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We study the half-filled asymmetric Hubbard model within the two-site dynamical mean field theory. At
zero temperature, explicit expressions of the critical interaction Uc for the Mott transition and the local
self-energy are analytically derived. Critical behavior of the quasiparticle weights and the double occu-
pancy are obtained analytically as functions of the on-site interaction U and the hopping asymmetry r.
Our results are in good agreement with the ones obtained by much more sophisticated theory.
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1. Introduction

The Mott metal–insulator transition (MIT) is a fundamental
problem in the theory of strongly correlated electron systems.
Theoretical works on the MIT have mainly focused on the Hubbard
model (HM) and the Falikov–Kimball model (FKM) [1–3]. The
natural connection between these two models is the asymmetric
Hubbard model (AHM), where each spin species has a different
hopping amplitude and a different value of the chemical potential.
The Hamiltonian of the model is

∑ ∑ ∑μ= − ( + ) − +
( )σ

σ σ σ
σ

σ σ
〈 〉

+
↑ ↓H t c c n U n nH. c. ,

1ij
i j
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i
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,

where ( )σ σ
+c ci i annihilates (creates) an electron with spin s at site i,

=σ σ σ
+n c ci i i . μσ σt, and U denote the chemical potential, the nearest

neighbor hopping parameter and the on-site Coulomb repulsion,
respectively; the asymmetry parameter is defined as = ↓ ↑r t t/ . The
limits r¼0 and r¼1 correspond to the FKM and the HM, respec-
tively. It should be noted that the AHM is also used for a de-
scription of two-component fermionic mixtures loaded in an op-
tical lattice [4–6]. In this case the index s refers to the light and the
heavy fermionic species, ≠↑ ↓t t implies fermionic mixtures having
mass imbalance.

The dynamical mean field theory (DMFT), which becomes exact
in the limit of infinite spatial dimensions, has been developed for
the physics of strongly correlated electron systems. In the DMFT,
g).
the original lattice model is mapped onto an effective single im-
purity Anderson model (SIAM) embedded in an uncorrelated bath
of conduction electrons. The problem is then to find an appro-
priate solver for the effective impurity model and for this problem
various methods employed for an essentially exact solution al-
ready exist [7–9]. Recently, the DMFT with different standard
numerical impurity solvers, the numerical renormalization group
(NRG), the Hirsch–Fye quantum Monte Carlo algorithm (HF-QMC)
and the exact diagonalization method (ED), has been used to study
the phase diagram of the AHM [10–12]. Various physical proper-
ties of this system, in particular, the paramagnetic phase diagram
of the model as a function of temperature, the interaction and the
hopping asymmetry were obtained. It can be seen that these nu-
merical methods work well for the AHM, but they cost a lot of CPU
time and resources, even if the system is half-filled and the che-
mical potential is known analytically. In addition, it is very difficult
to obtain the critical behavior of the MIT numerically as the quasi-
particle peak become very sharp in the vicinity of the MIT. It is
thus important to find an approach that does not require much
computational effort and gives a correct qualitative picture of the
MIT in the asymmetric Hubbard model, including its critical
behavior.

The two-site DMFT was proposed by Potthoff [13], who showed
that a minimum realization of the DMFT is achieved by mapping a
correlated lattice model onto an impurity model that consists of
two sites, one for the impurity and one for the bath of conduction
electrons. This method provides a simple and attractive technique
to obtain fairly good results for the Mott transition and the Fermi
liquid phase in the single band HM. The two-site DMFT was also
successfully applied for studying the critical behavior of the MIT in
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the single- and the two-band Hubbard model [14–16]. Here we
study the half-filled asymmetric Hubbard model within the two-
site DMFT. The aim of the present paper is two-fold. First, we show
that the two-site DMFT is able to catch the physics of the Mott
transition and the Fermi liquid phase in the half-filled AHM. The
second aim of this paper is to study the critical behavior of the
quasi-particle weights and the double occupancy near the Mott
transition. As far as we know, in the present literature there are
two well-known simple approximations, the coherent potential
approximation (CPA) [3,17] and the two-site DMFT [13], are well
suited for studying the MIT in the symmetric HM and FKM, i.e. in
the limiting cases of the AHM. However, the CPA has failed to be a
successful theory for the asymmetric Hubbard model as pointed
out in Ref. [18]. Therefore, the consideration of the reliability of the
two-site DMFT for the AHM is necessary and far from trivial. The
structure of the paper is as follows. In Section 2 we present the
theoretical formulation. In Section 3 we calculate the critical in-
teraction, the quasi-particle weight, the double occupancy and
compare with the full DMFT. The critical behavior near the Mott
MIT is obtained and discussed in Section 4. Finally, the conclusions
are presented in Section 5.
2. Theoretical formulation

In the DMFT, the Hamiltonian model (1) is mapped onto an
effective single impurity Anderson model
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where σd and σ
+d are the impurity operators with spin s and ε σk is

the energy of conduction electrons hybridized with the impurity
by σVk . The effective parameters ε σk and σVk enter the hybridization
function as
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The on-site Green function for the lattice model (1) is given by
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where Σ ω( )σ is the local self-energy. For the Bethe lattice with an
infinite coordination number, we use the semicircular bare density
of states
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for which the self-consistent condition has the simple form

Δ ω ω( ) = ( ) ( )σ σ σt G . 62

In the two-site DMFT, the hybridization function (3) can be re-
presented by a single pole at ω = 0

Δ ω
ω

( ) = ( )σ
σV
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2

The AHM with Eq. (7) corresponds to the following two-site An-
derson model:
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Here for the symmetric case of half-filling μ μ= = =↑ ↓n U1, /2, we
choose ε ε− =σ σ U/2c d to ensure the first self-consistency equation
=n nimp. The hybridization σV has to be determined from the

second self-consistency equation:

= ( )σ σ σV Z t , 92 2

where σZ is the residue of the Green function ω( )σG near ω = 0 and
has the meaning of the quasi-particle weight.

At zero temperature, the two-site model (8) is solved analyti-
cally to obtain the impurity Green function with the form (see
Appendix A)
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where the residues σzi and energy poles ε σi are (up to second order
in σ = ↑ ↓σV U/ , , )
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When →↑ ↓V V, 0, low energy poles merge together at ε± ≈σ 02
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Combining (9) and (15) yields two linear equations for ↑ ↓V V,
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Their determinant must vanish when → +U Uc , signaling a metallic
phase. Therefore, the critical value for the MIT is given by

= + + + + ( )↑ ↓ ↑ ↓ ↑ ↓U t t t t t t14 . 18c
2 2

The above expression of Uc is equivalent to Eq. (11) in Ref. [10],
keeping in mind that in [10] = ( + )D D D /2h l . Setting = =↑ ↓t t t in
(18), this yields =U t6c and we reproduce the result of the HM
obtained from the linearized DMFT by Bulla and Potthoff [14]. We
also note that our result clearly improves on those of the gen-
eralized Hubbard-III approximation in Ref. [18].

The two-site DMFT is not restricted to the critical point =U Uc

but it is able to get a consistent description of the metallic Fermi
liquid for weak coupling. For the paramagnetic case at half-filling,
the self-energy of the two-site model (8) can be calculated ana-
lytically

Σ ω ω
ω

( ) = +
− ( + ) ( )σ

σ σ̄

U U
V V2 4 2

.
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Then the quasi-particle weight is given by
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Together with Eq. (9) this forms a set of equations to determine σV
and σZ . In particular, for the symmetric case r¼1 this leads to

= = −
( )

↑ ↓Z Z
U
U

1 ,
21c
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2

which is qualitatively agreement with the full DMFT and improves
on the result of the Gutzwiller method [19].

Knowledge of the impurity Green function (10) also allows us
to calculate the double occupancy

=
( + )

( )
↑ ↓d

V V
U

2
. 22

2

2

Note that the results (19)–(22) are obtained up to second order in
σ = ↑ ↓σV U/ , , .
Fig. 2. Quasi-particle weight σZ at the Fermi level as a function of the total band
filling = +↑ ↓n n n for r¼0.4 with some different values of the interaction strength
U D/ .
3. Comparison with the full DMFT

Here we estimate the reliability of the two-site DMFT by
comparing the results of the critical interaction, the quasi-particle
weight and the double occupancy with the ones obtained from the
full DMFT [11].

By putting =↓t 0, expression (18) gives the exact result
= =↑U t D2c (with D the half-width of the semicircular density of

states) for the Falikov–Kimball model on the Bethe lattice. For
r¼0, the AHM reduces to the FKM, and the two-site DMFT calcu-
lation gives exact value of critical interaction, =U DC . For < ≤r0 1,
the analytical results for Uc of the two-site DMFT (18) are com-
pared with the result of numerical solutions of the full DMFT [11]
in Fig. 1. As was noted in Ref. [11], the AHM at low T qualitatively
behaves as the HM and has two critical Mott transition boundaries
Uc1 and Uc2 that define a region of coexistence of metallic and
insulating solutions. In addition, the Mott MIT occurs at =U Uc2 as
a continuous transition at T¼0. In this paper, we consider only the
Mott MIT at zero temperature, therefore we will compare our re-
sults with the critical value Uc2 from Ref. [11]. The result from the
two-site DMFT is in very good agreement with the full DMFT re-
sults over the whole r range. In addition, for r¼1, from Eq. (18), the
Mott transition occurs at =U D3c and this result is also very close
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Fig. 1. Critical interaction U D/c in the half-filled AHM at zero temperature as a
function of the hopping asymmetry r: a comparison between the two-site and the
full DMFT results in Ref. [11].
to the result of the projective self-consistent method [20],
=U D2.92c , and to the result of the numerical renormalization

group calculation [21], =U D2.94c .
We plot in Fig. 2 the quasi-particle weight σZ at the Fermi level

as a function of the total band filling = +↑ ↓n n n for r¼0.4 with
some different values of the interaction strength U D/ . For total
band filling n¼0 (or 2), = =↑ ↓Z Z 1 because the interaction U has
no effect on empty (full) band. Whereas for < <n0 2, the light
(spin up) and the heavy (spin down) particles are renormalized by
the interaction U, especially when the system is half-filled, i.e.
n¼1. The renormalization of the light and the heavy particles
depends on the total band filling n. If n is close to 0 (or 2), we
obtained that <↓ ↑Z Z . It is expected as heavy fermions are more
sensitive to the correlations. When the system is half-filled,
however, it is essentially opposite, i.e. >↓ ↑Z Z . The latter can be
understood because when the system is half-filled (or close) and
the correlation is strong enough, we are forced to move the heavy
fermions as soon as we move the light ones. It is due to the fact
that at half-filling and the correlation is strong the double occu-
pation is small, as noted in [10]. For more detailed explanation on
the anomalous effect of the quasiparticle weights, i.e. >↓ ↑Z Z , we
refer the reader to Ref. [10]. We now discuss only the half-filled
case. The obtained results for the quasi-particle weight of both
spin spices with r¼0.4 are shown in Fig. 3. Although the two-site
DMFT overestimates the quasi-particle weight in the whole U
range, as in [10,11] we find that electrons with smaller hopping
have a larger quasi-particle weight (i.e., they are less re-
normalized). In addition, the quasi-particle weights vanish si-
multaneously at the critical point Uc. Next, we also compute the
double occupancy 〈 〉↑ ↓n n which is a characteristic quantity of the
Mott insulating state, and compare with those obtained by the full
DMFT. The numerical results for r¼0.4 and r¼1 are plotted in
Fig. 4. In non-interacting case ( = )U 0 , the double occupancy is
quarter since the empty, single occupied and double occupied
states are equally realized. Introducing the interaction, the quan-
tity of both methods rapidly decreases until <U Uc, indicating a
metallic region. For >U Uc , while the double occupancy of the full
DMFT remains low and weakly U-dependent, this quantity of the
two-site DMFT equals zero. We will take this up in the next
section.

4. Critical behavior near the Mott transition

We discuss the critical behavior of the quasi-particle weight
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and the double occupancy in the vicinity of the Mott transition at
half-filling in the AHM. To this end, we need the result of the
quasi-particle weight up to fourth order in V (see Appendix A):

= ( + ) − ( + ) + ( + )
( )σ

σ σ σ σ σ σ σ¯ ¯ ¯Z
V V

U
V V V V V
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. 23
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Substituting σ σ λ= ↑ ¯ = ↓ =↓ ↑V V, , in (23), after some algebra we
obtain

γ( ) = ( )( − ) ( )↑ ↑Z r U r U U, 1 / , 24c

near Uc for <U Uc. Here the coefficient γ ( )↑ r is obtained analytically
as a function of r
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Similarly, near Uc for <U Uc one has
γ( ) = ( )( − ) ( )↓ ↓Z r U r U U, 1 / , 27c
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Combining (9), (22), (24) and (27) this also yields the result for the
double occupancy near Uc for <U Uc

γ( ) = ( )( − ) ( )d r U r U U, 1 / , 29d c
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For the symmetric case r¼1 we obtain γ γ= =↑ ↓
18
11

are the same values
as those for the Hubbard model obtained in Ref. [15]. This analytic
result is smaller than γ = 2 obtained from the Brinkman–Rice ap-
proach [19], but larger than γ = ±0.9 0.15 from projective self-con-
sistent method [20]. To our knowledge, a precise value of γ is not
obtained for the present. For < <r0 1 since >λ 1

r
, from (28) it follows

that γ γ( ) < ( )↑ ↓r r which consistent with <↑ ↓Z Z as previously in-
dicated. In addition, from (25) and (26) it can be verified that

=
γ γ λ

λ
λ( )↑ ↑d

dr

d

d
d
dr

is positive, consequently γ ( )↑ r is a monotonically in-
creasing function of r. Indeed, for a fixed ↓t with increasing ↑r U t, /c

increases, then, γ ( )↑ r increases due to the increasing correlation effect.
Similarly, for a fixed ↑t with increasing ↓r U t, /c decreases, then, γ ( )↓ r
decreases due to the decreasing correlation effect. As a result, we
obtain γ γ< ( ) < < ( ) <↑ ↓r r2

3
18
11

8
3
for < <r0 1. It has been established

that in the Hubbard model the quasi-particle weight Z vanishes line-
arly at Uc [22]. Here for the first time we find that near Mott transition
the quasi-particle weights ↑Z and ↓Z in the AHM with ≠r 0 qualita-
tively behaves as Z in the HM. Furthermore, the coefficient γ γ( )( ( ))↑ ↓r r
is a monotonically increasing (decreasing) function of r.

Concerning the behavior of the double occupancy near Uc, the
two-site DMFT result γ ( ) =1 4/11d in quantitative agreement with
the Brinkman–Rice result γ = 0.25d in the HM. Furthermore, our
γ ( )rd is weakly r-dependent. However, as noted in [22], due to local
charge fluctuations d(U) is very small but nonzero even in the
insulating phase. In the HM, the numerical results close to Uc can
be written as [22]

( ) ≈ + ( − ) ( )d U U U0.015 0.235 1 / . 31c

This indicates that the two-site DMFT misses these local fluctua-
tions, but it correctly captures a singular contribution to the
double occupancy that vanishes linearly at Uc. Hence, there is
reason to believe that within the two-site DMFT the trends in the
metallic phase correct on the mean-field level.
5. Conclusions

In summary, we have applied the two-site DMFT to study the
Mott–Hubbard metal–insulator transition in the half-filled AHM at
zero temperature. Explicit expressions of the critical interaction Uc

for the Mott transition and the local self-energy are analytically
derived. It has been demonstrated that the critical interaction of
the MIT in the whole range of the hopping asymmetry r obtained
from this approach is in very good agreement with most accurate
numerical estimates. We also numerically computed the quasi-
particle weight at the Fermi level, the double occupancy as func-
tions of the on-site interaction U for various values of r and
characterize their behavior. Comparing between the two-site and
the full DMFT concerning the above quantities, we have shown
that, in contrast to the CPA, the two-site DMFT gives satisfactory
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results for the Mott transition and the Fermi liquid phase in the
considered model with a minimum computational effort. The
critical behavior of the quasi-particle weights and the double oc-
cupancy in the vicinity of the MIT was calculated analytically as
functions of U and r. For the symmetric case r¼1 we obtain that
the coefficients γ γ γ= = =↑ ↓ , 4/11d

18
11

are the same values as those
for the Hubbard model obtained in Ref. [15]. In the general case,
γ γ( )( ( ))↑ ↓r r is found to be a monotonically increasing (decreasing)
function of r.

The calculation presented here can also be applied to the AHM
on other lattices or/and to the AHM with charge and spin orders. It
is also interesting to apply the two-site DMFT to study the critical
behavior of a doped Mott insulator near the MIT of the AHM. This
is left to a future work.
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Appendix A

Here we solve the two-site Anderson model (8) in the limit
→σV 0. At half-filling, we choose ε =σ 0c and ε Δ= − ≡ −σ U/2d to

ensure the number of d electrons n¼1. We follow the procedure
described in Ref. [15] to make the calculation to fourth order in σV .

The one-electron eigenstates
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Similarly, the three-electron (one-hole) eigenenergies and the
corresponding eigenstates are
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For the two electron states, we use the following basic set:
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The eigenenergies are given by the solutions of the equation

Δ
Δ

− −
− − −

−
− −

=

( )

+ +

− −

+ −

+ −

E V V
E V V

V V E
V V E

0
0

0
0

0,
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where = ( ± )±
↑ ↓V V V / 2 . The ground state eigenenergy and the

corresponding singlet ground state is

Δ
Δ Δ

= − −
( + )

+
( + )

( )
↑ ↓ ↑ ↓E

V V V V
, 470

2 4

3

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

∑ ϕ α ϕ
Δ Δ

ϕ

Δ Δ
ϕ

| 〉 = | 〉 = | 〉 −
+

−
( + )

| 〉

−
+

−
( + )

| 〉
( )

=

↑ ↓ ↑ ↓

↑ ↓ ↑ ↓

E a
V V V V

V V V V

2
1

2
1 ,
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j
j j0

1

4

0 0 1

2

2 3

2

2 4

with

α
Δ Δ

= −
( + )

+
( + )

( )
↑ ↓ ↑ ↓V V V V

1 3 . 490
2

2

2

4

4

When a ↑d electron is removed from the ground state | 〉E0 , there
are two possible final states: | 〉↓+E and | 〉↓−E . Correspondingly, there
are two possible single-hole excitations with energies,

Δ
Δ Δ

ε− = +
+ ( + )

−
+ ( + )

≡ − ( )↓+
↓ ↑ ↓ ↓ ↑ ↓

↑E E
V V V V V V

, 500

2 2 4 4

3 1

Δ Δ
ε− =

( + ) −
+

− ( + )
≡ − ( )↓−

↑ ↓ ↓ ↓ ↑ ↓
↑E E

V V V V V V
. 510

2 2 4 4

3 2

The transition probabilities are calculated as

Δ Δ
|〈 | | 〉| = −

( + )
+

( + ) + ( + )

≡ ( )

↓+ ↑
↓ ↑ ↓ ↑ ↑ ↓ ↑

↑

E d E
V V V V V V V

z

1
2

2
2

2 2 2
2

, 52

0
2

2

2

4 2 2

4

1

Δ Δ
|〈 | | 〉| =

( + )
−

( + ) + ( + )
≡ ( )↓− ↑

↓ ↑ ↓ ↑ ↑ ↓ ↑
↑E d E

V V V V V V V
z

2
2

2 2 2
2

, 530
2

2

2

4 2 2

4 2
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to fourth order in σV .
When a ↑d, electron is added to the ground state | 〉E0 , possible

final states are | ¯ 〉−E and | ¯ 〉+E . Correspondingly, there are two pos-
sible single-particle excitations with energies,

Δ Δ
ε ε¯ − =

( + ) −
+

− ( + )
≡ = − ( )↓−

↑ ↓ ↓ ↓ ↑ ↓
↑ ↑E E

V V V V V V
, 540

2 2 4 4

3 3 2

Δ
Δ Δ

ε ε¯ − = +
+ ( + )

−
+ ( + )

≡ = − ( )↓+
↓ ↑ ↓ ↓ ↑ ↓

↑ ↑E E
V V V V V V

, 550

2 2 4 4

3 4 1

to fourth order in σV . The transition probabilities are calculated as

Δ Δ
|〈 ¯ | | 〉| =

( + )
−

( + ) + ( + )
≡

= ( )

↓− ↑
+ ↓ ↑ ↓ ↑ ↑ ↓ ↑

↑

↑

E d E
V V V V V V V

z

z

2
2

2 2 2
2

, 56

0
2

2

2

4 2 2

4 3

2

Δ Δ
|〈 ¯ | | 〉| = −

( + )
+

( + ) + ( + )

≡ = ( )

↓+ ↑
+ ↓ ↑ ↓ ↑ ↑ ↓ ↑

↑ ↑

E d E
V V V V V V V

z z

1
2

2
2

2 2 2
2

, 57

0
2

2

2

4 2 2

4

4 1

to fourth order in σV . From Eqs. (50)–(57), we obtain the ↑d -elec-
tron Green function which has four poles:

⎛
⎝⎜

⎞
⎠⎟∑ω

ω ε ω ε
( ) =

−
+

+ ( )
↑

=

↑

↑

↑

↑
G

z z
.

58i

i

i

i

i1,2

When →↑ ↓V V, 0, low energy poles merge together at ε± ≈↑ 02 with
the total residue =↑ ↑Z z2 2 :

Δ Δ
=

( + )
−

( + ) + ( + )
( )↑

↓ ↑ ↓ ↑ ↑ ↓ ↑
Z

V V V V V V V2
2

2 2 2
2

, 59

2

2

4 2 2

4

to fourth order in σV . The ↓d -electron Green function, ω( )↓G , is
obtained by making replacement σ σ↔ ¯ in Eqs. (50)–(58).
Consequently, one has

Δ Δ
=

( + )
−

( + ) + ( + )
( )↓

↑ ↓ ↑ ↓ ↓ ↑ ↓
Z

V V V V V V V2
2

2 2 2
2

. 60

2

2

4 2 2

4

By using (48), the double occupancy, = 〈 | | 〉↑ ↓d E n n Ed d0 0 , to fourth
order in V is

⎛
⎝⎜

⎞
⎠⎟Δ Δ

=
( + )

−
( + )

( )
↑ ↓ ↑ ↓d

V V V V
2

1 3 .
61

2

2

2

2

The number of d electron, = ∑ =σ σ=n z 1i i1,2; as expected for the
half-filled case.
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