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Mott Transition in the Asymmetric Hubbard Model at Half-filling: Equation
of Motion Approach
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We investigate the Mott metal-insulator transition in the asymmetric Hubbard model, which may
describe the ground states of fermionic atoms trapped in optical lattices. We use the dynamical
mean-field theory and the equation of motion approach to calculate the density of states at the
Fermi level and the double occupation for various values of the on-site interaction U and the hopping
asymmetry r. The critical interaction is also obtained as a function of the hopping asymmetry. Our
results are in good agreement with the ones obtained by using the dynamical mean field theory
with the exact diagonalization and the quantum Monte Carlo techniques.
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I. INTRODUCTION

The metal-insulator transition (MIT) is a fundamen-
tal phenomenon in condensed matter physics. Numerous
mechanism, including electron-phonon coupling, electron
correlation, and disorder, have been proposed to explain
that phenomenon. Among them, one is called the Mott
transition, which can be attributed to a strong Coulomb
interaction between electrons, resulting in an insulating
state even in a system with a partially-filled band. Theo-
retical works on the Mott transition have mainly focused
on the Hubbard model (HM) [1] and the Falikov - Kim-
ball model (FKM) [2]. The asymmetric Hubbard model
(AHM) is considered as a natural connection between
the two above models. In the AHM, each spin species
has a different hopping integral and a different value of
the chemical potential. The Hamiltonian of the model is

H =
∑

<i,j>,σ

tσ(c+
iσcjσ+hc)−

∑
i,σ

μσniσ+U
∑

i

ni↑ni↓, (1)

where ciσ(c+
iσ) annihilates (creates) a fermion with spin

σ at site i, niσ = c+
iσciσ, U is the on-site Coulomb in-

teraction, tσ is the nearest-neighbor hopping parameter
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and μσ is the chemical potential. The asymmetry pa-
rameter is defined as r = t↓/t↑ with two limits: r = 0
corresponding to the FKM and r = 1 to the HM. We
should note that the AHM is also used for a description
of two-component fermionic mixtures loaded in an opti-
cal lattice [3–5]. In this case, the index σ refers to the
light and the heavy fermionic species, and t↑ �= t↓ implies
fermionic mixtures having mass imbalance.

Dynamical mean field theory (DMFT) has proven to
be a well-established and powerful method to investigate
the physics of strongly correlated electrons on a lattice.
In the DMFT, the original lattice model is mapped onto
a effective Anderson model (SIAM) which describes a
single correlated impurity embedded in an uncorrelated
bath of conduction electrons. The problem is then to find
an appropriate solver for the effective impurity model [6].
Recently, the Mott transition in the AHM has been in-
tensively investigated within the DMFT with different
standard numerical impurity solvers, such as the numer-
ical renormalization group (NRG) [7], the Hirsch-Fye
quantum Monte Carlo algorithm (HF-QMC) and the ex-
act diagonalization method (ED) [8,9]. These numerical
methods are seen to work well for the AHM, but each
method has its limitations and all of them are computa-
tionally expensive, with their applications being strongly
limited by available computer resources [10].
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In this paper, the dynamical mean-field theory and
the equation of motion approach are used to investigate
MIT of the AHM. The critical interaction is obtained an-
alytically as a function of the hopping asymmetry. The
density of states at the Fermi level and the double oc-
cupation for various values of the on-site interaction U
and the hopping asymmetry r are also calculated. Our
results are consistent with those ones obtained from the
DMFT with the HF-QFC and the ED.

II. THEORETICAL FORMULATION

In the DMFT, the Hamiltonian model in Eq. (1) is
mapped onto a self-consistent single impurity model and
is given as

Himp =
∑
kσ

εkσc+
kσckσ +

∑
kσ

(Vkσc+
kσdσ + V ∗

kσd+
σ ckσ)

−
∑

σ

μσndσ + Und↑nd↓, (2)

where dσ and d+
σ are the impurity operators with spin σ

and εkσ is the energy of conduction electrons hybridized
with the impurity by Vkσ. The effective parameters εkσ

and Vkσ enter the hybridization function as

Δσ(ω) =
∑

k

V 2
kσ

ω − εkσ
. (3)

The impurity Green function is mapped onto the on-site
Green function of the original lattice model in Eq. (1) by

Gσ(ω) = Giiσ(ω) =
∫ +∞

−∞

ρ0
σ(z)dz

ω − (z − μσ) − Σσ(ω)
, (4)

where Σσ(ω) is the local self-energy. For the Bethe lattice
with an infinite coordination number

ρ0
σ(z) =

1
2πt2σ

√
4t2σ − z2, (5)

and the self-consistent condition is given by

Δσ(ω) = t2σGσ(ω), (6)

G−1
0σ (ω) = ω + μσ − t2σGσ(ω), (7)

where Gσ(ω) is the local Green’s function of the fermions
with spin σ and G0σ are the bare Green’s functions of
the associated quantum impurity problem.

Decoupling the equations of motion at the second or-
der yields the following approximation for the impurity
Green function:

Gσ(ω) =
1 − nσ̄

ω + μσ − Δσ + UΠ1σ(ω)[ω + μσ − U − Δσ − Π3σ(ω)]−1

+
nσ̄

ω + μσ − Δσ − U − UΠ2σ(ω)[ω + μσ − Δσ − Π3σ(ω)]−1
,

(8)

in which the “self-energies” Πiσ read

Πiσ(ω) =
∫ +∞

−∞
dz Γσ̄(z)

(
1

ω + μσ − μσ̄ − z
+

1
ω + μσ − μσ̄ − U + z

)
Fi(z), (9)

where F1(z) = f(z), F2(z) = 1 − f(z), F3(z) = 1,

with f(z) =
(
exp

( z

T

)
+ 1
)−1

being the Fermi distri-

bution function; Γσ(z) = − 1
π ImΔσ(z + iη) and nσ =∫

dz f(z) ρσ(z). Equations (8)-(9), as far as we know,
were first given in Ref. 11 and were employed to study
the conductance through a quantum dot. Our study
is restricted to the paramagnetic case at half-filling:
μ↑ = μ↓ = U/2 and n↑ = n↓ = 1/2. Due to the particle-
hole symmetry, getting

Π1σ(ω) = Π2σ(ω) =
Π3σ(ω)

2
= Δσ̄(ω) (10)

is simple. Inputting these conditions into Eq. (8), we
obtain

Gσ(ω) =
1
2

1
G−1

0σ (ω) + U Δσ̄(ω)[G−1
0σ − U − 2Δσ̄(ω)]−1

+
1
2

1
G−1

0σ (ω) − U − U Δσ̄(ω)[G−1
0σ − 2Δσ̄(ω)]−1

. (11)

Together with Eqs. (6) and (8), this leads to a pair of
algebraic equations for Gσ(ω) (σ =↑, ↓):

t4σG3
σ + 2t2σt2σ̄G2

σGσ̄ − 2ωt2σG2
σ − 2ωt2σ̄GσGσ̄

+
(

ω2 − U2

4
+ t2σ

)
Gσ + 2t2σ̄Gσ̄ − ω = 0. (12)
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Equations (12) for G↑(ω), G↓(ω) are exact in the limit
r = 0 corresponding to the FKM [12] and are known as
the (full) Hubbard III approximation of the HM in the
limit r = 1 [13,14].

Let us now derive the analytic expression of the critical
value UC of the Mott transition in the half-filled AHM.
We denote g↑(ω) = t↑G↑(ω), ω̃ = ω/t↑, Ũ = U/t↑, and
r = t↓/t↑. Then from Eqs.(12), we obtain

g↓(ω) =
g3
↑(ω) − 2ω̃g2

↑(ω) +
(
ω̃2 − Ũ

4 + 1
)

g↑(ω) − ω̃

2r2
(
ω̃g↑(ω) − g2

↑(ω) − 1
) ,

(13)

g↑(ω) =
r4g3

↓(ω) − 2r2ω̃g2
↓(ω) +

(
ω̃2 − Ũ

4 + r2
)

g↓(ω) − ω̃

2
(
ω̃g↓(ω) − r2g2

↓(ω) − 1
) .

(14)

Due to the particle-hole symmetry ρσ(ω) = ρσ(−ω) and
the spectral theorem Gσ(ω) =

∫
dxρσ(x)

ω−x , clearly that
g↓(0) and g↑(0)) are pure imaginary at the Fermi level
ω = 0. We denote g↓(0) = iα and g↑(0) = iβ, with α
and β being real; then, we insert them into Eqs. (13) and
(14) to yield a pair of equations:

− 2r2α(−β2 + 1) = β

(
−β2 + 1 − Ũ

4

)
, (15)

− 2β(−r2α2 + 1) = α

(
−r4α2 + r2 − Ũ

4

)
. (16)

The metallic state ceases to exist when the density of
states at the Fermi level ρσ(0) → 0, i.e., α → 0 and
β → 0 as U → UC . By excluding limU→UC

α
β from this

pair of equations, we finally have a biquadratic equation
for ŨC with the solution

UC =
[
2
(
t2↑ + t2↓ +

√
t4↑ + t4↓ + 14t2↑t

2
↓
)] 1

2
. (17)

The above expression for UC was obtained in Ref. 15 by
using the projecting technique on the basis of fermionic
Hubbard operators. Here, we reproduce it in a simple
manner, and we will discuss this result in the next sec-
tion.

III. NUMERICAL RESULTS AND
DISCUSSION

We numerically solve the self-consistent equations,
Eqs. (6)-(11), to determine the selfenergy and the Green
function. The algorithm is summarized as follows: Be-
ginning with an initial selfenergy guess Σσ(ω), we obtain
the local Green function Gσ(ω) from Eq. (4). Inputting
the selfenergy and the local Green function calculated

Fig. 1. (Color online) DOS for spin up and spin down for
r = 0.4. Top panel: a metallic state for U = D; Middle panel:
MIT occurs at U = 1.22D; Bottom panel: an insulator state
for U = 2D (the half bandwidth with spin up D = 2t↑).

in the previous step into Eqs.(6), (7), and (11), we
can calculate a new Green function Gσ(ω). Finally, a
new selfenergy Σσ(ω) is determined by using the Dyson
equation

Σσ(ω) = G−1
0σ (ω) − G−1

σ (ω). (18)

This procedure is iterated until convergence is reached.
In actual numerical calculations, if the positive infinites-
imal number η is too small, the convergence is never
reached. Thus η must have a finite small value (should
be in range from 10−3 to 10−2) to make the iterations
converge. After that, to get sharp pictures for the den-
sity of states, which is important to determine the critical
value UC for the metal-insulator transition, we use the
spline extrapolation to reach the limit η → 0.

We now turn to the numerical results. Hereafter, we
take the half bandwidth with spin up D = 2t↑ as the
energy unit, zero temperature and η = 0.001 in the nu-
merical calculations. Figure 1 shows the density of states
(DOS) for each spin species for three values of the on-site
Coulomb interaction U and r = 0.4. Here, the symmetry
of the DOS reflects particle-hole symmetry in the half-
filled system. When U = D, the DOSs for both spin
species at the Fermi level (ω = 0) are nonzero, which
indicates that system is in a metal state. In contrast,
when U = 2D, the DOSs for both spin species show a
gap around ω = 0, indicating an insulating phase. The
Mott transition in the system occurs at U = 1.22D.

Because the DOS at the Fermi level indicates the con-
duction properties of the system, we calculate this value
and show it in Fig. 2. One can see that both ρσ(0) simul-
taneously vanish in the strong coupling region. We note
that because of the continuous nature of the transition,
identifying the precise value of the critical interaction
is difficult. In the case of r = 0.4, by using a simple
spline extrapolation from the data for U < 1.1D, we ob-
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Fig. 2. (Color online) DOS at the Fermi level as a function
of the on-site Coulomb repulsion for various values of r.

Fig. 3. Total DOS ρ(0) = ρ↑(0)+ρ↓(0) at the Fermi level as
a function of the on-site Coulomb repulsion for r = 0.4. The
value of the critical interaction UC obtained by extrapolating
U < 1.1D data is also indicated.

tain UC/D ≈ 1.22, which is shown in Fig. 3. Repeating
this with many different values of r, we get the criti-
cal interaction as a function of r, which is presented in
Fig. 4 and is almost identical with the analytic result of
Eq.(17) over the whole r range. The calculated result
for Uc is exact in the limit r = 0 for the Falikov-Kimball
model (UC/D = 1) [12]. For r = 1, the equation of mo-
tion approach presented here is known as the Hubbard
III approximation, and it displays a Mott transition at
UC/D =

√
3 for the Bethe lattice [14].

Next, in order to establish a link between the behav-
ior of the model and the physical observable accessible
in cold atom systems on optical lattices, we calculate
the double occupation < n↑n↓ >. The numerical re-
sults are plotted in Fig. 5 for various values of U and
r. As in Ref. [8], in the noninteracting case (U = 0),
the double occupation is 0.25, and it quickly decreases

Fig. 4. (Color online) Critical interaction as a function of
r. The dashed line corresponds to numerical results, and the
solid line corresponds to the results obtained by using the
analytic expression in Eq. (17).

Fig. 5. (Color online) Double occupation < n↑n↓ > as a
function of U for different fixed values of r.

when U increases. A metal is characterized by a lin-
ear decrease in the double occupation with increasing
interaction U while in the insulating region, at a larger
value of the interaction, the double occupation remains
small and weakly depends on U . As one might expect, at
smaller values of r, the double occupation more rapidly
decreases, and the value of the critical interaction is re-
duced.

IV. CONCLUSIONS

In summary, we have used the equation of motion ap-
proach as an impurity solver for the DMFT to investigate
the MIT in the AHM at half-filling. The technique has
been implemented directly on the real-frequency axis,
which turns out to be computationally efficient. In ad-
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dition, it allows an explicit expression for the critical
interaction in the system to be obtained as an increasing
function of the hopping asymmetry. We also numerically
computed the DOS at the Fermi level and the double
occupation that may permit the experimental identifi-
cation of this remarkable physical behavior. The main
results have been compared with the results obtained by
using the exact diagonalization and the quantum Monte
Carlo techniques and were found to be in good agree-
ment. This work demonstrates that the equation of mo-
tion approach is a simple, but reliable, impurity solver
for studying the MIT in the AHM. With a suitable de-
coupling scheme, this approach can also be applied to
the AHM with charge and spin orders. This is left to a
future work.
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