−m2

V C0 + (m2
1 + m2

2 − 2m2
a)C1

)
+ (2 − d)(C0 − 2C1)

⎤
⎦

+ ū1PRv2 × m2ma

⎡
⎣ 1

m2
V

(
B(12)

0 − B(2)
1

)
+ (2 − d)(C0 + 2C2)

− 1

m2
V

(
−m2

V C0 − (m2
1 + m2

2 − 2m2
a)C2

)⎤⎦
⎫⎬
⎭ . (B.12)

The final result is written as

MVFF
(e) =

[
− 1

64π2
√

2
× g3sα

√
2

cθ

]∑
a

V1aV
∗
2a

[
(u1PLv2)EVFF

L + (u1PRv2)EVFF
R

]
,

(B.13)

where EVFF
L,R are defined in (12) and (13).

The contribution from diagram 1f) is

iMHFF
(f ) =

∑
a

∫
d4k

(2π)4
× ū1(−i

√
2V1a)

(
m1

v1
a1PL + ma

v3
a3PR

)

× i(−/k + /p1 + ma)

D1

(−imasα

v3

)
i(−/k − /p2 + ma)

D2

× (−i
√

2V ∗
2a)

(
m2

v1
a1PR + ma

v3
a3PL

)
v2 × i

D0

=
∑
a

V1aV
∗
2a

[
2masα

v3

]∫
d4k

(2π)4

[
m1ma

v1v3
a1a3

ū1(/k − /p1)(/k + /p2)PLv2

D0D1D2

+ m2ma
a1a3

ū1(/k − /p1)(/k + /p2)PRv2
v1v3 D0D1D2
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+ ma

m1m2

v2
1

a2
1
ū1(−2/k − /p2 + /p1)PRv2

D0D1D2

+ m3
a

v2
3

a2
3
ū1(−2/k − /p2 + /p1)PLv2

D0D1D2

+ m1m
3
a

v1v3
a1a3

ū1PLv2

D0D1D2
+ m2m

3
a

v1v3
a1a3

ū1PRv2

D0D1D2

]

=
∑
a

V1aV
∗
2a

[
2masα

v3

]⎧⎨
⎩ū1PLv2

× m1ma

⎡
⎣ a1a3

v1v3
B(12)

0 + m2
2

v2
1

a2
1(2C2 + C0) + m2

a

v2
3

a2
3(C0 − 2C1)

+ a1a3

v1v3

(
2m2

2C2 − (m2
1 + m2

2)C1 + (m2
a + m2

HA
+ m2

2)C0

)⎤⎦

+ ū1PRv2m2ma

⎡
⎣ a1a3

v1v3
B(12)

0 + m2
1

v2
1

a2
1(C0 − 2C1) + m2

a

v2
3

a2
3(C0 + 2C2)

+ a1a3

v1v3

(
−2m2

1C1 + (m2
1 + m2

2)C2 + (m2
a + m2

HA
+ m2

1)C0

)⎤⎦
⎫⎬
⎭ (B.14)

The final result is written as

iMHFF
(f ) = 1

64π2
√

2
× (8sα

√
2)
∑
a

V1aV
∗
2a

[
(u1PLv2)EHFF

L + (u1PRv2)EHFF
R

]
, (B.15)

where EHFF
L,R are defined in (14) and (15).

The contribution from diagram 1g) is:

iM(FV )
(g) =

∑
a

∫
d4k

(2π)4
× ū1

(
ig√

2
V1aγ

μPL

)
i(/k + ma)

D0

(
ig√

2
V ∗

2aγ
νPL

)

× i(/p1 + m2)

p2
1 − m2

2

(
igm2

2
√

2mV

cα

sθ

)
v2

−i

D1

[
gμν − (k − p1)μ(k − p1)ν

m2
V

]

=
∑
a

V1aV
∗
2a

g3

4
√

2mV

m2

(m2
1 − m2

2)

cα

sθ

×
∫

d4k

(2π)4

[
(2 − d)ū1/k/p1PRv2 + (2 − d)m2ū1/kPLv2

D0D1

− 1

m2
V

ū1(/k − /p1)/k(/k − /p1)/p1PRv2

D0D1
− m2

m2
V

ū1(/k − /p1)/k(/k − /p1)PLv2

D0D1

]

=
∑

V1aV
∗
2a

[
g3

4
√

2m

m2

(m2 − m2)

cα

sθ

]

a V 1 2
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×
⎧⎨
⎩ū1PLv2 × m1m2

⎡
⎣ 1

m2
V

A0(mV ) − m2
1

m2
V

B
(1)
1

+ (2 − d)B
(1)
1 − 1

m2
V

(
−2m2

aB(1)
0 + m2

aB(1)
1

) ⎤
⎦

+ ū1PRv2 × m2
1

⎡
⎣ 1

m2
V

A0(mV ) − m2
1

m2
V

B
(1)
1 + (2 − d)B

(1)
1

− 1
m2

V

(
−2m2

aB(1)
0 + m2

aB(1)
1

) ⎤
⎦
⎫⎬
⎭ (B.16)

The contribution from diagram 1h) is:

iMV F
(h) =

∑
a

∫
d4k

(2π)4
× ū1

(
igm1

2
√

2mV

cα

sθ

)
i(−/p2 + m1)

p2
2 − m2

1

(
ig√

2
V1aγ

μPL

)

× i(/k + ma)

D0

(
ig√

2
V ∗

2aγ
νPL

)
v2 × −i

D2

[
gμν − (k + p2)μ(k + p2)ν

m2
V

]

=
∑
a

g3

4
√

2mV

m1

(m2
2 − m2

1)

cα

sθ
V1aV

∗
2a

×
∫

d4k

(2π)4

[
−(2 − d)ū1/p2/kPLv2 + (2 − d)m1ū1/kPLv2

D0D2

+ 1

m2
V

ū1/p2(/k + /p2)/k(/k + /p2)PLv2

D0D2
− m1

m2
V

ū1(/k + /p2)/k(/k + /p2)PLv2

D0D2

]

=
∑
a

g3

4
√

2mV

m1

(m2
2 − m2

1)

cα

sθ
V1aV

∗
2a

×
∫

d4k

(2π)4

[
(2 − d)ū1

(−/p2/k

D0D2
+ m1/k

D0D2

)
PLv2

+ 1

m2
V

ū1

(
k2/p2/k + 2k2p2

2 + m2
2/k/p2

D0D2

)
PLv2

− m1

m2
V

ū1

(
k2/k + 2k2/p2 + /p2/k/p2

D0D2

)
PLv2

]

=
∑
a

[
g3

4
√

2mV

m1

(m2
2 − m2

1)

cα

sθ

]
V1aV

∗
2a

×
{

ū1PLv2 × m2
2

[
1

m2
A0(mV ) + m2

2

m2
B

(2)
1 − (2 − d)B

(2)
1

V V
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− 1
m2

V

(
−2m2

aB(2)
0 − m2

aB(2)
1

) ⎤
⎦

+ ū1PRv2 × m1m2

[
1

m2
V

A0(mV ) + m2
2

m2
V

B
(2)
1 − (2 − d)B

(2)
1

− 1
m2

V

(
−2m2

aB(2)
0 − m2

a)B
(2)
1

) ⎤
⎦
⎫⎬
⎭ (B.17)

The total amplitude from the two diagrams 1g) and 1h) is:

iMFV
(g+h) =

∑
a

[
g3

4
√

2mV

cα

sθ

]
V1aV

∗
2a

⎧⎨
⎩ū1PLv2 × m1m

2
2

(m2
1 − m2

2)

×
⎡
⎣−2

(
B

(1)
1 + B

(2)
1

)
− 1

m2
V

(
m2

1B
(1)
1 + m2

2B
(1)
1

)

+ m2
a

m2
V

(
2(B(1)

0 − B(2)
0 ) − (B(1)

1 + B(2)
1 )
) ⎤
⎦

+ ū1PRv2
m2

1m2

m2
1 − m2

2

⎡
⎣(2 − d)

(
B

(1)
1 + B

(2)
1

)
− 1

m2
V

(
m2

1B
(1)
1 + m2

2B
(1)
1

)

+ m2
a

m2
V

(
2
(

B(1)
0 − B(2)

0

)
−
(

B(1)
1 + B(2)

1

)) ⎤
⎦
⎫⎬
⎭ . (B.18)

We note that the divergence part in the above expression is zero. The final result is

MFV
(g+h) =

[
1

64π2
√

2
× g3cα

sθ

]∑
a

V1aV
∗
2a

[
(u1PLv2)EFV

L + (u1PRv2)EFV
R

]
, (B.19)

where EFV
L,R are defined in (16) and (17).

The contribution from the diagram 1i) is:

iMFH
(i) =

∑
a

∫
d4k

(2π)4
× ū1(−i

√
2V1a)

(
m1

v1
a1PL + ma

v3
a3PR

)
i(/k + ma)

D0

× (−i
√

2V ∗
2a)

(
m2

v1
a1PR + ma

v3
a3PL

)
i(/p1 + m2)

p2
1 − m2

2

(
im2

v1

cα√
2

)
v2 × i

D1

=
∑
a

[
−

√
2cα

v1

]
m2

m2
1 − m2

2

V1aV
∗
2a

×
∫

d4k

(2π)4
×
[

m1m2

v2
1

a2
1
ū1/k/p1PLv2

D0D1
+ m1m

2
2

v2
1

a2
1
ū1/kPRv2

D0D1

+ m1m
2
a

v v
a1a3

ū1/p1PRv2

D D
+ m1m2m

2
a

v v
a1a3

ū1PLv2

D D
+ m2

a

v2
a2

3
ū1/k/p1PRv2

D D
1 3 0 1 1 3 0 1 3 0 1
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+ m2m
2
a

v2
3

a2
3
ū1/kPLv2

D0D1
+ m2m

2
a

v1v3
a1a3

ū1/p1PLv2

D0D1
+ m2

2m
2
a

v1v3
a1a3

ū1PRv2

D0D1

]

=
∑
a

[
−

√
2cα

v1

]
m2

m2
1 − m2

2

V1aV
∗
2a

×
⎧⎨
⎩ ū1PLv2 × m1m2

⎡
⎣ 2m2

a
a1a3
v1v3

B(1)
0 + m2

a
a2

3
v2

3
B(1)

1 + m2
1

v2
1

a2
1B

(1)
1

⎤
⎦

+ ū1PRv2

⎡
⎣ m2

a
a1a3
v1v3

(m2
1 + m2

2)B
(1)
0 + m2

1m2
a

a2
3

v2
3
B(1)

1 + m2
1m

2
2

v2
1

a2
1B

(1)
1

⎤
⎦
⎫⎬
⎭ .

(B.20)

The contribution from the diagram 1k) is:

iMHF
(k) =

∑
a

∫
d4k

(2π)4
× ū1

(
im1cα

v1
√

2

)

× i(−/p2 + m1)

p2
2 − m2

1

(−i
√

2V1a)

(
m1

v1
a1PL + ma

v3
a3PR

)

× i(/k + ma)

D0
(−i

√
2V ∗

2a)

(
m2

v1
a1PR + ma

v3
a3PL

)
v2 × i

D2

=
∑
a

(
− i

√
2cα

v1

)
m1

m2
2 − m2

1

V1aV
∗
2a

×
∫

d4k

(2π)4
×
[
−m1m2

v2
1

a2
1
ū1/p2/kPRv2

D0D2
+ m2

1m2

v2
1

a2
1
ū1/kPRv2

D0D2

− m1m
2
a

v1v3
a1a3

ū1/p2PLv2

D0D2
+ m2

1m
2
a

v1v3
a1a3

ū1PLv2

D0D2
− m2

a

v2
3

a2
3
ū1/p2/kPLv2

D0D2

+ m1m
2
a

v2
3

a2
3
ū1/kPLv2

D0D2
− m2m

2
a

v1v3
a1a3

ū1/p2PRv2

D0D1
+ m1m2m

2
a

v1v3
a1a3

ū1PRv2

D0D1

]

=
∑
a

(
− i

√
2cα

v1

)
m1

m2
2 − m2

1

V1aV
∗
2a

⎧⎨
⎩ ū1PLv2

⎡
⎣ m2

a
v1v3

a1a3(m2
1 + m2

2)B
(2)
0

− m2
2m2

a

v2
3

a2
3B(2)

1 − m2
1m

2
2

v2
1

a2
1B

(2)
1

⎤
⎦

+ ū1PRv2 × m1m2

⎡
⎣ 2 m2

a
v1v3

a1a3B(2)
0 − m2

a
v2

3
a2

3B(2)
1 − m2

2

v2
1

a2
1B

(2)
1

⎤
⎦
⎫⎬
⎭ .

(B.21)
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The total amplitude from the two diagrams 1i) and k) is:

iMFH
(i+k) =

∑
a

V1aV
∗
2a

[
− i

√
2cα

v1

]
×
{

ū1PLv2 × m1

m2
1 − m2

2

×
⎡
⎣m2

1m
2
2
a2

1

v2
1

(
B

(1)
1 + B

(2)
1

)
+ m2

a
a1a3
v1v3

(
2m2

2B(1)
0 − (m2

1 + m2
2)B

(2)
0

)

+ m2
2m2

a
a2

3
v2

3

(
B(1)

1 + B(2)
1

) ⎤
⎦+ ū1PRv2 × m2

m2
1 − m2

2

×
⎡
⎣m2

1m
2
2
a2

1

v2
1

(
B

(1)
1 + B

(2)
1

)
+ m2

1m2
a

a2
3

v2
3

(
B(1)

1 + B(2)
1

)

+ m2
a

a1a3
v1v3

(
−2m2

1B(2)
0 + (m2

1 + m2
2)B

(1)
0

) ⎤
⎦
⎫⎬
⎭ . (B.22)

The final result is written as

MFH
(ik) =

[
− 8cα

64π2
√

2

]∑
a

V1aV
∗
2a

[
(u1PLv2)EFH

L + (u1PRv2)EFH
R

]
, (B.23)

where EFH
L,R are defined in (18) and (19). After calculating contributions from all diagrams with 

virtual neutral leptons Na we can prove that all divergent parts containing the factor m2
a will be 

canceled in the total contribution. The details are shown below. For active neutrinos the calcula-
tion is the same.

B.2. Particular calculation for canceling divergence

In this section, for contribution of exotic neutral leptons Na we use the following relations

a1 → cθ , a2 → a3 = sθ , v1 = 2mV

g
sθ , v3 = 2mV

g
cθ ,

a1

v1
= g

2mV

cθ

sθ
,

a3

v3
= g

2mV

sθ

cθ

,
a1a3

v1v3
= g2

4m2
V

. (B.24)

And we concentrate on the divergent parts which are bolded in the expressions of the amplitudes 
calculated above. With the notations of the divergences shown in the Appendix A, all of divergent 
parts are collected as follows,

Div
[
MFVV

(a)

]
= B ×

[
cα × (−3sθ ) + √

2sα(3cθ )
]
,

Div
[
MFHV

(b+c)

]
= B ×

[
cα × s2

θ − 2c2
θ

sθ
+ √

2sα × s2
θ − 2c2

θ

cθ

]
,

Div
[
MVFF

(e)

]
= B × √

2sα × −3
,

cθ
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Div
[
MHFF

(f )

]
= B × √

2sα × 2

cθ

,

Div
[
MFV

(g)

]
= 1

m2
1 − m2

2

[
m2

2BL + m2
1BR

]
× 3cα

sθ
,

Div
[
MFV

(h)

]
= 1

m2
1 − m2

2

[
m2

2BL + m2
1BR

]
× −3cα

sθ
,

Div
[
MFH

(i+k)

]
= B × cα × 2

sθ
, (B.25)

where

B = g3

128π2

m2
νa

m3
W

× �ε × [ū1PLv2 × m1 + ū1PRv2 × m2]

BL = g3

128π2

m2
νa

m3
W

× �ε × ū1PLv2 × m1, BR = g3

128π2

m2
νa

m3
W

× �ε × ū1PRv2 × m2.

It is easy to see that the sum over all factors is zero. Furthermore, it is interesting to see that the 
sums of the two parts having factor cα and 

√
2sα independently result the zero values. From (41), 

the factor cα arises from the contributions of neutral components of η and ρ, while the sα factor 
arises from the contribution of χ .

For contribution of the active neutrinos, the two diagrams (b) and (c) of the Fig. 1 do not give 
contributions due to absence of the H−

2 H+
2 W couplings. Using the following properties

a1 = 1, a2 = 1, v1 = v2 = 2mW√
2g

,
a1

v1
= a2

v2
=

√
2g

2mW

,
a1a2

v1v2
= g2

2m2
W

,

we list the non-zero divergent terms of the relevant diagrams as follows

Div
[
MFVV

(a)

]
= B × (−3cα),

Div
[
MVFF

(e)

]
= B × (3cα),

Div
[
MHFF

(f )

]
= B × (−2cα),

Div
[
MFV

(g)

]
= 1

m2
1 − m2

2

[
m2

2B′
L + m2

1B′
R

]
× (cα),

Div
[
MFV

(h)

]
= 1

m2
1 − m2

2

[
m2

2B′
L + m2

1B′
R

]
× (−cα),

Div
[
MFH

(i)

]
= −cα

m2
1 − m2

2

[
5m2

2B′
L + (3m2

1 + 2m2
2)B′

R

]
,

Div
[
MFH

(k)

]
= cα

m2
1 − m2

2

[
(2m2

1 + 3m2
2)B′

L + 5m2
1B′

R

]
,

Div
[
MFH

(i+k)

]
= B × (2cα),
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where

B = g3

128π2

m2
νa

m3
W

× �ε × [ū1PLv2 × m1 + ū1PRv2 × m2]

B′
L = g3

128π2

m2
νa

m3
W

× �ε × ū1PLv2 × m1, B′
R = g3

128π2

m2
νa

m3
W

× �ε × ū1PRv2 × m2.

We see again that sum of all divergent terms is zero.
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