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The masses and signals of the production of doubly charged Higgses (DCH) in the framework
of the supersymmetric reduced minimal 3-3-1 model are investigated. In the DCH sector, we
prove that there always exists a region of the parameter space where the mass of the lightest
DCH is of the order of O(100)GeV even when all other new particles are very heavy. The
lightest DCH mainly decays to two same-sign leptons while the dominant decay channels of the
heavy DCHs are those decaying to heavy particles. We analyze each production cross section for
e+e− → H++ H−− as a function of a few kinematic variables, which are useful to discuss the
creation of DCHs in e+e− colliders as an indicator of new physics beyond the Standard Model.
A numerical study shows that the cross sections for creating the lightest DCH can reach values
of a few pb. The other two DCHs are too heavy, beyond the observable range of experiments.
The lightest DCH may be detected by the International Linear Collider or the Compact Linear
Collider by searching for its decay to a same-sign charged lepton pair.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The detection of the Higgs boson, with a mass around 125 GeV, by experiments at the Large Hadron
Collider (LHC) [1–4] has again confirmed the success of the Standard Model (SM). However, this
model needs to be extended to cover other problems that cannot be explained in this framework, par-
ticularly small neutrino mass and mixing, dark matter (DM), asymmetry of matter and antimatter,
etc. Theories that lie beyond the SM not only solve the SM problems but also predict the signals
of new physics that can be searched for in the future. Many well known models beyond the SM
have Higgs spectra containing doubly charged Higgses (DCHs), e.g., the left–right model [5–7], the
Zee–Babu model [8,9], the 3-3-1 models [10–13], etc, and their supersymmetric versions [14–21].
The appearance of the DCHs will really be one of the signals of new physics. Hence, there have been
a number of publications predicting this signal in colliders such as the LHC, International Linear Col-
lider (ILC) [22,23], and Compact Linear Collider (CLIC) [24,25]. Recent experimental searches for
the DCHs have been done at the LHC [26–29], through their decays into a pair of same-sign charged
leptons. This decay channel has been investigated in many of the above models: the left–right sym-
metric model [30,31] and the supersymmetric version [32], and the 3-3-1 models [33,34]. On the
other hand, some other SM extensions, including Higgs triplets, have shown that the DCHs may
have main decay channels of H±± → W ±W ± [35,36], or H±W ± [37], leading to lower bounds of
DCH masses than those obtained by searching for DCH decay into leptons. It is noted that the Higgs
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sectors in the supersymmetric (SUSY) models seem to be very interesting because they do not con-
tain unknown self-couplings of four Higgses in the superpotential, unlike the case of non-SUSY
models, where these kinds of couplings directly contribute to the Higgs masses. As a consequence,
some Higgses will get masses mainly from the D-term, namely, from the electroweak breaking scale,
leading to values of Higgs masses being of the order of O(100)GeV at the tree level. This happens
in SUSY models such as the minimal supersymmetric standard model (MSSM) and supersymmetric
versions of the economical 3-3-1 (SUSYE331) and reduced minimal 3-3-1 (SUSYRM331) models
[20,21,38]. It has been shown that there is at least one neutral CP-even Higgs inheriting a tree-level
mass below the mass of the Z boson, m Z = 92 GeV. Fortunately, the loop-correction contributions
increase the full mass of this Higgs up to the recent experimental value. This suggests that some
other Higgses may be light with masses of the order of O(100)GeV. In the MSSM, this cannot hap-
pen if soft parameters such as the bμ term, related to the mass of the neutral CP-odd Higgs, are
large. Other SUSY versions, such as the 3-3-1 models, are different because of the appearance of
the SU(3)L scale apart from the SUSY scale. For SUSYE331, the parameters characterizing these
two scales may cancel each other to create the light mass of the lightest singly charged Higgs [38].
In this work, we will investigate the DCHs in SUSYRM331 and prove that there may exist a light
DCH, even if both the soft and SU(3)L parameters are very large. Apart from inheriting the lepton
number two, this light DCH is also lighter than almost all of the new particles in the model, and
therefore will decay mainly to a same-sign lepton pair. So the possibility of detection of the light-
est DCH will increase at colliders such as the LHC, ILC, and CLIC. In the left–right symmetric
model, the cross sections for DCH creation at the LHC are predicted below 5 fb for mass values
greater than 200 GeV. In the SUSY left–right model, they are estimated below 10 fb with a colli-
sion energy of 14 TeV at LHC [30] and a DCH mass smaller than 450 GeV. The cross sections for
the DCH creation will decrease if their masses increase. In the framework of the 3-3-1 model, the
cross sections for creating DCHs can reach a value smaller than 102 fb in e+e− colliders [33,34].
Our work will concentrate on the signals of detecting DCHs at the ILC and CLIC because of their
very high precision. In addition, the collision energies of the ILC and CLIC are smaller than that of
the LHC but the total cross sections for creating DCHs at the ILC and CLIC are larger than those at
the LHC.

Let us remind ourselves of the reason for studying 3-3-1 models. The 3-3-1 models not only con-
tain the great success of the SM but can also solve many problems of the SM. In particular, the
3-3-1 models can provide small neutrino masses as well as candidates for the DM [39,40]. The
decays of some new particles can solve the matter–antimatter asymmetry via leptogenesis mech-
anisms [41–43]. The 3-3-1 models can connect to the cosmological inflation [41–43]. In addition,
the 3-3-1 models [10,11,13,44–49] have many intriguing properties. In order to make the models
anomaly free, one of the quark families must transform under SU(3)L in a different way from the
other two. This leads to a consequence that the number of fermion generations has to be a multiple
of the color number, which is three. In combination with the QCD asymptotic freedom requiring
the number of quark generations to be less than five, the solution is exactly three for the number of
fermion generations required. Furthermore, the 3-3-1 models give a good explanation of the electric
charge quantization [50–54].

It is to be noted that the unique disadvantage of the 3-3-1 models is the complication in the Higgs
sector, which reduces their predictability. Recently, there have been some efforts to reduce the Higgs
contents of the models. The first successful attempt was with the 3-3-1 model with right-handed
neutrinos [44–49], giving a model with just two Higgs triplets. The model is called the economical
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3-3-1 model [55–57]. A similar version to the minimal 3-3-1 model with a Higgs sector contain-
ing three triplets and one sextet is the reduced minimal 3-3-1 model with again just two Higgs
triplets [12,58]. However, to give masses to all fermions in the 3-3-1 models with the minimal Higgs
sector, one has to introduce effective couplings that are nonrenormalizable. On the other hand, by
investigating the one-loop β-function in the minimal 3-3-1 model and its supersymmetric version,
we can predict the existence of Landau poles that make these theories lose their perturbative char-
acter. In order to solve this problem, the cut-off � � O(1)TeV should be implied [59,60]. For the
nonsupersymmetric version, the upper bound of� < 5 TeV seems inconsistent with recent data from
precision tests [61,62]. As a solution to this problem, the SUSY version predicts a less restrictive
upper bound. Additionally, the ρ parameter, one of the most important parameters for checking the
precision test at low energy [63,64], still satisfies the current data if SUSY contributions are con-
sidered [65]. In any case, discussions on the non-SUSY version predict that the valid scale of the
SUSYRM331 should be large, resulting in very heavy masses for the new particles, except a light
neutral CP-even Higgs and maybe the lightest DCH. Therefore, apart from the light neutral Higgs,
which can be identified with the one observed at LHC recently, the lightest DCH is the only one that
may be observed by recent experiments.

Once again, we would like to emphasize that the RM331 model contains the minimal number of
Higgses; the first way to generate consistent masses for fermions is to introduce effective operators
working at the TeV scale [21,66]. Besides that, in the SUSY versions the fermion masses can be
generated by including radiative corrections through the mixing of fermions and their superpart-
ners [20,67,68]. Of course, in this case, the well known R parity has to be broken. Based on these
results, many supersymmetric versions have been built and studied, such as SUSYE331 [69–72],
SUSYRM331 [20,21], etc. One of the intriguing features of supersymmetric theories is that the Higgs
spectrum is quite constrained.

Our paper is organized as follows. In Sect. 2, we will briefly review the SUSYRM331 model, par-
ticularly concentrating on the Higgs and gauge boson sectors and their effect on the ρ parameter,
which may indirectly affect the lower bound of the SU(3)L scale. Furthermore, some important and
interesting properties of SUSYRM331 are discussed, e.g., (i) the soft and SU(3)L parameters should
be of the same order; (ii) the model contains a light neutral CP-even Higgs with the values of the
squared tree-level mass of m2

Z | cos 2γ | + m2
W × O(ε). Here γ is defined as the ratio of the two vac-

uum expectation values of two Higgses ρ and ρ′, while ε is defined as a quantity characterizing the
ratio of the electroweak and SU(3)L scales. Section 3 is devoted to investigating in detail the masses
and other properties of the DCHs. We will discuss the constraint of the DCH masses under the recent
experimental value of the decay of the lightest CP-even neutral Higgs to two photons. From this, we
prove that there exists a region of parameter space containing a light DCH. In Sect. 4, we discuss the
creation of DCHs in e+e− colliders such as the ILC and CLIC. Specifically, we establish formulas for
the cross sections of reactions e+e− → H++H−− in collision energies from 1–3 TeV and calculate
the number of events for DCH creation. These cross sections and the Higgs masses are represented
as functions of very convenient parameters such as the masses of neutral CP-odd Higgses, the mass
of the heavy singly charged gauge boson, and tan γ and tanβ as ratios of Higgs vacuum expectation
values (VEV), which will be defined in the work. This will help one more easily predict many prop-
erties relating to the DCHs as well as relations among the masses of particles in the model. With each
collision energy level of 1.5, 2, and 3 TeV, we discuss the parameter space where the masses of three
DCHs can satisfy the allowed kinetic condition; namely, the mass of each DCH must be smaller than
half of the collision energy. Then we estimate the amplitudes of the cross sections in these regions
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of parameter space. Finally, the branching ratios of the DCH decay to pairs of same-sign leptons are
briefly discussed.

2. Review of the SUSYRM331 model

This work is based on the models represented in Refs. [20,21]. For convenience, we summarize
the important results that will be used in our calculation. Throughout this work, we will use the
notation of the two-component spinor for fermions, where ψ denotes a particle and ψc denotes the
corresponding antiparticle. Both ψ and ψc are left-handed spinors. In the case of Majorana fields,
where ψ = ψc, we will use ψ notation.

2.1. Lepton and quark sectors

The lepton sector is arranged based on the original nonsupersymmetric version [13], namely,

L̂l =
(
ν̂, l̂, l̂ c

)T ∼ (1, 3, 0), l = e, μ, τ. (1)

The transformation properties under the respective factors (SU(3)C , SU(3)L , U(1)X ) appear in
parentheses.

In the quark sector, the first quark family is put in a superfield that transforms as a triplet of the
SU(3)L group:

Q̂1L =
(

û1, d̂1, Ĵ1

)
∼ (

3, 3, 2
3

)
. (2)

The three respective antiquark superfields are singlets of the SU(3)L group:

ûc
1 ∼ (

3∗, 1,−2
3

)
, d̂c

1 ∼ (
3∗, 1, 1

3

)
, Ĵ c

1 ∼ (
3∗, 1,−5

3

)
. (3)

The two remaining quark families are included in the two corresponding superfields, transforming
as antitriplets:

Q̂i L =
(

d̂i , −ûi ĵi
)T ∼ (

3, 3∗,−1
3

)
, i = 2, 3. (4)

and the respective antiquark superfields are singlets:

ûc
i ∼ (

3∗, 1,−2
3

)
, d̂c

i ∼ (
3∗, 1, 1

3

)
, ĵ c

i ∼ (
3∗, 1, 4

3

)
, i = 2, 3. (5)

The SUSYRM331 needs four Higgs superfields in order to generate all masses of leptons and
quarks, but radiative corrections [20] or effective operators [21] must be added. For convenience
in investigating the couplings between leptons and DCHs, in this work we will use the effective
approach.

2.2. Gauge bosons and lepton–lepton–gauge boson vertices

The gauge boson sector of the SUSYRM331 model was thoroughly investigated in Refs. [20,21] and
this sector is similar to that of the non-SUSY version [12]. According to these works, the gauge sector
includes three neutral (A, Z , Z ′), four singly charged

(
W ±, V ±), and two doubly charged U±± gauge

bosons. Of these, A, Z , and W ± are SM particles, while the rest are SU(3)L particles with masses
being on the SU(3)L scale. The new charged gauge bosons V ± and U±± have a lepton number
of two; hence, they are also called bileptons. According to the analysis in Ref. [73], the mass of the
charged bilepton U is always less than 0.5m Z ′ . Therefore, we expect the decays Z ′ → U++U−− and
U±± → 2l±(l = e, μ, τ) to be allowed, leading to spectacular signals in future colliders. The DCHs
are also bileptons, leading to a very interesting consequence: the lightest DCH may be the lightest
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bilepton; it only decays to a charged lepton pair. This is exactly the case in the SUSYRM331, as
we will prove through this work. All the masses of the gauge bosons can be written as functions of
the W and V gauge boson masses. There is a simple relation between mW , mV , and mU , namely,
m2

U = m2
W + m2

V , which will be summarized in the Higgs sector. Therefore, we can define mV as a
parameter characterized for the SU(3)L scale. Recently, the studies of flavor-neutral changing-current
processes and the muon anomalous magnetic moment in the reduced minimal 3-3-1 model [74,75]
have set the lower limits of mV , namely, mV ≥ 650 and 910 GeV, respectively.

The vertex of f f V , which is very important in studying the creation of DCHs in e+e− colliders,
is represented in the Lagrangian shown in Refs. [12,20,21,58], namely,

L f f V = gL̄σ̄ μ
λa

2
LV a

μ. (6)

The relations between the mass and the original states of neutral gauge bosons are given as follows:⎛⎜⎝W3μ

W8μ

Bμ

⎞⎟⎠ = CB

⎛⎜⎝Aμ
Zμ
Z ′
μ

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t√
2
(
2t2 + 3

) ,
√

3

2

(
cζ + sζ√

2t2 + 3

)
,

√
3

2

(
−sζ + cζ√

2t2 + 3

)

−
√

3t√
2
(
2t2 + 3

) 1

2

(
cζ − 3sζ√

2t2 + 3

)
, −1

2

(
sζ + 3cζ√

2t2 + 3

)
√

3√
2t2 + 3

−
√

2sζ t√
2t2 + 3

−
√

2cζ t√
2t2 + 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝Aμ
Zμ
Z ′
μ

⎞⎟⎠ .

(7)

Here cζ ≡ cos ζ > 0, sζ ≡ sin ζ > 0 with ζ satisfying

tan 2ζ ≡
√(

3 + 2t2
)(

m2
V − m2

W

)(
1 + t2

)(
m2

V + m2
W

) . (8)

The parameter t is the ratio between g′ and g, namely,

t ≡ g′

g
=
√

6 sin2 θW

1 − 4 sin2 θW
. (9)

The masses of gauge bosons are given by

mγ = 0,

m2
Z = t2 + 2

3

⎛⎝m2
U −

√√√√m4
U − 4

(
2t2 + 3

)(
t2 + 2

)2 m2
V m2

W

⎞⎠ ,

m2
Z ′ = t2 + 2

3

⎛⎝m2
U +

√√√√m4
U − 4

(
2t2 + 3

)(
t2 + 2

)2 m2
V m2

W

⎞⎠ . (10)

The Z–Z ′ mixing angle in the framework of the RM331 model is quite small, |φ| < 10−3 [58]. It
is interesting to note that, due to the generation discrimination in the 3-3-1 models, the new neutral
gauge boson Z ′ has a flavor-changing neutral current [76–78].
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Table 1. Vertex factors between leptons, quarks, and neutral gauge bosons. Note that e = g sin θW .

f̄ f Vμ Aμ Zμ Z ′
μ

νe 0
igcζ√

3
σ̄ μ

−igsζ√
3
σ̄ μ

e −ie − ig

2
√

3

(
cζ + 3sζ√

2t2 + 3

)
σ̄ μ

ig

2
√

3

(
sζ − 3cζ√

2t2 + 3

)
σ̄ μ

ec ie − ig

2
√

3

(
cζ − 3sζ√

2t2 + 3

)
σ̄ μ

ig

2
√

3

(
sζ + 3cζ√

2t2 + 3

)
σ̄ μ

u
i2e

3

ig√
3

(
cζ − 2t2sζ

3
√

2t2 + 3

)
σ̄ μ

−ig√
3

(
sζ + 2t2cζ

3
√

2t2 + 3

)
σ̄ μ

uc − i2e

3

2igt2sζ

3
√

3
(
2t2 + 3

) σ̄ μ 2igt2cζ

3
√

3
(
2t2 + 3

) σ̄ μ
d − ie

3
− ig

2
√

3

(
cζ + (4t2 + 9)sζ

3
√

2t2 + 3

)
σ̄ μ

ig

2
√

3

(
sζ − (4t2 + 9)cζ

3
√

2t2 + 3

)
σ̄ μ

dc ie

3
− igt2sζ

3
√

3
(
2t2 + 3

) σ̄ μ − igt2cζ

3
√

3
(
2t2 + 3

) σ̄ μ
J1

5ie

3
− ig

2
√

3

(
cζ + (4t2 − 9)sζ

3
√

2t2 + 3

)
σ̄ μ

ig

2
√

3

(
sζ + (4t2 − 9)cζ

3
√

2t2 + 3

)
σ̄ μ

J c
1 −5ie

3

5igt2sζ

3
√

3
(
2t2 + 3

) σ̄ μ 5igt2cζ

3
√

3
(
2t2 + 3

) σ̄ μ
c, t

i2e

3

ig

2
√

3

(
cζ + (2t2 + 9)sζ

3
√

2t2 + 3

)
σ̄ μ

−ig

2
√

3

(
sζ − (2t2 + 9)cζ

3
√

2t2 + 3

)
σ̄ μ

cc, t c − i2e

3

2igt2sζ

3
√

3
(
2t2 + 3

) σ̄ μ 2igt2cζ

3
√

3
(
2t2 + 3

) σ̄ μ
s, b − ie

3
− ig√

3

(
cζ + t2sζ

3
√

2t2 + 3

)
σ̄ μ

ig√
3

(
sζ − 4t2cζ

3
√

2t2 + 3

)
σ̄ μ

sc, bc ie

3
− igt2sζ

3
√

3
(
2t2 + 3

) σ̄ μ − igt2cζ

3
√

3
(
2t2 + 3

) σ̄ μ
j1, j2 −4ie

3
− ig

2
√

3

(
cζ + (2t2 − 9)sζ

3
√

2t2 + 3

)
σ̄ μ − ig

2
√

3

(
sζ − (2t2 − 9)cζ

3
√

2t2 + 3

)
σ̄ μ

j c
1 , j c

2

4ie

3
− 4igt2sζ

3
√

3
(
2t2 + 3

) σ̄ μ − 4igt2cζ

3
√

3
(
2t2 + 3

) σ̄ μ

The above analysis is enough to calculate the vertex factors of charged leptons with neutral gauge
bosons, as shown explicitly in Table 1. Here we only concentrate on the largest vertex couplings by
assuming that the flavor basis of leptons and quarks is the mass basis.

2.3. Constraint from the ρ parameter

The above analysis shows that the structure of the neutral gauge bosons is the same as that of the
RM331 model when all mixing and mass parameters of these bosons are written in terms of the
charged gauge boson masses. So the contributions of new heavy gauge bosons to the ρ parameter
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from the SU(3)L charged gauge bosons are given in Refs. [79,80]. They also relate to the T parameter
through the equality �ρ ≡ ρ − 1 � α̂(m Z )T , where α̂(m Z ) is the fine structure constant defined in
the minimal scheme (M S) at the m Z scale [81]. The problem is that all of these contributions are
always positive, so the total always makes the value of�ρ larger than the current experimental upper
bound, unless the SU(3)L scale is larger than 9 TeV [62].

Because the new quarks are SU(2)L singlets, they do not contribute to the ρ parameters. The other
contributions arise from Higgses and SUSY particles, including Higgsinos, gauginos, and superpart-
ners of the fermions. Being functions of the SUSY parameters, they are completely independent of
the SU(3)L scale. The contributions of the DCHs are only from the couplings [65]

icφ∗
1∂μφ2Vμ + h.c (V = W, Z) (11)

of two charged Higgses φ1 and φ2. According to Table C1, there are only nonzero vertices of
χ++W −H−

2 and χ ′++W −H−
2 related to DCHs. Because χ±± and χ ′±± contribute mainly to H±±

1
and the Goldstone U± boson, they mix with the other two DCHs with very small factors of orders

smaller than O
(

m3
W

m3
V

)
. In addition, the kind of interactions given in (11) with two identical DCHs

gives zero contribution to the ρ parameter [65]. So the total contribution of the physical DCHs to the
ρ parameter is strongly suppressed.

Because the Higgs triplets ρ and ρ′ break SU(2)L symmetry, they will give the main contribu-
tions to the couplings of singly charged and neutral Higgses to normal gauge bosons and therefore
may significantly affect the ρ parameter. This is very similar to the case of the MSSM. In fact,
the SUSYRM331 contains two CP-even neutral Higgses and two singly charged Higgses H±

1 , which
behave in the same way as those in the MSSM. More explicitly, they couple with the W and Z bosons
in the same way as those in the MSSM, especially in the large limit of the SU(3)L and soft SUSY
breaking scales, which is exactly the valid condition of the SUSYRM331. So the total contribution
to the ρ parameter of these SUSYRM331 Higgses is nearly the same as what is found in the MSSM.
In general, the contributions to the ρ parameter obtained from the investigation into the MSSM can
also be used for the SUSY331 version [65]. The most important results are: i) all unexpected positive
contributions decrease rapidly to zero when the overall sparticle mass scale is large enough, ii) the
negative contribution from the Higgs scalars can reach absolute values of 10−4, which is the order of
the recent sensitive experimental value of the ρ parameter. In the SUSYRM331 framework, the total
positive SUSY contribution can be set to the order of O(10−4), because the soft parameters are at
least of the order of the SU(3)L scale, i.e., the TeV scale, while the total contribution from the Higgs
scalar is completely different. It has a negative value when the masses of CP-odd neutral Higgses are
very large and the lightest CP-even neutral Higgs reaches its largest value of MZ | cos 2β| at the tree
level [65,82]1. Then, the contribution from the Higgs sector is

�ρ
susy
H = 3α

16π2 sin2 θW
fH
(

cos2 2β, θW
)
, (12)

where

fH (x, θW ) ≡ x

(
ln
(
cos2 θW /x

)
cos2 θW − x

+ ln x

cos2 θW (1 − x)

)
.

1 Note that the well known β in the MSSM is different from our definition of β in (23). In fact, the γ
parameter in (23) plays the same role as β in the MSSM.
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Fig. 1. Contour plot of �ρsusy as a function of �ρ ′susy and the SU(3)L scale u. The green region satisfies
1.6 × 10−4 ≤ �ρsusy ≤ 6.4 × 10−4.

In the following, we will show that a negative�ρsusy
H can cancel the new positive contributions arising

from the SUSY and 3-3-1 properties. The total deviation of the ρ parameter can be divided into three
parts,

�ρsusy = α̂(m Z )Tmin +�ρ
susy
H +�ρ′susy, (13)

where�ρ′susy is the total positive contribution of the Higgsino, gaugino, and sfermion particles, and
Tmin is the contribution from the minimal 3-3-1 framework to the oblique T parameter [79,80],

Tmin = 3
√

2G F

16π2α̂(m Z )

[
m2

U + m2
V − 2m2

U m2
V

m2
U − m2

V

ln
m2

U

m2
V

]

+ 1

4π sin2 θW

[
2 − m2

U m2
V

m2
U − m2

V

ln
m2

U

m2
V

+ 3 tan2 θW ln
m2

U

m2
V

]
+ m2

Z − m2
Z0

α̂(m Z )m2
Z

, (14)

where m Z , m Z ′ , mU , and mV are the masses of gauge bosons predicted by the SUSYRM331.
All of the experimental values are given in Ref. [81], namely, m Z0 = 91.1876 ± 0.0021 GeV,
mW = 80.385 ± 0.015 GeV, sin2 θW = 0.231 26, G F = 1.166 3878(6)× 10−5 GeV−2, and
α̂−1(m Z ) = 127.940 ± 0.014. Also, the experimental constraint of new physics to �ρ is
1.6 × 10−4 ≤ �ρ ≤ 6.4 × 10−4 [81].�ρsusy is now a function of | cos 2β|,�ρ′susy, and the SU(3)L

scale u = √
w2 + w′2. With the discovery of the neutral CP-even Higgs with a mass of 125 GeV, β

should satisfy | cos 2β| → 1. The numerical result of�ρsusy is shown in Fig. 1, where a lower bound
of u ≥ 5 TeV is allowed.

Finally, what we stress here is that the sum of the respective negative and positive contributions
from �ρ

susy
H and �ρ′susy is enough to keep the value of the ρ parameter within the allowed con-

straint. Therefore, unlike the non-SUSY version, in the SUSY view, the SU(3)L scale is free from
the constraint of the ρ parameter.

8/35

 by guest on N
ovem

ber 29, 2015
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 113B05 L. T. Hue et al.

On the other hand, the SU(3)L scale is constrained by investigating the Z ′ boson. According to (10),
we get

m Z ′ � 2mV cW√
3
(
1 − 4 sin2 θW

)
in the limit of u � v, v′.

In the framework of the minimal 3-3-1 models, the investigation of the LEP-II constraints on m Z ′

[61] as well as the Bd → K ∗μμ data at LHC indicates that the lower bounds of m Z ′ must be above
7 TeV [83–85]. In addition, the above discussion suggests that the Z ′ boson in the SUSYRM331
model behaves similarly to the one in the non-SUSY version at the tree level. Combining this with
the constraint of m Z ′ in order to avoid the Landau pole, the SUSYRM331 model predicts that the
most interesting range of m Z ′ is 7 TeV ≤ m Z ′ ≤ 9 TeV, leading to 2 TeV ≤ mV ≤ 3 TeV.

2.4. Higgs sector

The scalar superfields, which are necessary to generate the fermion masses, are

ρ̂ =

⎛⎜⎝ ρ̂+

ρ̂0

ρ̂++

⎞⎟⎠ ∼ (1, 3,+1), χ̂ =

⎛⎜⎝ χ̂−

χ̂−−

χ̂0

⎞⎟⎠ ∼ (1, 3,−1). (15)

To remove the chiral anomalies generated by the superpartners of the scalars, two new scalar
superfields are introduced to transform as antitriplets under the SU(3)L , namely,

ρ̂′ =

⎛⎜⎝ ρ̂′−

ρ̂′0

ρ̂′−−

⎞⎟⎠ ∼ (1, 3∗,−1), χ̂ ′ =

⎛⎜⎝ χ̂ ′+

χ̂ ′++

χ̂ ′0

⎞⎟⎠ ∼ (1, 3∗,+1). (16)

The pattern of the symmetry breaking of the model is given by the following scheme (using the
notation given in Ref. [86]):

SUSYRM331
Lsoft�−→ SU(3)C ⊗ SU(3)L ⊗ U(1)X

〈χ〉〈χ ′〉�−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y

〈ρ〉〈ρ′〉�−→ SU(3)C ⊗ U(1)Q . (17)

For the sake of simplicity, all vacuum expectation values (VEVs) are supposed to be real. When
the 3-3-1 symmetry is broken, i.e., SU(3)C ⊗ U(1)Q , the VEVs of the scalar fields are defined as
follows:

〈ρ〉 =
(

0,
v√
2
, 0

)T

, 〈χ〉 =
(

0, 0,
w√

2

)T

,

〈ρ′〉 =
(

0,
v′
√

2
, 0

)T

, 〈χ ′〉 =
(

0, 0,
w′
√

2

)T

. (18)

Because the symmetry breaking happens through the steps given in (17), the VEVs have to satisfy
the condition w,w′ � v, v′. The constraint on the W boson mass leads to the consequence that

V 2 ≡ v2 + v′2 = (246 GeV)2. (19)

9/35

 by guest on N
ovem

ber 29, 2015
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 113B05 L. T. Hue et al.

2.5. Higgs spectra

As usual, the scalar Higgs potential is written as in Ref. [20], except for Vsoft, which is added to
the b-type terms [21] to guarantee the vacuum stability of the model and to avoid the appearance of
many tachyon scalars [87,88]. Therefore, we have

VSUSYRM331 = VD + VF + Vsoft (20)

with

VD = −LD = 1

2

(
Da Da + DD

)
= g′2

12
(ρ̄ρ − ρ̄′ρ′ − χ̄χ + χ̄ ′χ ′)2 + g2

8

∑
i, j

(
ρ̄iλ

a
i jρ j + χ̄iλ

a
i jχ j − ρ̄′

iλ
∗a
i j ρ

′
j − χ̄ ′

iλ
∗a
i j χ

′
j

)2
,

VF = −LF =
∑

F

F̄μFμ =
∑

i

[∣∣∣μρ
2
ρ′

i

∣∣∣2 +
∣∣∣μχ

2
χ ′

i

∣∣∣2 +
∣∣∣μρ

2
ρi

∣∣∣2 +
∣∣∣μχ

2
χi

∣∣∣2] ,
Vsoft = −LSMT = m2

ρρ̄ρ + m2
χ χ̄χ + m2

ρ′ ρ̄′ρ′ + m2
χ ′ χ̄ ′χ ′ − (

bρρρ
′ + bχχχ

′ + h.c.
)
, (21)

where mρ , mχ , mρ′ , and mχ ′ have the mass dimension. Both bρ and bχ have a squared mass dimen-
sion and are assumed to be real and positive to ensure nonzero and real values for the VEVs. The
expansions of the neutral scalars around their VEVs are

〈ρ〉 = 1√
2

⎛⎜⎝ 0
v + Hρ + i Fρ

0

⎞⎟⎠ , 〈ρ′〉 = 1√
2

⎛⎜⎝ 0
v′ + Hρ′ + i Fρ′

0

⎞⎟⎠ ,

〈χ〉 = 1√
2

⎛⎜⎝ 0
0

w + Hχ + i Fχ

⎞⎟⎠ , 〈χ ′〉 = 1√
2

⎛⎜⎝ 0
0

w′ + Hχ ′ + i Fχ ′

⎞⎟⎠ . (22)

The minimum of the Higgs potential corresponds to the vanishing of all linear Higgs terms in the
above potential. As a result, it leads to four independent equations, shown in Ref. [21], which reduce
to four independent parameters in the original Higgs potential. We will use the notations chosen in
Ref. [20] for this work. In particular, two independent parameters are chosen as

tγ = tan γ = v

v′ , tβ = tanβ = w

w′ . (23)

These are two ratios of the VEVs of neutral Higgs scalars, and similar to the β parameter defined
in the MSSM. The two electroweak and SU(3)L scales relate to the masses of the W and V bosons
[20,21] by two equations:

m2
W = g2

4

(
v2 + v′2

)
; m2

V = g2

4

(
w2 + w′2

)
.

We can choose mV as an independent parameter. On the other hand, there are two heavy dou-
bly charged bosons, denoted as U±±, with mass mU satisfying m2

U = m2
V + m2

W . If mV � mW ,
there will appear a degeneration of two heavy boson masses, mU = mV + 1

2mW × O (mW /mV )+
mW × O (mW /mV )

3 � mV . As mentioned above, the constraint of mV gives a very small ratio

10/35

 by guest on N
ovem

ber 29, 2015
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2015, 113B05 L. T. Hue et al.

between the two scales SU(2)L and SU(2)L : m2
W /m2

V ≤ O(10−3). This is a rather good limit for
the approximation used in this work. The minimum conditions of the superpotential result in a series
of four equations:

m2
ρ + 1

4
μ2
ρ = bρ

tγ
− 1 + t2

3
× m2

V cos 2β + t2 + 2

3
× m2

W cos 2γ , (24)

m2
χ + μ2

χ

4
= bχ

tβ
− 2 + t2

3
× m2

V cos 2β + 1 + t2

3
× m2

W cos 2γ , (25)

s2γ ≡ sin 2γ = 2bρ

m2
ρ + m2

ρ′ + 1
2μ

2
ρ

, s2β ≡ sin 2β = 2bχ

m2
χ + m2

χ ′ + 1
2μ

2
χ

. (26)

The two equations in (26) show the relations between the soft parameters and the ratios of the VEVs,
and they are much the same as those shown in the MSSM. To estimate the scale of these soft param-
eters, based on the calculation in Ref. [38] it is useful to write Eqs. (24) and (25) in new forms, as
follows:

c2γ ≡ cos 2γ =
−
(

m2
χ + μ2

χ

4 − bχ
tβ

) (
1 + 2s2

W

)+ 2

(
m2
ρ + μ2

ρ

4 − bρ
tγ

)
c2

W

m2
W

, (27)

c2β ≡ cos 2β =

(
m2
ρ + μ2

ρ

4 − bρ
tγ

) (
1 + 2s2

W

)− 2

(
m2
χ + μ2

χ

4 − bχ
tβ

)
c2

W

m2
V

= m2
W

m2
V

×
(
1 + 3t2

W

)
c2γ

2
− 3

(
1 − 4s2

W

)
2c2

W

×

(
m2
χ + μ2

χ

4 − bχ
tβ

)
m2

V

. (28)

Because |c2γ | ≤ 1, Eq. (27) results in a consequence:
∣∣∣− (

m2
χ + μ2

χ

4 − bχ
tβ

)(
1 + 2s2

W

)+
2
(

m2
ρ + μ2

ρ

4 − bρ
tγ

)
c2

W

∣∣∣ ≤ m2
W . However, the soft-breaking parameters, such as m2

χ , m2
ρ , bχ , bρ ,

should be much larger than m2
W , so these parameters must be degenerate. In addition, the left-

hand side of (28) also has an upper bound, |c2β | ≤ 1, as does the right-hand side. Because of the
hierarchy between the two breaking scales SU(3)L and SU(2)L , mW � mV , the first term on the

right-hand side is suppressed, and then we have
∣∣∣(m2

χ + μ2
χ

4 − bχ
tβ

)∣∣∣ ≤ 2c2
W

3
(

1−4s2
W

)m2
V . Hence, the two

quantities
(

m2
χ + μ2

χ

4 − bχ
tβ

)
and

(
m2
ρ + μ2

ρ

4 − bρ
tγ

)
are all in the SU(3)L scale. This leads to an

interesting constraint on the soft-breaking parameters of the SUSYRM331: Although the super-
symmetry is spontaneously broken before the breaking of the SU(3)L symmetry, both the soft
parameters and the SU(3)L breaking scale should be of the same order. This is a very interesting
point that is not mentioned in Ref. [21]. This conclusion also explains why the values of parameters
bρ and bχ in Ref. [21] are chosen in order to get consistent values of the lightest CP-even neutral
Higgs mass.

Although the Higgs sector of the SUSYRM331 was investigated in Ref. [21], the two squared mass
matrices of neutral Higgses and DCHs are only numerically estimated with some specific values of
parameter space. However, we think that, before starting a numerical calculation, it is better to find
approximate expressions of these masses in order to predict reasonable ranges of the parameters in the
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model, as we will show in this work. More importantly, we will show that approximate expressions
are very useful in determining many interesting properties of the Higgs spectra.

The Higgs spectra are listed as follows:

(1) CP-odd neutral Higgses. Two massless Higgses eaten by two neutral gauge bosons are

HA3 = Fχ ′ cosβ − Fχ sinβ, HA4 = Fρ′ cos γ − Fρ sin γ. (29)

Two massive Higgses are expressed in terms of the original Higgses, as follows:

HA1 = Fρ cos γ + Fρ′ sin γ, HA2 = Fχ cosβ + Fχ ′ sinβ

and their masses are

m2
A1

= 2bρ
s2γ

= m2
ρ + m2

ρ′ + 1

2
μ2
ρ, m2

A2
= 2bχ

s2β
= m2

χ + m2
χ ′ + 1

2
μ2
χ . (30)

(2) Singly charged Higgses. Two massless eigenstates of these Higgses are

H±
3 = χ± sinβ + χ ′± cosβ, H±

4 = ρ± sin γ + ρ′± cos γ,

which are eaten by the singly charged gauge bosons. Two other massive states are

H±
1 = −ρ± cos γ + ρ′± sin γ, m2

H±
1

= m2
A1

+ m2
W , (31)

H±
2 = −χ± cosβ + χ ′± sinβ, m2

H±
2

= m2
A2

+ m2
V .

(3) CP-even neutral Higgses. In the basis of (Hρ , Hρ′ , Hχ , Hχ ′), the mass term of the neutral
scalar Higgses has the form of

LH0 = 1
2(Hρ, Hρ′, Hχ , Hχ ′)× M2

4H × (Hρ, Hρ′, Hχ , Hχ ′)T , (32)

where

M2
4H =

⎛⎜⎜⎜⎜⎜⎜⎝
m2

S11 m2
S12 m2

S13 m2
S14

m2
S22 m2

S23 m2
S24

m2
S33 m2

S34

m2
S44

⎞⎟⎟⎟⎟⎟⎟⎠ .

Analytic formulas for the entries in the matrix were listed in Refs. [20,21]. There is a problem
with finding exact analytic expressions for the eigenvalues with this matrix, which is why
Ref. [21] had to choose the approach of numerical investigation.

We remind ourselves that the eigenvalues of this matrix, λ = m2
H0 , must satisfy the equation

f (λ) ≡ det
(

M2
4H − λI4

)
= 0. (33)
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As a function of λ, the left-hand side of (33) is a polynomial of degree 4. Based on the
very detailed discussion on Higgs spectra of the SUSYE331 in Ref. [38], which we will
not repeat, this function can be expressed in terms of the independent parameters m A1 ,
m A2 , c2γ , c2β , mW , and mV , where m A1 and m A2 are soft-breaking parameters. As noted
above, these soft parameters are of the same orders of the mV –SU(3)L scale, i.e., m A1/mV ,
m A2/mV ∼ O(1). To find approximate expressions for the Higgs masses, it is necessary to
define a very small parameter: ε = (

m2
W /m2

V

) ≤ (80.4/2000)2 = 0.0016. Then the masses of
these neutral Higgses can be written as expansions of powers of ε:

m2
H0

1
= M2

Z c2
2γ + O(m2

W

)× ε,

m2
H0

2
= M2

A1
+ O(m2

W

)
,

m2
H0

3,4
= 1

6

⎡⎢⎣ 4c2
W m2

V

1 − 4s2
W

+ 3m2
A2

±

√√√√−
48c2

2βm2
A2

m2
V

1 − 4s2
W

+
(

3m2
A2

+ 4c2
W m2

V

1 − 4s2
W

)2
⎤⎥⎦+ O(m2

W

)
.

(34)

It is necessary to note that the lightest mass has a tree-level value of m Z | cos 2γ | ≤ m Z =
92 GeV, consistent with the numerical result shown in Ref. [21]. Thus, the mass including
loop corrections will increase to the current value of 125–126 GeV.

Although the Higgs sector was investigated in Ref. [21], we should emphasize a new feature in our
work. To estimate the tree-level mass of the lightest CP-even Higgs, by using a reasonable approxi-
mation, we have obtained an analytic formula that is very consistent with that given in the MSSM.
The interesting point is that our result depends only on the condition that all soft parameters must
be in the SU(3)L scale. The result also suggests that the γ parameter in the SUSYRM331 model
plays a very similar role to the β parameter in the MSSM, defined as the ratio of two VEVs. This
approximation is very useful for estimating masses as well as predicting many interesting properties
of the DCHs, as we will do in this work. The authors of Ref. [21] also considered only the top quark
and its superpartner for investigating one-loop corrections to the mass of the lightest neutral Higgs,
then used this allowed value to constrain the masses of the DCHs. However, unlike the MSSM, the
SUSYRM331 contains new heavy exotic quarks and their superpartners, leading to the fact that their
loop corrections to the mass of the lightest neutral Higgs have to be considered. Because the masses
of these new quarks are arbitrary, one cannot tell much about the constraints of charged Higgs masses
from considering these loop corrections.

The approximate formula (34) of neutral Higgs masses is useful for finding mass eigenstates of the
neutral Higgses. We will consider the two following rotations for the squared mass matrix of neutral
Higgses appearing in (32):

Cn
1 =

⎛⎜⎜⎜⎜⎝
−cγ sγ 0 0

sγ cγ 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ , Cn
2 =

⎛⎜⎜⎜⎜⎝
1 0 0

0 cα −sα 0

0 sα cα 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ , (35)
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where sα ≡ sinα and cα ≡ cosα will be defined later. Taking the first rotation, we obtain

Cn
1 M2

4H CnT
1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2
A1

+ 2c2
2γ

(
t2 + 2

)
3

m2
W

s4γ
(
t2 + 2

)
3

m2
W

2s2γ sβ
(
t2 + 1

)
3

mW mV −2s2γ cβ
(
t2 + 1

)
3

mW mV

2c2
2γ

(
t2 + 2

)
3

m2
W

2c2γ sβ
(
t2 + 1

)
3

mW mV −2c2γ cβ
(
t2 + 1

)
3

mW mV

c2
βm2

A2
+ 2s2

β

(
t2 + 2

)
3

m2
V s2β

[
m2

A2

2
+ (

t2 + 2
)
m2

V

]

s2
βm2

A2
+ 2c2

β

(
t2 + 2

)
3

m2
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(36)

The first diagonal entry of (36) is equal to the largest contribution to m2
H0

2
, and the submatrix, includ-

ing entries
(
Cn

1 M2
4H CnT

1

)
(i, j=4,5), gives two other values of heavy masses m2

H0
3

and m2
H0

4
, while the

entry
(
Cn

1 M2
4H CnT

1

)
33 = 2c2

2γ

(
t2+2

)
3 m2

W = O(m2
W

)
relates to the lightest Higgs mass, but is different

from that shown in (34). To get the right value, it must take more contributions from nondiagonal
attempts containing factors mW mV after taking other rotations. As mentioned above, the most inter-
esting values of α and β satisfy c2γ , c2β → −1, i.e., sγ,β → 1 and cγ,β → 0. This suggests that the
largest correction to the lightest mass is from the entries

(
Cn

1 M2
4H CnT

1

)
23 and

(
Cn

1 M2
4H CnT

1

)
32. So,

taking the second rotation with Cn
2 given in (35) and using the limits m2

W � m2
V and cβ → 0, it is

easy to confirm that
(
Cn

2 Cn
1 M2

4H (C
n
2 Cn

1 )
T
)
(22) � m2

Z |c2γ | with α determined by

tan 2α ≡ 4c2γ sβ
(
t2 + 1

)
mW mV

3c3
βm2

A2
+ 2s2

β

(
t2 + 2

)
m2

V − 2c2
2γ

(
t2 + 2

)
m2

W

∼ O(mW /mV ). (37)

Then we can estimate that the contributions of the original Higgs states to the mass eigenstates of
the CP-even neutral Higgses H0

1 and H0
2 are

Hρ → cαsγ H0
1 − cγ H0

2 , Hρ′ → cαcγ H0
1 + sγ H0

2 , Hχ , Hχ ′ → O(sα)H0
1 . (38)

It is interesting that, in the decoupling regime where the SUSY and SU(3)L scales are much larger
than the SU(2)L scale, we have Hρ � sγ H0

1 − cγ H0
2 and Hρ′ � cγ H0

1 + sγ H0
2 , the same as those

given in the MSSM [82]. Therefore, all couplings of these two Higgses with W ± and Z bosons are the
same as those in the MSSM. More interestingly, the SUSYRM331 contains a set of Higgses including
m H0

1,2
, m A1 , and m H±

1
that has similar properties to the Higgs spectra of the MSSM. This property

of the SUSY versions of the 3-3-1 models has also been indicated previously [38]. As a result, the
SUSY Higgs contributions to the ρ parameter are the same in both MSSM and SUSYRM331 in the
decoupling regime.

At the tree level, the above analysis indicates that the Higgs spectra can be determined by unknown
independent parameters: γ , β, mV , m A1 , and m A2 . Furthermore, the squared mass matrices of both
CP-even neutral Higgses and DCHs depend explicitly on c2β , s2β , c2γ , and s2γ but not t2γ , t2β . Hence,
it can be guessed that the Higgs masses will not increase to infinity when tγ and tβ are very large. In
addition, in some cases, we can take the limits c2β,2γ → −1 and s2β,2γ → 0 without any inconsistent
calculations. We will use the limit 2 TeV ≤ mV ≤ 3 TeV based on the latest update discussed above.
m A1 and m A2 are of the same order of mV so we set m A1 , m A2 ≥ 1 TeV in our calculation. Other
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well known values that will be used are the mass of the W boson mW = 80.4 GeV, the sine of the
Weinberg angle sW = 0.231, and the mass and total decay width of the Z boson m Z = 91.2 GeV,
�Z = 2.46 GeV. The discovery of the lightest CP-even Higgs mass of 125 GeV implies that |c2γ | � 1,
i.e., tγ should be large enough, similar to the case of the MSSM. As a consequence, relation (27)
shows the fine tuning among soft parameters and relation (28) predicts that |c2β | should also be large.
Therefore, we will fix tβ = 5 and tγ = 10 in the numerical investigation that can be applied for the
general case of large tβ and tγ . This can be understood from the reason that all quantities that we
consider below depend on γ , 2γ , β, and 2β only by sine or cosine factors, not tan functions.

3. Doubly charged Higgs bosons and couplings

3.1. Mass spectra and properties of the lightest DCH

Consider the DCHs; the SUSYE331 model contains 8 degrees of freedom after final symmetry break-
ing. Therefore, the squared mass matrix is 4 × 4 and we cannot find the exact expressions for the
physical masses. We will treat them the same as the neutral CP-even Higgses, in much more detail
to discover all possible interesting properties of the DCHs, especially the lightest.

The mass term of the doubly charged boson is:

LH±± =
(
ρ++, ρ′++, χ++, χ ′++

)
M2

H±±
(
ρ−− ρ′−− χ−− χ ′−−

)T
,

where the elements of the squared mass matrix were shown precisely in Ref. [21]. Taking a rotation
characterized by a matrix

C1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−mW sγ
mU

0 cγ
mV sγ
mU

−mW cγ
mU

0 −sγ
mV cγ
mU

mV sβ
mU

−cβ 0
mW sβ

mU
mV cβ
mU

sβ 0
mW cβ

mU

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (39)

we get new squared mass matrix:

M2
H ′±± ≡ CT

1 M2
H±±C1

=

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 m2
A2

+ m2
V − c2βc2γm2

W −s2βs2γmV mW c2γ s2βmU mW

0 −s2βs2γmV mW m2
A1

− c2βc2γm2
V + m2

W −s2γ c2βmU mV

0 c2γ s2βmU mW −s2γ c2βmU mV c2γ c2βm2
U

⎞⎟⎟⎟⎟⎠ .
(40)

Corresponding to the massless solution in (40), the Goldstone boson eaten by the doubly charged
gauge boson is represented exactly in term of the original Higgses:

G±± = −mW sγ
mU

ρ±± − mW cγ
mU

ρ′±± + mV sβ
mU

χ±± + mV cβ
mU

χ ′±±. (41)

Because mW � mU , mV � mU , and sγ ≤ 1, the doubly charged gauge boson couples weakly to
light Higgses but strongly to heavy Higgses.

The squared mass matrix of the DCHs (40) also shows that, if there exists a light DCH(
i.e., ∼ O(m2

W

))
, then the contributions of the off-diagonal entries to the mass of this Higgs are
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large. Then it is difficult to find an analytic formula for both mass eigenstates and eigenvalues. Note
that, apart from the Goldstone boson (41), there are three other states denoted by H ′±±

i , (i = 1, 2, 3).
They relate to the original DCHs by a transformation:(

ρ±±, ρ′±±, χ±±, χ ′±±
)T = C1

(
G±±, H ′±±

1 , H ′±±
2 , H ′±±

3

)T
. (42)

We assume that the three physical DCHs relate to (H ′±±
1 , H ′±±

2 , H ′±±
3 ) by a 3 × 3 matrix � as

follows: (
H ′±±

1 , H ′±±
2 , H ′±±

3

)T = �
(
H±±

1 , H±±
2 , H±±

3

)T
. (43)

To estimate the values of the entries in the matrix �, we firstly find out some properties of the mass
eigenvalues of the DCHs. The remaining three eigenvalues of this matrix λ = m2

H±± must satisfy the

equation det
(
M2

H±± − λI4

)
= 0, or, equivalently, λ f (λ) = 0 with

f (λ) = aλ3 + bλ2 + cλ+ d, (44)

where

a = −
(

m2
V + m2

A1
+ m2

A2
+ m2

W

)
,

b = −c2
2βm4

V + m2
A1

(
m2

V + c2βc2γ + m2
A2

)
+
[
m2

A2
+ c2βc2γ

(
2m2

V + m2
A2

)]
m2

W − c2
2γm4

W ,

c =
(

m2
V + m2

W

) [
c2βm2

V − c2γ

(
m2

W + m2
A1

)] [
c2β

(
m2

V + m2
A2

)
− c2γm2

W

]
. (45)

This equation gives three solutions corresponding to three masses of the physical DCHs at the tree
level. We denote them as m2

H±±
i

with i = 1, 2, 3 and m2
H±±

1
,m2

H±±
2
> m2

H±±
3

. Combining the last

equation of (45) with Vieta’s formula, in order to avoid the appearance of tachyons, we deduce that

m2
H±±

1
m2

H±±
2

m2
H±±

3
= −c > 0 ⇐⇒

(
m2

A1
+ m2

W

)
c2γ

m2
V

< c2β <
m2

W c2γ

m2
V + m2

A2

< 0. (46)

Furthermore, the entry ()22 of (40) suggests that, if m2
A1

is enough close to m2
V , there may appear one

light DCH, while the other two values are always in the SU(3)L scale. So, in order to find the best
approximate formulas of the vertex factors V 0 H++H−−, it is better to investigate the mass values
of the DCHs using the techniques shown in Ref. [38], and partly mentioned when discussing the
neutral CP-even Higgs sector. The masses can be expanded as

m2
H±± = X ′m2

V + X ′′ × m2
W + O(ε)× m2

W . (47)

The heavy Higgses satisfy the condition X ′ ∼ O(1), i.e., in the soft-breaking or SU(3)L scale.
Keeping only the leading term in (47) as the largest contribution, the masses of the three DCHs are

m2
H±±

1
� m2

V + m2
A2
,

m2
H±±

2,3
� 1

2

(
m2

A1
±
√

4c2
2βm4

V − 4c2βc2γm2
V m2

A1
+ m4

A1

)
. (48)

Comparing the
(M2

H ′±±
)

33 entry of (40) with m2
H±±

1
in the first line of (48), it can be realized that(M2

H ′±±
)

33 − m2
H±±

1
= O(m2

W

) � m2
H±±

1
. As a result, the main contribution to the mass eigenstate
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Fig. 2. Contour plots for the masses of DCHs as functions of m A1 and mV . The left (right) panel corresponds
to m A2 = 1 (2.5) TeV. The heaviest DCH is represented by dotted curves, the second heaviest by dashed curves,
and the lightest by solid curves.

of m2
H±±

1
is H ′±±

1 = −cβχ±± + sβχ ′±±, i.e.,�1i ,�i1 � δ1i with i = 1, 2, 3. This is very useful in

finding the coupling formulas between these DCHs with neutral gauge bosons.
The above approximative formulas of DCH masses can precisely predict the constraints of these

masses. From Eq. (44), applying Vieta’s formulas to the first line of (45), we get a relation

m2
H±±

1
+ m2

H±±
2

+ m2
H±±

3
= m2

V + m2
A2

+ m2
A1

+ m2
W .

Combining this with m2
H±±

1
= m2

V + m2
A2

+ O(m2
W

)
, we have a sum of two DCHs, m2

H±±
2

+
m2

H±±
3

= m2
A1

+ O(m2
W

)
, which is still of the order of the SU(3)L scale. So there must be at most

one light DCH in the model. If the model contains this light Higgs, i.e., m2
H±±

3
∼ O(m2

W

)
, we can

prove that m2
H±±

2
∼ m2

V . This is the consequence deduced from the last equation of (45) and (46):

the condition of the existence of this light Higgs is

0 < kH±± ≡ −c2β

[
c2βm2

V − c2γ

(
m2

W + m2
A1

)]
∼ O(m2

W

)
. (49)

This leads to m2
H±±

2
+ m2

H±±
3

∼ O(m2
V

)
. The mass of the lightest DCH m2

H±±
3

depends directly on

the scale of kH±± . It is easy to realize that two mass eigenstates H±±
2,3 get their main contributions

from ρ±± and ρ′±±. This is consistent with the fact that the main contribution to the mass of the
heavy Higgs H±±

2 is from the bρρρ′ term. The numerical values of these masses are illustrated in
Fig. 2.

The condition (49) give a lower bound of m A1 > 1.8 TeV. With m A2 < 3 TeV, the heaviest DCH
is always H±±

1 , except in the case of the very light mV � 2 TeV. This explains why m H±±
1

does not
depend on m A1 , while it is sensitive to mV . The second heavy DCH is also independent of small values
of m A1 , which can be explained as follows. The condition of avoiding a tachyon DCH (46) implies
that 0 < c2β/c2γm2

V − m2
W < m2

A1
. Therefore, a small m A1 will give c2βm2

V − c2γm2
A1

∼ O(m2
W ),

which is the condition for the appearance of the very light DCH. This gives

4c2βm2
V

(
c2βm2

V − c2γm2
A1

)
m4

A1

∼ m2
V

m2
A1

× O(m2
W )

m2
A1

� 1,
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Fig. 3. Plots of mass spectra as functions of m A1 with different fixed mV . The solid, dotted, dashed, and
thick-dashed curves represent DCHs, singly charged, neutral Higgses, and V gauge bosons, respectively.

which we can use for estimating an approximation of m2
H±±

2
:

m2
H±±

2
�
(

c2βm2
V − c2γm2

A1

)2

m2
A1

+ s2
2γm2

A1
+ c2βc2γm2

V .

Here, a very small s2
2γ is assumed in this work. This means that m2

H±±
2

is sensitive to changes in

c2βc2γm2
V but not to small changes in m A1 .

Now we pay attention to the first interesting property relating to the SUSYRM331: it may contain
the lightest DCH that does not depend on the SU(3)L scale but on the specific correlation between
m A1 and mV , as indicated in (49) and illustrated in Fig. 2. It can be seen that there always exists a
region of the parameter space containing the mass of this DCH of the order of O(100)GeV. So the
ILC can create this Higgs at a collision energy of 0.5–1.0 TeV, while the two other DCHs are very
heavy because of the large lower bound of mV ≥ 2 TeV as well as m A1 > 1.8 TeV, obtained from

condition (49). The lower bound of the first DCH mass is m H±±
1

�
√

m2
V + m2

A2
= m H±

2
> 2 TeV.

The additional condition of m A1 > 1.8 TeV will result in a larger lower bound of m H±±
1
> 3 TeV

and be independent of m A2 . The lower bound of m2
H±±

2
directly depends on condition (49), where

m2
A1
>

c2βm2
V

c2γ
− m2

W , leading to m H±±
2
> 1.9 TeV, when c2β, c2γ � −1 are assumed in this work.

Hence, the SUSYRM331 model predicts that the DCHs will not appear in e+e− colliders with
colliding energies below 4 TeV, with the exception of the lightest DCH.

There is a second interesting property of the lightest DCH: it is lighter than all particles including
new gauge bosons and singly charged Higgses, as illustrated in Fig. 3. It is easy to see this when
we compare all the masses computed above. The exotic quarks as well as their superpartners can be
reasonably supposed to be heavier than the lightest DCH; thus, we do not consider them here. Then
we can indicate that the lightest DCH decays into only a pair of charged leptons. Recall that all DCHs
have a lepton number of two. Therefore, the total lepton number of all the final states of their decays
must be the same. In particular, the final states of each decay should contain one bilepton or a pair
of charged leptons. From Tables C1 and C2, which list all three- and four-vertex couplings related to
DCHs, we can see that, except for the coupling with two leptons, the lightest DCH always couples
with at least one heavier particle: another DCH, a singly charged Higgs, a new gauge boson, or a
CP-odd neutral Higgs. So, if it exists, the most promising signal of the lightest DCH is the decay
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into only a pair of leptons. This strongly suggests the possibility of detection of the lightest DCH in
e+e− colliders such as the ILC or CLIC, even at the low energy of 0.5–1 TeV.

As mentioned above, the state of the lightest DCH is contributed mainly from two Higgses ρ and ρ′.
Combining this with the coupling factors between DCHs and charged leptons shown in Table C1, it is

easy to prove that the partial decay of this DCH to a pair of same-sign leptons is�
(

H±± → l±i l±i
)

∼(
mli /mW

)2
with li = e, μ, τ . As a result, we obtain Br

(
H±± → τ±τ±

)
� 1, i.e., the number of

events of four-tauon signals is equal to that of creating the lightest DCH at e+e− colliders.
Because the lightest DCH mainly decays to same-sign τ pairs, the lower bound from experimen-

tal searches is 204 GeV [26]. This lightest DCH is very different from other DCHs predicted by
other models where they can mainly decay to pairs of two same-sign W bosons or W −H− [35–37].
On the other hand, the heavy DCHs predicted by the SUSYRM331 only couple to other bileptons
in the model, including H±

2 , V ±, U±± and their corresponding superpartners. The most interest-
ing coupling is H±±

1 W ∓H∓
2 , which was discussed in Refs. [35–37,89] for creating DCHs at LHC

through virtual W ± bosons, while there are no couplings of H±±W ∓W ∓ because of the lepton
number conservation. In addition, the masses of the two heavy DCHs are always larger than 1.5 TeV;
they do not appear in the e+e− colliders such as ILC and CLIC with their recent designs. These
two Higgses may only appear at the LHC with high luminosity. In addition, both of them can be
created through the channel pp → γ /Z/Z ′ → H++H−−, but only H±±

1 may be created through
the channel pp → W ± → H±±

1 H∓
2 . Regarding the latter channel, discussions in Refs. [37,89] indi-

cated that it is very hard to find signals of these very heavy DCHs, even at the very high luminosity
of 3000 fb−1 that LHC can reach. While the former happens for all three DCHs, the two heavy DCHs
are also very hard to observe [90].

For the above reason, the SUSYRM331 predicts that only the lightest DCH may be discovered at
the LHC and e+e− colliders and the signal can be observed through the main channel of pp/e+e− →
γ /Z/Z ′ → H++

3 H−−
3 → four tauons. With the LHC, one hopes that it will be observed up to mass

of 600 GeV with a high luminosity of 3000 fb−1. Because the cross section created is proportional
to 1/s2, with s being the colliding energy, the signal of DCH at ILC and CLIC seems better than that
at LHC. In addition, with the ILC or CLIC, a larger DCH mass range can be observed, so we will
mainly pay attention to the lightest DCH at e+e− colliders.

Now we will estimate the allowed kinetic condition 2m H±± ≤ Ecm for the creation of the lightest
DCH at the e+e− colliders with a maximal center-of-mass (CM) energy of 3 TeV. Even in the case in
which both mV and m A1 are large, there always exists a region in which the mass of the lightest DCH
is of the order of O(100)GeV. Furthermore, this light value is almost independent of m A2 . Although
mass values below 204 GeV for this Higgs were almost excluded recently from its decay into only a
pair of tauons [26,27], higher values can be searched for by ILC or CLIC with a CM energy of about
1 TeV.

The appearance of the light DCH may give large loop corrections to the decays of well known
particles. The most important is the decay channel of the SM-like Higgs H0

1 → γ γ , which gets
contributions from only pure loop corrections. The signal strength of this decay is defined as the
ratio of the observed cross section and the SM prediction, μγγ = σ obs

H→γ γ /σ
SM
H→γ γ , and was found

to be slightly in excess of 1 [3,4,91,92]. The enhancement is explained by the contributions of new
particles to the partial decay width of H0

1 → γ γ [82]. The analytic formula of this decay width
is the sum of its three particular parts: SM, SU(3)L [93], and SUSY contributions. The SM and
SUSYRM331 contributions can be deduced based on Refs. [82,94].
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The SUSYRM331, with both SU(3)L and SUSY breaking scales being larger than 7 TeV, results
in a consequence that most of the SU(3)L and SUSY particles give suppressed contributions to
this decay, except for the lightest DCH. Hence, H0

1 → γ γ is an important channel to set a lower
bound to its mass. We will follow the latest update of μγγ in Ref. [4], where μγγ = 1.12 ± 0.24
without any inconsistencies with the ATLAS results. In addition, to simplify the calculation, we
consider that the largest new physics effect on the H0

1 decay is from only the lightest DCH H±±
3

to the partial decay H0
1 → γ γ . As a result, we have a very simple formula, which must satisfy

the experimental constraint: 0.88 = 1.12 − 0.24 ≤ μSUSYRM331
γ γ ≤ 1.12 + 0.24 = 1.36. The partial

decay of the H0
1 → γ γ is written as

�SUSYRM331
H0

1 →γ γ
�

Gμα
2m3

H0
1

128
√

2π3

∣∣∣ASM +�A
∣∣∣2 , (50)

where ASM is the contribution from the SM particles, and �A is the new contribution from the
SUSYRM331 particles. The well known SM formula can be found in many textbooks or publi-
cations, e.g., in Ref. [94]. To find a simple analytic formula, our work considers only the case
of c2γ , c2β → −1, where the masses of the DCHs are nearly equal to the diagonal entries of
the squared mass matrix (40), being consistent with (48). The lightest DCH mass now satisfies
m2

H±±
3

= O(100)GeV when (49) is satisfied. In addition, the main contribution to the mixing matrix

of the DCHs is C1, shown in (39). Combining this with the discussion on the neutral Higgs sec-
tor, we find that the H0

1 H++
3 H−−

3 coupling is gH0 H H � 1
3 g
(
t2 + 2

)
c2γmW � −1

3 g
(
t2 + 2

)
mW =

− 2c2
W

3(1−4s2
W )

mW . Following this, the formula of �A can be written as [82]

�A = − 8c2
W m2

W

3
(

1 − 4s2
W

)
m2

H±±
3

A0(tH ), (51)

where tH =
m2

H0
1

4m2
H±±

3

and

A0(t) = −[t − f (t)]t−2,

f (t) =

⎧⎪⎪⎨⎪⎪⎩
arcsin2 √

t for t ≤ 1

−1

4

[
ln

(
1+

√
1−t−1

1−
√

1−t−1

)
− iπ

]2

for t > 1.

The signal strength of the decay H0
1 → γ γ predicted by the SUSYRM331 is shown in Fig. 4,

where m H±±
3

≥ 200 GeV is allowed, being equal to the lower bound of 200 GeV from the current
experiments.

Finally, in order to calculate the cross sections of the DCHs in the e+e− colliders, the next
subsection will calculate the coupling of H++H−−V 0.

3.2. Couplings between DCHs with neutral scalars and gauge bosons

It is noted that the process e+e− → H++H−− through virtual neutral Higgses is involved with the
coupling e+e−H0. In the SUSY version [12], this kind of coupling is 2gme/(mW cγ ), while the
SUSY version [20] does not have this kind of coupling at the tree level. In this work, we will use
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Fig. 4. Signal strength of the decay H 0
1 → γ γ as a function of the lightest DCH mass.

the case in Ref. [12]. Corresponding with this, we consider the coupling H++H−−ρ′0. Couplings
H++H−−H0 come from the D-term of the scalar potential (20), namely,

LH++ H−− H0 = gmW

6
ρ′0
(
ρ−−, ρ′−−, χ−−, χ ′−−

)

×

⎛⎜⎜⎜⎜⎝
2sγ
(
t2 − 1

) −3sγ 0 0

−3cγ 2cγ
(
t2 + 2

)
0 0

0 0 2cγ
(
t2 − 2

)
0

0 0 0 −2cγ
(
t2 − 2

)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
ρ++

ρ′++

χ++

χ ′++

⎞⎟⎟⎟⎟⎠ . (52)

Because the contributions from neutral Higgs mediations only relate to ρ′0, the contribution to the
e+e− → H++H−− amplitude is proportional to

gme

mW cγ
× mW cγ = mee2

s2
θW

.

This contribution is smaller than that from neutral gauge boson mediation by a factor of me/
√

s, so
we can neglect it.

The Higgs–Higgs–gauge boson vertices come from the covariant kinetic terms of the Higgses:

Lkinetic
H =

∑
H

(DμH
)† DμH,

→ ig

2

(
− 2√

3
V 8μ +

√
2t√
3

Bμ
) (
ρ−−∂μρ++ + ρ′−−∂μρ′++)

− ig

2

(
−V 3μ + 1√

3
V 8μ −

√
2t√
3

Bμ
) (
χ−−∂μχ++ + χ ′−−∂μχ ′++)+ H.c.

The interactions among neutral gauge bosons and DCHs can be written as

LH H V 0 = i2eAμ
(
ρ−−∂μρ++ + ρ′−−∂μρ′++ + χ−−∂μχ++ + χ ′−−∂μχ ′++)

+ ig

2
√

3

[
−
(

cζ + (2t2 − 3)sζ√
2t2 + 3

)
Zμ +

(
sζ − (2t2 − 3)cζ√

2t2 + 3

)
Z ′μ
]
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Table 2. Couplings of DCHs with neutral gauge bosons.

V μH−−
i H++

i

(
p + p′)

μ
Aμ Zμ Z ′μ

H±±
1 2ie

ig

2
√

3

(
2t2 − 3√
2t2 + 3

sζ − cζ

)
ig

2
√

3

(
2t2 − 3√
2t2 + 3

cζ + sζ

)
H±±

2,3 2ie
ig

2
√

3

(
2t2 − 3√
2t2 + 3

sζ + cζ

)
ig

2
√

3

(
2t2 − 3√
2t2 + 3

cζ − sζ

)

× (
ρ−−∂μρ++ + ρ′−−∂μρ′++)

+ ig

2
√

3

[(
cζ − (2t2 − 3)sζ√

2t2 + 3

)
Zμ −

(
sζ + (2t2 − 3)cζ√

2t2 + 3

)
Z ′μ
]

× (
χ−−∂μχ++ + χ ′−−∂μχ ′++)+ H.c., (53)

whereDμ = ∂μ − igV a
μT a − ig′XT 9 Bμ; T a = 1

2λ
a or −1

2λ
a∗, corresponding to triplet or antitriplet

representations of Higgses; and T 9 = 1√
6
diag(1, 1, 1). In order to find the couplings of Z , Z ′ bosons

with the DCHs, we have to change the basis
(
ρ−−, ρ′−−, χ−−, χ ′−−) into the physical mass states(

G−−, H−−
1 , H−−

2 , H−−
3

)
. Based on (40), if we ignore the suppressed terms containing a factor of

m2
W /m2

V , we can estimate the H−−H++V 0 couplings. In the limit �11 � 1, �12 = �13 → 0, the
couplings of two different DCHs with gauge bosons are very suppressed. So we only investigate the
couplings of H++

i H−−
i V . These couplings are almost independent of �i j or the masses of DCHs,

as given in Table 2.

4. Signal of doubly charged Higgses in e+e− colliders

In an e+e− collider, the reaction e+e− → H++H−− may involve the mediations of virtual neutral
particles such as Higgses and gauge bosons. However, the main contributions relate only to neutral
gauge bosons, as shown in the Feynman diagrams in Fig. 5.

In the center-of-mass (CM) frame, the differential cross section for each DCH is given by

dσ

d(cos θ)
= 1

32πs

√
1 − 4m2

H±±

s

∣∣M∣∣2 , (54)

where s = (p1 + p2)
2 = E2

cm and M is the scattering amplitude; θ is the angle between �k1 and �p1.
The detailed calculation is shown in Appendix A. The final result is

dσ

d(cos θ)
= − s

32π

√
1 − 4m2

H±±

s
×
(
|λL |2 + |λR|2

) (
1 + cos2 θ

)
, (55)

where

λ
H1
L =

∑
a

Ga
L Ga

H

s − ma2
V + ima

V�a

= e2 ×

⎡⎢⎢⎣2

s
+

(
cζ + 3sζ√

2t2+3

)(
2t2−3√

2t2+3
sζ − cζ

)
12s2

θW

(
s − m2

Z + im Z�Z
) +

(
−sζ + 3cζ√

2t2+3

)(
2t2−3√

2t2+3
cζ + sζ

)
12s2

θW

(
s − m2

Z ′ + im Z ′�Z ′
)

⎤⎥⎥⎦ ,
(56)
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Fig. 5. Feynman diagrams for production of H++ and its decays in e+e− colliders.

where a = γ, Z , Z ′, the total width of Z ′ is given in Appendix B, and

λ
H1
R =

∑
a

Ga
RGa

H

s − ma2
V + ima

V�a

= e2

⎡⎢⎢⎣2

s
−

(
2t2−3√

2t2+3
sζ − cζ

)(
− 3sζ√

2t2+3
+ cζ

)
12s2

θW

(
s − m2

Z + im Z�Z
) −

(
2t2−3√

2t2+3
cζ + sζ

)(
3cζ√
2t2+3

+ sζ

)
12s2

θW

(
s − m2

Z ′ + im Z ′�Z ′
)

⎤⎥⎥⎦ .
(57)

Here Ga
L ,Ga

H are the couplings of the neutral gauge bosons with two leptons and two DCHs,
respectively.

Similarly, in the case of H±±
2,3 , we have

λ
H2,3
L = e2 ×

⎡⎢⎢⎣2

s
+

(
cζ + 3sζ√

2t2+3

)(
2t2−3√

2t2+3
sζ + cζ

)
12s2

θW

(
s − m2

Z + im Z�Z
) +

(
3cζ√
2t2+3

− sζ

)(
2t2−3√

2t2+3
cζ − sζ

)
12s2

θW

(
s − m2

Z ′ + im Z ′�Z ′
)

⎤⎥⎥⎦
(58)

and

λ
H2,3
R = e2

⎡⎢⎢⎣2

s
−

(
2t2−3√

2t2+3
sζ + cζ

)(
cζ − 3sζ√

2t2+3

)
12s2

θW

(
s − m2

Z + im Z�Z
) −

(
2t2−3√

2t2+3
cζ − sζ

)(
3cζ√
2t2+3

+ sζ

)
12s2

θW

(
s − m2

Z ′ + im Z ′�Z ′
)

⎤⎥⎥⎦ .
(59)

The total cross section is

σ = s

12π

√
1 − 4m2

H±±

s
×
(
|λL |2 + |λR|2

)
. (60)

The above process happens only when
√

s > 2m H±± > 400 GeV from the prediction of the
SUSYRM331.

To determine the signals of the lightest DCH, we firstly investigate the dependence of the cross
section of the process e+e− → H++

3 H−−
3 on the fixed collision energies of 0.5, 1, 2, and 3 TeV,

as shown in Fig. 6. For
√

s = 0.5 TeV, with each fixed value of mV there exists a very small range
of m A1 corresponding to the creation of H±±

3 . This is because a small m A1 will create a tachyon
DCH while large values will make the masses of the DCHs larger than the allowed kinetic condition.
The cross section in this case can reach few pb. For larger

√
s, the cross sections decrease but still

reach O(0.1) pb. One of the most important properties of the lightest SUSYRM331 DCH is that its
mass characterizes the difference between two parameters m A1 and mV . Hence, the signal of DCH
requires near-degeneration between these two masses, |m A1 − mV | < 100 GeV when

√
s ≤ 1 TeV.
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Fig. 6. Plots of the production cross sections of the lightest DCH H±±
3 as a function of m A1 with different

colliding energies. The values of mV are mV = 2, 2.2, 2.5, and 2.8 TeV, represented by dotted, dot-dashed,
dashed, and solid curves, respectively.

We can also see that the low colliding energies give a rather large cross section for creating the
lightest DCH.

The heavier DCHs may be created with very high collision energies, i.e., higher than 4 TeV. For
illustration, Fig. 7 represents the total cross sections σ(e+e− → H++H−−) of three DCHs in a
CM energy of

√
s = 5 TeV, although this goes beyond the maximal energy that both ILC and CLIC

can reach. Because all m A1,m A2,mV � mW , the cross sections of the DCHs depend weakly on
the change of m A1 . Apart from m H±±

2,3
, m A1 only affects the decay width of m Z ′ , which makes

a small contribution to the cross section in the limit of very large SUSY and SU(3)L scales. A

value of mV = 2 TeV gives m H±±
1

�
√

m2
A2

+ m2
V = √

s, leading to a rather small cross section of

O(10−2) pb (the dotted curve in the left-hand panel), and does not depend on m A1 , while the value of
mV = 2.5 TeV gives m H±±

1
>

√
s, and H±±

1 cannot appear. For H±±
2 , as explained above, its mass

is also independent of small m A1 . Furthermore, all couplings and gauge boson masses related to the
cross sections are independent of the mentioned range of m A1 . So the λH

L ,R shown in (56)–(59) will
become constant too, giving the same property of the cross section for this DCH. However, it is very
sensitive to mV . In particular, it can get a value of 0.1 pb with mV = 2 TeV but this reduces to 0.03 pb
for mV = 2.5 TeV. When

√
s = 5 TeV, the cross section of the lightest DCH is 0.1 pb for all masses

satisfying the kinetic condition, rather smaller than the other cases with
√

s < 3 TeV.
Figures 6 and 7 only help us see the maximal values of the cross sections for creation of the DCHs.

The above discussion does not include the lower bound on the lightest DCH mass. Figure 8 is used
to estimate the values of the cross sections for

√
s = 1–3 TeV, including both the condition of the
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Fig. 7. Total cross sections of creating three DCHs in e+e− colliders as a function of m A1 at a very high colliding
energy of 5 TeV and mV = 2 (2.5) TeV. The heaviest DCH is represented by dotted curves, the second heaviest
by dashed curves, and the lightest by solid curves.

Fig. 8. Contour plots of the mass and the production cross section of the lightest DCH in e+e− colliders as
functions of mV and m A1 with different colliding energies of 1, 1.5, 2, and 3 TeV. The mass and the cross section
are represented by solid and dotted curves, respectively.

lower DCH mass bound and the allowed kinetic condition for creating heavy physical DCHs. Each
panel in the figures has the same interesting properties. When a DCH mass approaches the limit of
the kinetic-allowed value, the corresponding cross section will decrease to zero. This explains why
the contours of these two quantities almost overlap each other in the limits of m H±± → √

s/2 and
cross section σ → 0.

In Fig. 8, the cross section can reach a value of a few pb with
√

s = 1 TeV if a lower bound of the
DHC mass of 200 GeV is considered. In general, a value of a few pb can be reached by searching
for a very light DCH with a mass below 250 GeV in colliding energies in the range of 0.5–1 TeV.
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Fig. 9. Contour plots of production cross sections of DCHs in e+e− colliders as a function of mV and m A1

at a colliding energy of 5 TeV. The left panel focuses on the lightest DCH, where the dotted and solid curves
describe the cross section and mass, respectively. The right panel represents the cross sections of the remaining
two DCHs; the second heaviest and the heaviest are described by dashed and dotted curves, respectively. In
addition, the dashed and solid thick curves represent the maximal mass values of the DCHs allowed by the
kinetic condition.

These values of the cross section are much smaller than the maximal value for
√

s = 0.5 TeV shown
in Fig. 6. In addition, the region of the parameter space allowed for the DCH appearance is very nar-
row, implying the degeneration of m A1 and mV . With

√
s = 1.5–2 TeV, the lightest DCH with mass

500 GeV < m H±±
3
< 750 GeV may be detected with the corresponding σ > 0.4 pb. More interest-

ingly, it can reach 1 pb, twice as large as in the case of
√

s = 1 Tev, if the mass is around 500 GeV.
For

√
s = 3.0, the cross sections for m H±±

3
> 0.5 TeV are not larger than 0.3 pb. This value is close

to the maximal value shown in Fig. 6. From this, we can conclude that the largest cross section for
searching for the lightest DCH with a mass from 0.5–0.75 TeV corresponds to intermediate values
of

√
s from 1.5–2 TeV.

Figure 9 shows the rather small cross sections of creating all DCHs when
√

s = 5 TeV. For the
lightest, the maximal is below 0.1 pb, while for the two others the value is of the order of 10−2 pb.

All the above numerical investigations show that the production cross sections of the lightest DCHs
in e+e− colliders can be reach values of 10−1 to a few pb, depending on the DCH mass and the
collision energy. This will be a good signal for the detection of the lightest DCH in near-future
colliders [22–25]. In particular, for the ILC, with a collision energy of 0.5–1 TeV, corresponding to
an integrated luminosity of 500–1000 fb−1 [22,23], the number of events for creation of the lightest
DCH will be around 5 × 105–106, corresponding to a DCH mass range of 200–500 GeV. With the
CLIC [24,25], where the collision energy will increase to 3 TeV or more, the lightest DCH may be
observed with a larger mass range. Furthermore, the estimated integrated luminosity targets will be
1.5 ab−1 at 1.4 (1.5) TeV and 2 ab−1 at 3 TeV collision energy. The DCH with a mass below 750 GeV
gives the best signal with

√
s = 1.5–2 TeV, where the observed number of events can reach 6 × 105–

1.5 × 106. With s = 3 TeV, the maximal number of events reduces to 6 × 105. When the collision
energy is high enough to create heavy DCHs, the number of events reduces to 104, corresponding to
a luminosity of 1 ab−1.

5. Conclusions

We have investigated the Higgs sector of the SUSYRM331 model, where the DCHs are particularly
concentrated on as one of the signals indicating new physics at e+e− colliders. Here, the masses of
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neutral CP-even Higgses, DCHs, and the cross sections of the creation of DCHs at e+e− colliders
can be represented according to five unknown parameters: two masses m A1,A2 of neutral CP-odd
Higgses characterizing the soft scale; the mass of the singly charged heavy gauge boson mV –SU(3)L

breaking scale; and both γ and β, relating to the ratios of the VEVs. This choice of parameters helps
us to discuss the relations among not only particle masses but also the breaking scales of the model

more easily. We have found the exact condition

(
m2

A1
+m2

W

)
c2γ

m2
V

< c2β <
m2

W c2γ

m2
V +m2

A2

< 0 that must be

satisfied to avoid tachyons of the DCHs at the tree level. The numerical investigation of the DCHs as
a function of m A1 and mV shows that, even with very large values of m A1 , m A2 , and mV , there may
still exist a light DCH if the value of m A1 is close enough to that of mV , being consistent with the

relation 0 < −c2β

[
c2βm2

V − c2γ

(
m2

W + m2
A1

)]
∼ O(m2

W

)
found by our analysis. The constraint

on the decay H0
1 → γ γ gives a lower bound on the mass of the DCH of about 200 GeV, the same

as the experimental value given by CMS. Finally, we have investigated the possibility of creating
DCHs in e+e− colliders with collision energies from 1 to 3 TeV, and indicated that only the lightest
DCH may be created. The production cross sections range from 0.1 to a few pb, depending on the
mass range and the collision energy. Because the SUSYRM331 is valid in the limit of the very large
SU(3)L scale, the two other DCHs always have masses above 2 TeV; therefore, they do not appear
unless the collision energies are higher than 4 TeV. In any case, they will give small cross sections
for all three DCHs, of the order of O(10−2) pb for the two heavier DCHs and 0.1 pb for the lightest.
The two heavier DCHs are difficult to observe in the LHC, ILC, and CLIC. On the other hand, the
lightest DCH, which only decays to a same-sign pair of charged tauons, gives the most promising
signal for searching for it in e+e− colliders such as the ILC and CLIC. If it is detected, the numerical
investigation in this work will give interesting information on parameters such as m A1 and mV .
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Appendix A. Cross section of e+e− → H++ H−−

The Lagrangian for the process e+e− → H++H−− can be written in terms of a two-component
spinor:

LeeV 0 = −Aa
μ

(
Ga

Le†σ̄ μe − Ga
Rec†σ̄ μec

)
+

∑
H=H±±

1,2,3

Ga
H Aa

μ

(
H++∂μH−− − H.c.

)
, (A1)

where Aa
μ = Aμ, Zμ, Z ′

μ, Ga
L , and Ga

R are given in Table 1, and Ga
H is given in Table 2. The Feynman

rules can be found in, e.g., Ref. [96]; the details are shown in Fig. A1.
Denoting k = k2 − k1, the total amplitude for each DCH is written as

iMH = −i
(

x†
2[σ̄ .k]x1

)∑
a

Ga
L Ga

H

(p1 + p2)2 − ma2
V

− i
(

y2[σ.k]y†
1

)∑
a

Ga
L Ga

H

(p1 + p2)2 − ma2
V

≡ −i
(

x†
2[σ̄ .k]x1

)
λL − i

(
y2[σ.k]y†

1

)
λR, (A2)
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Fig. A1. Feynman rules for interacting vertices of ll Aa and H++ H−− Aa , where Aa is a physical neutral gauge
boson.

where ma
V = 0 and m Z , m Z ′ correspond to photons and Z , Z ′ bosons. Squaring the amplitude and

summing over the electron and positron spins, we have∣∣M∣∣2 =
∑
s1,s2

M†
HMH

= 2
(
|λL |2 + |λR|2

) [
2(p1.k)(p2.k)− (p1.p2)k

2
]

+ 2�(λ∗
LλR)m

2
ek2. (A3)

Now we use the fact that p2
1 = p2

2 = m2
e � 0, k2

1 = k2
2 = m2

H±± . Furthermore, all terms in (A3) are
invariant under the Lorentz transformation, so the result is unchanged when we use any particular
frame. Here we use the center-of-mass frame where the momenta of the two initial particles are

p1μ = (E, 0, 0, E) , p2μ = (E, 0, 0,−E) (A4)

with E = Ecm/2 = √
s/2. We define the two four-momenta of the final particles as k1μ = (E1, �k1)

and k2μ = (E2, �k2). Using the condition of four-momentum conservation, it is easy to prove the
following results:

k2 = (k1 − k2)
2 = 4m2

H±± − s, p1.k = −p2.k = s cos θ

2

√
1 − 4m2

H±±

s

p1.p2 = s

2
− m2

e � s

2
. (A5)

Inserting all results (A5) into (A3), we obtain∣∣M∣∣2 = −
(
|λL |2 + |λR|2

)
s2
(

1 + cos2 θ
)

+ 2�(λ∗
LλR)m

2
e

(
s − 4m2

H±±
)

� −
(
|λL |2 + |λR|2

)
s2
(

1 + cos2 θ
)
. (A6)

Appendix B. Total width of the Z′ gauge boson

For any particles φ (fermion, gauge boson, scalar) in the model, we define the corresponding covari-

ant derivative related to neutral gauge bosons as Dμφ ≡
(
∂μ − iqφAμ − igφZ Zμ − igφZ ′ Z ′

μ

)
φ. The

analytic forms of gφZ ′ depend on the particular representation of φ. In particular, we have

◦ SU(3)L singlet

gφZ ′ = −gYφcζ t2√
3
(
2t2 + 3

)
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Table B1. Couplings of the Z ′ gauge boson with two gauge bosons (two gauginos).

Gauge boson Z ′W +W − Z ′U++U−− Z ′V +V −

gV
Z ′ , (gṼ

Z ′)
g
√

3

2

(
−sζ + cζ√

2t2 + 3

)
− g

√
3cζ√

2t2 + 3
−g

√
3

2

(
sζ + cζ√

2t2 + 3

)

◦ SU(3)L triplet

gφZ ′ = g

2
√

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2

(
sζ + Yφ t2cζ√

2t2 + 3

)
0 0

0 sζ − cζ
(
2Yφt2 + 3

)
√

2t2 + 3
0

0 0 sζ + cζ
(−2Yφt2 + 3

)
√

2t2 + 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
◦ SU(3)L antitriplet

gφZ ′ = g

2
√

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

(
sζ − Yφt2cζ√

2t2 + 3

)
0 0

0 −sζ − cζ
(
2Yφt2 − 3

)
√

2t2 + 3
0

0 0 −sζ − cζ
(
2Yφt2 + 3

)
√

2t2 + 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
◦ The SU(3)L adjoint representation relates to gauge bosons and their superpartners only.

The standard couplings of three gauge bosons can be written as igV
Z ′ [gμν(p − k1)

σ

+gσν(k1 − k2)
μ + gμσ (k2 − p)ν], where gV V ′

Z ′ is shown in Table B1. With gauginos, the

vertices can also be written in the form of igṼ
Z ′ Z ′

μṼ †σ̄ μṼ , where gṼ
Z ′ = gV

Z ′ .

Below, we will calculate the partial decay width of Z ′ into three different classes of particles.
Analytic formulas can be found in Ref. [95]. For the purpose of estimating the total width decays
of Z ′ as simply as possible, we only consider the largest contribution to each class of particles. In
addition, all particles such as gauginos, sleptons, squarks receiving masses from the soft terms are
very heavy, so that Z ′ cannot decay into them. We assume similar situations for cases of exotic quarks.
The decay of the Z ′ related to these particles deserves further detailed study. Here the following
numerical values are used: sζ = 0.155, cζ = 0.988, corresponding to the definition (8) in the case
mV � mW . The value of t follows the definition (9) with s2

W = 0.231.

B.1. Decay of Z ′ to fermions pairs

This kind of decay is involved with the Lagrangian below:

LZ ′ f f =
∑

f

Z ′μ
(

g f
Z ′ f †σμ f + g f c

Z ′ f c†σμ f c
)

=
∑

f

Z ′μ
(

g f
Z ′ f †σμ f − g f c

Z ′ f cσμ f c†
)
, (B7)
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Table B2. Z H H couplings.

Vertex Factor Vertex Factor

Z ′ H+
1 H−

1

−ig√
3

(
sζ + t2cζ√

2t2 + 3

)
Z ′ H+

2 H−
2

−ig√
3

(
sζ − t2cζ√

2t2 + 3

)

where the sum is over all fermions in the model that couple with Z ′ and satisfy the kinetic condition
m Z ′ > 2m f . Formulas of g f

Z ′ and g f c

Z ′ were shown in Table 1. The partial decay width corresponding
to each fermion is [96]

�
(

Z ′ → f f +
)

= N f
c m Z ′

24π

(
1 −

4m2
f

m2
Z ′

)1/2 [(∣∣∣g f
Z ′
∣∣∣2 +

∣∣∣g f c

Z ′
∣∣∣2)(1 −

m2
f

m2
Z ′

)
− 6g f

Z ′ g
f c

Z ′
m2

f

m2
Z ′

]
,

(B8)

where N f
c is the color factor, being equal to 3 for quarks and 1 for all other fermions (leptons, quarks,

Higgsinos, and gauginos).

B.2. Decay of Z ′ to scalar pairs

The Lagrangian related to these decays is

LZ ′Si Si =
∑
Si ,S j

ig
Si j

Z ′ Z ′
μ

[
S†

i ∂
μS j − (∂μS†

i )Si

]
, (B9)

where Si stands for any scalars in the model. The Feynman rule is the same as that for the DCH
shown in Fig. A1, where Ga

H → ig
Si j

Z ′ . Nonzero values of g
Si j

Z ′ for Higgses in the model are shown
in Table B2.

If the momentum of the Z ′ boson is pμ, then we have p2 = m2
Z ′ and p = k1 + k2. The amplitude

of the decay is

iM(
Z ′ → Si S j

) = −g
Si j

Z ′ (k2 − k1) · ε

with εμ = εμ(p, λZ ′) being the polarization vector of Z ′.
Averaging over the Z ′ polarization using

1

3

∑
λZ ′

εμε
∗
ν = 1

3

(
−gμν + pμ pμ

m2
Z ′

)
, (B10)

we obtain the squared amplitude

1

3

∣∣∣M(
Z ′ → Si S j

)∣∣∣2 = 1

3

∣∣∣gSi j

Z ′
∣∣∣2 [−(k1 − k2)

2 +
(
k2

1 − k2
2

)2
m2

Z ′

]
. (B11)
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Table B3. Coupling of Z ′ H V .

Vertex Factor Vertex Factor

Z ′U±±ρ∓∓ igsγmW√
3

(
sζ − 2cζ t2

√
2t2 + 3

)
Z ′U±±ρ ′∓∓ igcγmW√

3

(
sζ − 2cζ t2

√
2t2 + 3

)
Z ′U±±χ∓∓ igsβmV√

3

(
sζ + 2cζ t2

√
2t2 + 3

)
Z ′U±±χ ′∓∓ igmV cβ√

3

(
sζ + 2cζ t2

√
2t2 + 3

)
Z ′ Z Hρ

2igc2ζ sγ
√

2t2 + 3m2
V mW

3(m2
V + m2

W )
Z ′ Z Hρ ′

2igc2ζ cγ
√

2t2 + 3m2
V mW

3(m2
V + m2

W )

Z ′ Z Hχ −2igc2ζ sβ
√

2t2 + 3mV m2
W

3(m2
V + m2

W )
Z ′ Z Hχ ′ −2igc2ζ cβ

√
2t2 + 3mV m2

W

3(m2
V + m2

W )

Noting that k2
1 = m2

Si
, k2

2 = m2
S j

, and (k1 − k2)
2 = 2

(
m2

Si
+ m2

S j

)
− m2

Z ′ we have the formula of

�
(
Z ′ → SS

)
, namely,

�(Z ′ → Si S j ) = 1

16πm Z ′

√√√√(1 −
m2

Si
+ m2

S j

m2
Z ′

)2

−
4m2

Si
m2

S j

m4
Z ′

× 1

3

∣∣∣M(
Z ′ → Si S j

)∣∣∣2

=

∣∣∣gSi j

Z ′
∣∣∣2 m Z ′

48π
×

√√√√(1 −
m2

Si
+ m2

S j

m2
Z ′

)2

−
4m2

Si
m2

S j

m4
Z ′

×

⎡⎢⎣1 −
2(m2

Si
+ m2

S j
)

m2
Z ′

+
(

m2
Si

− m2
S j

)2

m4
Z ′

⎤⎥⎦ (B12)

for two distinguishable final states. For identical final states, there needs to be an extra factor 1/2 to
avoid counting each final state twice [97]. Therefore, if Si ≡ S j → S, then mSi = mS j = mS and,

denoting g
Si j

Z ′ = gS
Z ′ , we have a more simple formula:

�
(
Z ′ → SS

) = |gS
Z ′ |2m Z ′

96π

[
1 − 4m2

S

m2
Z ′

]5/2

. (B13)

It is noted that |gS
Z ′ |2 ∼ g2/12 × O(1), as shown in Table 2 for DCHs. This means that

�
(
Z ′ → SS

) ∼ g2m Z ′

576π
× O(1) � �

(
Z ′ → f f

)
. (B14)

B.3. Decay of Z ′ to one gauge boson and one scalar

This case happens only with scalars that inherit nonzero VEVs, i.e., neutral Higgses in the model.
Detailed investigation shows that possible vertices are Z ′H++U−−, Z ′H−−U++, and Z ′Z H0. This
part of the Lagrangian has the form gSV

Z ′ Z ′
μVμS. Vertex factors are shown in Table B3. The partial

decay width for this case is

�(Z ′ → SV ) =
∣∣gSV

Z ′
∣∣2

48πm Z ′
×

√√√√(1 − m2
V + m2

S

m2
Z ′

)2

− 4m2
V m2

S

m4
Z ′

×
[

2 +
(
m2

Z ′ + m2
V − m2

S

)2
4m2

V m2
Z ′

]
.

(B15)
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Table C1. Three-vertex coupling of doubly charged Higgses.

Vertex Factor Vertex Factor

ρ++ρ−− Zμ − ig

2
√

3

[
(2t2 − 3)sζ√

2t2 + 3
+ cζ

] (
p + p′)

μ
ρ′++ρ′−− Zμ − ig

2
√

3

[
(2t2 − 3)sζ√

2t2 + 3
+ cζ

] (
p + p′)

μ

χ++χ−− Zμ − ig

2
√

3

[
(2t2 − 3)sζ√

2t2 + 3
− cζ

] (
p + p′)

μ
χ ′++χ ′−− Zμ − ig

2
√

3

[
(2t2 − 3)sζ√

2t2 + 3
− cζ

] (
p + p′)

μ

ρ++U−−μHρ
ig

2

(
p + p′)

μ
ρ++U−−μHA1

gcγ
2

(
p + p′)

μ

ρ++V −μH−
1 − igcγ√

2

(
p + p′)

μ
ρ′++U−−μHρ ′ − ig

2

(
p + p′)

μ

ρ′++U−−μHA1

−gsγ
2

(
p + p′)

μ
ρ′++V −μH−

1
igsγ√

2

(
p + p′)

μ

χ++U−−μHχ − ig

2

(
p + p′)

μ
χ++U−−μHA2

gcβ
2

(
p + p′)

μ

χ++W −μH−
2

igcβ√
2

(
p + p′)

μ
χ ′++U−−μHχ ′ − ig

2

(
p + p′)

μ

χ ′++U−−μHA2 − gsβ
2

(
p + p′)

μ
χ ′++W −μH−

2 − igsβ√
2

(
p + p′)

μ

ρ′−−lc
i lc

i
igml√

2mW cγ cβ
χ ′++ll

igml√
2mV cγ cβ

We can estimate that the largest contributions to �(Z ′ → SV ) are from χ and χ ′, namely,
�(Z ′ → SV ) = 0.06g2m Z ′ × O(1).

B.4. Decay of Z ′ to gauge boson pairs

The possible decays are Z ′ → W W, V V,UU with the respective couplings shown in Table B1. The
general vertex factor is igX

Z ′ [gμν(p − k1)
σ + gσν(k1 − k2)

μ + gμσ (k2 − p)ν], where X = W , U ,
or V gauge bosons. The partial decay for each particle can be written by

�(Z ′ → X X) =
∣∣gX

Z ′
∣∣2 m Z ′

192π

[
1 − 4m2

X

m2
Z ′

]3/2
m4

Z ′ + 12m4
X + 20m2

X m2
Z ′

m4
X

. (B16)

From the mass spectra of gauge bosons given in Appendix 2.2, we can see that, in the case of

mW � mV , we have m2
Z ′ � 2

(
t2+2

)
3 m2

U and m2
U � m2

V . Furthermore, from the definition of ζ in (8),
we can see that, in the limit of mW /mV → 0, we get gW

Z ′ → 0. More exactly, if m2
W /mV = ε � 1,

then gW
Z ′ �

√
3g
(

t2+1
)2

√
2
(

t2+2
)3/2 × m2

W

m2
V

, leading to the result that �(Z ′ → W +W −) � g2m Z ′ (1+t2)2

648π
(

t2+2
) . It is noted

that, in this case, cζ � 0.988 and sζ � 0.155.

Appendix C. Coupling of doubly charged Higgs

Three-vertex coupling is shown in Table C1, four-vertex coupling in Table C2.
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Table C2. Four-vertex coupling of DCHs.

Vertex Factor Vertex Factor

ρ++ρ−− AμAμ 4ie2 ρ′++ρ′−− AμAμ 4ie2

χ++χ−− AμAμ 4ie2 χ ′++χ ′−− AμAμ 4ie2

ρ++ρ−− AμZμ
−i

√
2g2t√

3
(
2t2 + 3

)
[
(2t2 − 3)sζ√

2t2 + 3
+ cζ

]
ρ′++ρ′−− AμZμ

−i
√

2g2t√
3
(
2t2 + 3

)
[
(2t2 − 3)sζ√

2t2 + 3
+ cζ

]

χ++χ−− AμZμ
−i

√
2g2t√

3
(
2t2 + 3

)
[
(2t2 − 3)sζ√

2t2 + 3
− cζ

]
χ ′++χ ′−− AμZμ

−i
√

2g2t√
3
(
2t2 + 3

)
[
(2t2 − 3)sζ√

2t2 + 3
− cζ

]

ρ++ HρU−−μAμ
ie2

sW
ρ′++ Hρ ′U−−μAμ

ie2

sW

χ++ HχU−−μAμ
ie2

sW
χ ′++ Hχ ′U−−μAμ

ie2

sW

ρ++ HρU−−μZμ − ig2

2
√

3

[
2t2sζ√
2t2 + 3

+ cζ

]
ρ′++ Hρ ′U−−μZμ − ig2

2
√

3

[
2t2sζ√
2t2 + 3

+ cζ

]

χ++ HχU−−μZμ
ig2

2
√

3

[
2t2sζ√
2t2 + 3

− cζ

]
χ ′++ Hχ ′U−−μZμ

ig2

2
√

3

[
2t2sζ√
2t2 + 3

− cζ

]

ρ++ HρV −μW −
μ

ig2

2
√

2
ρ′++ Hρ ′ V −μW −

μ

ig2

2
√

2

χ++ HχV −μW −
μ

ig2

2
√

2
χ ′++ Hχ ′ V −μW −

μ

ig2

2
√

2

ρ++ HA1U−−μAμ
e2cγ
sW

ρ′++ HA1U−−μAμ
−e2sγ

sW

χ++ HA2U−−μAμ
e2cβ
sW

χ ′++ HA2U−−μAμ − e2sβ
sW

ρ++ HA1U−−μZμ − g2cγ

2
√

3

[
2t2sζ√
2t2 + 3

+ cζ

]
ρ′++ HA1U−−μZμ

g2sγ

2
√

3

[
2t2sζ√
2t2 + 3

+ cζ

]

χ++ HA2U−−μZμ − g2cβ

2
√

3

[
2t2sζ√
2t2 + 3

− cζ

]
χ ′++ HA2U−−μZμ

g2sβ

2
√

3

[
2t2sζ√
2t2 + 3

− cζ

]

ρ++ HA1 V −μW −
μ

g2cγ

2
√

2
ρ′++ HA1 V −μW −

μ

−g2sγ

2
√

2

χ++ HA2 V −μW −
μ

−g2cβ

2
√

2
χ ′++ HA2 V −μW −

μ

g2sβ

2
√

2

ρ++ H−
1 V −μAμ

−3ie2cγ√
2sW

ρ′++ H−
1 V −μAμ

3ie2sγ√
2sW

χ++ H−
2 W −μAμ

3ie2cβ√
2sW

χ ′++ H−
2 W −μAμ

−3ie2sβ√
2sW

ρ++ H−
1 U−−μW +

μ

−ig2cγ
2

ρ′++ H−
1 U−−μW +

μ

ig2sγ
2

χ++ H−
2 U−−μV +

μ

−ig2cβ
2

χ ′++ H−
2 U−−μV +

μ

ig2sβ
2

ρ++ H−
1 V −μZμ

ig2cγ

2
√

6

[
(4t2 − 3)sζ√

2t2 + 3
− cζ

]
ρ′++ H−

1 V −μZμ − ig2sγ

2
√

6

[
(4t2 − 3)sζ√

2t2 + 3
− cζ

]

χ++ H−
1 W −μZμ

ig2cβ

2
√

6

[
(4t2 − 3)sζ√

2t2 + 3
+ cζ

]
χ ′++ H−

1 W −μZμ − ig2sβ

2
√

6

[
(4t2 − 3)sζ√

2t2 + 3
+ cζ

]
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