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Spin dynamics in paramagnetic diluted magnetic semiconductors
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Microscopic properties of low-energy spin dynamics in diluted magnetic semiconductor are addressed in
a framework of the Kondo lattice model including random distribution of magnetic dopants. Based on the
fluctuation-dissipation theorem, we derive an explicit dependence of the spin diffusion coefficient on the single-
particle Green function which is directly evaluated by dynamical mean-field theory. In the paramagnetic state, the
magnetic scattering has been manifested to suppress spin diffusion. In agreement with other ferromagnet systems,
we also point out that the spin diffusion in diluted magnetic semiconductors at small carrier concentration displays
a monotonic 1/T -like temperature dependence. By investigating the spin diffusion coefficient on a wide range of
the model parameters, the obtained results have provided a significant scenario to understand the spin dynamics
in the paramagnetic diluted magnetic semiconductors.
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I. INTRODUCTION

Recently, diluted magnetic semiconductors (DMSs) have
attracted much attention due to their prospective applications
in spin electronics (spintronics) [1], where the integration of
data processing and the magnetic storage are incorporated into
a single chip [2,3]. In typical DMS materials, magnetic ions
are doped into a semiconducting host, for example, manganese
ions Mn2+ are doped into semiconducting host GaAs [4].
They play a dual role of both an acceptor and localized
magnetic moment due to their partially filled d shell [5]. At
low temperature and with small doping, the DMSs have often
been found to be ferromagnetic, for instance, Ga1−xMnxAs is
ferromagnetic at x ∼ 1%–7% [6,7]. In this case, the spin-spin
correlation is long range and the spin excitation is mediated
by the spin wave states. In the opposite case, i.e., in the
paramagnetic state, the spin-spin correlation is short range
and the spin polarization of carriers in general is not spatially
uniform, a hydrodynamic spin diffusion thus is induced in
the system. To implement DMSs for real spintronics impact,
the understanding of the spin dynamics is important. The
magnetic relaxation time τ (k) under a magnetic disturbance
with wave vector k can be determined through the spin
diffusion constant Ds by τ (k) = 1/Dsk

2 [8]. Therefore the
spin diffusion constant is the principal quantity that provides
information on the spin dynamics. When the system reaches
the paramagnetic-ferromagnetic phase transition point, the
spin diffusion constant decreases and the process of spin
relaxation slows down. The magnetic relaxation time and
the spin fluctuations therefore are dominant at small wave
vector of the magnet excitation spectrum in the paramagnetic
state. In degenerate systems, the spin diffusion constant can
be determined from the spin conductivity at zero frequency
by the Einstein relation. The spin diffusion constant in the
paramagnetic state at high temperature was first studied by
de Gennes [9]. Following his work, various models have
been applied to study the spin diffusion constant in magnetic
systems such as the t-J model [10], the Heisenberg model [11],
or the double exchange model [12].

In this paper, we also present a microscopic calculation
of the spin diffusion constant of DMSs. In DMSs, the doped

magnetic ions act as an acceptor, so the main charge carrier
in the DMSs is the hole. The holes are assumed to be able to
hop in the lattice that creates the quasiparticle band and, for
simplicity, it can be modeled by the tight-binding approxima-
tion [13,14]. The local spin exchange between the magnetic
ions and the holes is the essential ingredient of the magnetic
properties of the DMSs [7,15]. We assume that the doped
magnetic ions are randomly substituted in the cation sites, so
in the lattice only a fraction of lattice sites is occupied by the
magnetic impurities and the remaining sites are nonmagnetic.
The local spin exchange is valid only on the magnetic impurity
sites. Due to the random chemical substitution, a random local
potential for the charge carriers at the magnetic impurity sites
is also taken into account. This situation looks similar to
doped manganites in which rare-earth ions are replaced by
divalent alkaline ions [16,17]. In doped manganites, a Falicov-
Kimball term has succeeded in modeling the randomness
of the doped ions [16,17]. In the framework of dynamical
mean-field theory (DMFT), a moderate disorder solution of
the dc electrical resistivity has shown agreement with the
experimental data observed for manganites, particularly in the
paramagnetic state [17]. The DMFT has extensively been used
for investigating strongly correlated electron systems [18].
It is based on the fact that the self-energy depends only on
frequency in the infinite dimensional limit. By adapting also
the DMFT, the spin diffusion at any temperature down to
the ferromagnetic transition point in manganites has been
calculated [12]. A qualitative agreement of the theoretically
calculated spin diffusion constant with the experimental data
was also observed [12]. Developing from these achievements,
in the present work we focus on the spin dynamical properties
in the DMSs based on the DMFT. We construct a microscopic
model for DMSs, in which the randomness of the doped
magnetic ions is taken into account. The spin diffusion constant
is related to the single-particle Green function and it can be
evaluated within the framework of the DMFT. It is found that
the spin diffusion enhances if the Fermi level settles inside
the magnetic impurity band. Both magnetic scattering and
temperature suppress the spin diffusion in the paramagnetic
state. At small carrier concentrations, the spin diffusion
displays a monotonic 1/T -like temperature dependence. In
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contrast, for large carrier concentrations we find a minimum
point at an intermediate temperature that is attributed to an
occurrence of the low-energy short lived many body states in
the system.

The present paper is organized as follows. In Sec. II, we
present a microscopic Hamiltonian essentially applied for
the DMS materials and its DMFT solution in the paramagnetic
state. Section III outlines some general steps to derive the
Einstein relation between the spin diffusion constant and spin
conductivity through the fluctuation-dissipation theorem. In
Sec. IV, we present the numerical results and their discussions.
A summary and conclusion are presented in the last section.

II. MICROSCOPIC MODEL FOR DILUTED MAGNETIC
SEMICONDUCTORS AND ITS DYNAMICAL

MEAN-FIELD THEORY

In the presence of random magnetic ions and their spin
exchange with the itinerant carriers in DMSs, we construct the
following Hamiltonian in the tight-binding approximation:

H= −t
∑
〈i,j〉σ

c
†
iσ cjσ + 2J

∑
i

αiSisi −μ
∑

i

ni −
∑

i

Uαini,

(1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator for an

itinerant carrier with spin σ at lattice site i. The first term
in the Hamiltonian (1) represents the tight-binding model for
the itinerant carriers in DMSs. t is the hoping integral, and
in the limit d → ∞, it scales with the spatial dimension d as
t = t∗/2

√
d [18]. In the following, we will take t∗ = 1 as the

unit of energy [18]. Si is the spin of the magnetic impurity
at lattice site i, while si = ∑

ss ′ c
†
isσ ss ′cis ′/2 is the spin of the

itinerant carriers (σ are the Pauli matrices). J is the strength of
the local spin exchange. U is a local disorder strength, which
reflects the energy difference, when the lattice site is occupied
by magnetic ions. The chemical potential μ is introduced to
control carrier doping. In the Hamiltonian (1), we have also
included αi as a classical variable that takes the value of either
1 or 0 if site i is occupied or unoccupied respectively by
magnetic ion. The introduced variable αi ensures that the spin
exchange and the local disorder are valid only on the lattice
sites that are occupied by the magnetic ions. Its distribution
function is binary:

P (α) = (1 − x)δ(α) + xδ(1 − α), (2)

where x is the doping number of the magnetic ions. In the
case of αi = 1 for all i, the first three terms in the Hamiltonian
illustrate the Kondo lattice model [7]. Because of the large
localized spin of magnetic ions, for instance, S = 5/2 for
an Mn ion at half-filling, the localized magnetic spin can be
considered to behave classically, as widely assumed [7,19].

The Hamiltonian (1) looks analogous to the double ex-
change model with diagonal disorder. The later has been solved
successfully by the DMFT to reveal a complex phase structure
in doped manganites [16,20]. Without the random disorder,
the DMFT has also been adapted to calculate the critical
temperature for the ferromagnetic transition in DMSs [7].
Meanwhile, in the presence of the disorder potential due to
the doping of magnetic ions, the transport properties in DMSs

have been studied by the DMFT as well [15]. In the present
work, we make further use of the DMFT to investigate the spin
dynamics in DMSs.

The key point of the DMFT lies in the limit of infinite space
dimensions. In this limit, the self-energy is local and does not
depend on momentum. The local Green function of itinerant
carriers can be determined via the Dyson equation

G̃(iωn) =
∫

dερ(ε)
1

iωn − ε + μ − 	̃(iωn)
, (3)

where ωn = (2n + 1)πT is the Matsubara frequency at
temperature T , 	̃(iωn) is the self-energy, and ρ(ε) is the
noninteracting density of states (DOS) of the itinerant carriers.
Without loss of generality, we use the semicircular DOS
defined by ρ(ε) =

√
(4 − ε2)/2π . The Green function and

self-energy in Eq. (3) have been written in the spin matrix
form denoted by tildes.

The self-consistency of the DMFT requires that the local
Green function in Eq. (3) must coincide with the Green
function determined within the dynamics of the effective single
impurity embedded in the dynamical mean-field medium

G̃(iωn) = β
∂F

∂G̃−1(iωn)
, (4)

where F = −T
∫

dαP (α) lnZeff(α) is the free energy of the
system, G̃(iωn) is a Green function representing the dynamical
mean field, and β = 1/T . Zeff(α) is the partition function of
the effective single impurity:

Zeff(α) =
∫

dme−Seff (m,α), (5)

where

Seff(m,α) = −
∑

n

ln det[G̃−1(iωn) − Jm · σα + Uα] (6)

is the action. The integral (5) is taken over all possible values,
m = (mx,my,mz), of the classical localized magnetic moment
S. Changing the integral variable in Eq. (5) into spherical
coordinates, we obtain an explicit expression for the local
Green function defined in Eq. (4):

Gσ (iωn) = 2π

∫ 1

−1
dy

∫
dα

1

Zeff(α)
P (α)

× exp
∑

n

ln[�α
↑(iωn)�α

↓(iωn) − J 2(1 − y2)]

× �α
−σ (iωn)

�α
↑(iωn)�α

↓(iωn) − J 2(1 − y2)
, (7)

where

�α
σ (iωn) = G−1

σ (iωn) + Jσyα + Uα. (8)

The self-energy in Eq. (3) can be determined from the Dyson
equation

	̃(iωn) = G̃−1(iωn) − G̃−1(iωn). (9)

From Eqs. (3), (7), and (9), we obtain a set of self-consistent
equations, which determine the self-energy and the lattice
Green function.
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III. SPIN-DIFFUSION COEFFICIENT

We start by noting that, in the paramagnetic state, the
hydrodynamic description can be applied to address spin
relaxation in our model [21]. In the present work, the spin-
diffusion coefficient is calculated by employing the exact
spectral representation for the spin-spin correlation function.
In the paramagnetic state, spins of carriers might arrange in
a slightly inhomogeneous way that leads to a small gradient
of the magnetization, for instance, in the z direction. A slow
spin current depending on time thereby exists in the sample.
Following Fick’s law, the relation between the spin current js
and the gradient of magnetization m reads [22]

js = −Ds∇m = −Dsχ∇B, (10)

where Ds is the spin diffusion coefficient, χ is the static
magnetic susceptibility, and B is the z component of the
magnetic field. The spin diffusion process is associated with
low frequency and long-wavelength excitations. In this regime,
the spin-spin correlation function in (q,ω) space obtains
quasielastic hydrodynamic diffusion behavior. According to
the fluctuation-dissipation theorem, the spin-spin correlation
function S(q,ω) can be written in the hydrodynamic diffusion
regime as following [21]:

S(q,ω) ≈ 2

1 − e−βω

ωDsq
2χ (q)

ω2 + (Dsq2)2
. (11)

Here, we have assumed cubic symmetry and spin-rotational
invariance for the proposed model. χ (q) is the momentum
dependence of the static spin susceptibility. On the other hand,
using the spectral representation, the spin-spin correlation
function relates to the spin susceptibility by

S(q,ω) = 2

1 − e−βω
χ (q,ω), (12)

where χ (q,ω) is the dynamical spin susceptibility. Combining
the two expressions of S(q,ω) in Eqs. (11) and (12), we obtain

χ (q,ω) = ωDsq2χ (q)

ω2 + (Dsq2)2
. (13)

In the following, we will establish a relation between the
dynamical spin susceptibility χ (q,ω) and the spin current-
current correlation function, where the latter can be evaluated
within the Greenwood formalism [24]. From the definition of
the dynamical spin susceptibility

χ (q,ω) = 1

2

∑
ij

∫
dteiωt−iq(Ri−Rj )

〈[
Sα

i (t),Sα
j (0)

]〉

= 1

2
〈[Sα(q,ω),Sα(−q, − ω)]〉, (14)

we can express it via the spin current correlation function

χ (q,ω) = 1

2

q2

ω2
〈[jα(q,ω),jα(−q, − ω)]〉, (15)

where jα(q,ω) is the α component of the spin current,
written in (q,ω) space. Here we have used the continuous
equation [10]

−ωSα(q,ω) + qjα(q,ω) = 0. (16)

The microscopic spin current is defined by the commutator
of the Hamiltonian with the total spin polarization Pα =∑

i Ri(Sα
i + sα

i ) [12]. One can notice that the Hamilto-
nian (1) does not contain any direct coupling between the
localized moments, hence the spin current actually is the
spin current of the itinerant carriers only, i.e., jα(q,t) =∑

k,ss ′ v(k)c†ks(t)σ
α
ss ′ck−q,s ′ (t). In a similar way to the cal-

culation of the particle or heat current-current correlation
function [23], within the Greenwood formalism, the dynamical
spin conductivity can be expressed in term of the spin current-
current correlation function [24]

σα
s (q,ω) = Im

�α(q,ω)

ω
, (17)

where σα
s (q,ω) is the dynamical spin conductivity,

and �α(q,ω) = 1
2

∫
dteiωt 〈[jα(q,t),jα(−q,0)]〉 is the spin

current-current correlation function. From the time-dependent
spin current operator, in the zero-frequency and long-
wavelength limit, we obtain the static spin conductivity

σs = σα
s (q → 0,ω → 0)

= π
∑

σ

∫
dεv2(ε)ρ(ε)

∫
dω′A2

σ (ε,ω′)
(

−∂f (ω′)
∂ω′

)
,

(18)

which has been written in the unit of conductivity defined
in Ref. [25]. Here, f (ω) = 1/[exp(ω/T ) + 1] is the Fermi
distribution function. Aσ (ε,ω) is the spectral function of
the itinerant carriers, i.e., Aσ (ε,ω) = ImGσ (ε,ω − i0+)/π .
In the Bethe lattice, the current vertex v(ε) in Eq. (18) is
v(ε) = √

4 − ε2 [26,27]. Note that from Eq. (15), we also
have

χ (q,ω) = 1

2

q2

ω2
�α(q,ω). (19)

Combining Eqs. (19) and (13) with the help of Eq. (17) in
the limit (q → 0,ω → 0), we arrive at a formal expression
of the Einstein relation which relates the spin conductivity and
the spin-diffusion coefficient

Dsχ = σs. (20)

In this way, the spin diffusion coefficient has been expressed
in term of the spin conductivity. In a next section, we will
discuss the spin dynamics scenario through the spin diffusion
coefficient instead of the spin conductivity.

IV. NUMERICAL RESULTS

From the Einstein relation in Eq. (20) and the expression
of the spin conductivity given in Eq. (18), we realize that
the spin diffusion coefficient is fully determined if the
single-particle spectral function is known. The single-particle
spectral function of carriers can be calculated by solving
self-consistently the set of Eqs. (3), (7), and (9) of the
DMFT. In the present work, we focus the spin dynamical
properties in the paramagnetic phase under a direct influence
of magnetic impurities, i.e., in the condition T ∼ U � J ,
where the temperature T is chosen to be larger than a typical
critical value of the paramagnetic-ferromagnetic transition
temperature, Tc = 0.05 (c.f. Ref. [7]). Hereafter, we mainly
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FIG. 1. (Color online) Dsχ vs carrier concentration n at J = 3,
U = 0.5, and T = 0.1 for some densities x of magnetic impurities.

take J = 3, T = 0.1, and U = 0.5, but a wide range of the
local exchange coupling and temperature is also considered.
Due to the heavy compensation in almost DMS systems, we
use n < x � 1 [15,28]. The chemical potential therefore is
located in the lower energy band edge, that is an important
point characterizing the DMS systems.

Let us start with the spin diffusion characters in a variation
of the carrier concentration n and magnetic impurity density
x. Figure 1 displays the dependence of Dsχ on n for several
x values at J = 3, T = 0.1, and U = 0.5. Increasing n, Dsχ

first increases and reaches its maximum at n = x/2, and then
approaches zero once n = x (see the solid line for x = 0.1,
for instance). In this case, the magnetic coupling is strong
(J = 3) so the impurity band is completely separated from
the main band [15]. Our calculation (not shown here) reveals
that a critical Hund coupling for a separation between the
main and impurity bands is Jc = 1.2. When varying the carrier
occupation from zero to x, the chemical potential sweeps from
−∞ to the impurity level (acceptor energy level) which is
isolated below the main band for J > Jc. The spectral weight
becomes maximal at the center of the impurity band. Note
here that the spin conductivity in a degenerate system normally
depends linearly on the density of states at the Fermi level [29],
so when the Fermi level approaches the impurity band center,
the spin conductivity would be enhanced and promotes the
spin diffusion. The existence of spin diffusion indicates that
the system is a normal spin conductor [30]. When n = x, the
impurity band is fully occupied, and in this case the chemical
potential locates in the gap separated between the impurity
band and the main band. Spin diffusion therefore is suppresses
to zero and the system is a spin insulator. As mentioned above,
this scenario only occurs for large J . In the opposite case, i.e.,
at small J < Jc, the gap that opened between the impurity
band and the main band vanishes, the Dsχ at n = x therefore
is nonzero, because of nonzero concentration of the itinerant
carriers. The behavior of spin diffusion in a wide range of
the local exchange coupling can be seen in Fig. 3. When x

increases, the bandwidth of the impurity band increases since
the number of states in the impurity band increases with x

[15]. For a given value of the carrier concentration, the density

0 0.05 0.1 0.15
x

0

0.1

0.2

0.3

D
sχ

n=0.025
n=0.050
n=0.075

FIG. 2. (Color online) The dependence of Dsχ on x at J = 3,
U = 0.5, and T = 0.1 for different values of n.

of states at the Fermi level therefore is enhanced, leading to
promote the spin conductivity or the spin diffusion in the
system. Figure 2 illustrates that property, and there we also
present the spin diffusion as a function of x for a given value
of n. Clearly, one can see that the spin diffusion is completely
zero if x = n and monotonically increases as x increases
further.

In Fig. 3, we show the dependence of Dsχ on the
local magnetic coupling J at x = 0.1 for different small
concentrations n at T = 0.1 and U = 0.5. For large magnetic
couplings, we see that Dsχ is saturated and independent of J .
This behavior looks similar to the result that emerged in the
double exchange model in which Chernyshev and Fishman
concluded that Dsχ is independent of J if J � 1 [12].
According to the above discussion of Fig. 1, Dsχ reaches zero
if n = x but is non-zero if n < x, as expected. In contrast,

0 1 2 3 4
J

0

0.8

1.6

2.4

3.2

D
sχ

n=0.025
n=0.050
n=0.075
n=0.100

-1 -0.5 0 0.5 1
ω

0

0.1

0.2

0.3

A
(ω

)

J=0.5

FIG. 3. (Color online) Dependence of Dsχ on J at U = 0.5, x =
0.1, and T = 0.1 for different values of n. The inset shows the DOS
of itinerant carriers A(ω) at J = 0.5 for the same different values of
n mentioned in the main panel, plotted in the same line styles. Here
a vertical dashed-line denotes the Fermi level.
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FIG. 4. (Color online) Dependence of Dsχ on temperature at
J = 3, x = 0.1, and U = 0.5 for different values of n.

for small values of J , the inelastic magnetic scattering of
itinerant carriers with local moments reduces, consequently
it leads to an increase of the spin diffusion constant. In this
regime, for a given value of J , Dsχ linearly increases with
increasing itinerant carrier concentration. This is similar to the
case of large J discussed previously and presented in Fig. 1
but only for n < x/2. In order to illustrate the behavior of
Dsχ in this case, we also show in the inset of Fig. 3 the carrier
density of states A↑(ω) = A↓(ω) = A(ω) at J = 0.5 for the
same values of n in the main panel. Here we keep in mind
that Dsχ is characterized by the density of states at the Fermi
level. Inspecting the vertical line in the inset we can extract
the magnitude of the carrier density of states at the Fermi
level A(EF ) for different n. Apparently, A(EF ) increases if n

increases. This explains the behavior of the spin dynamics in
the system for small J . Note here that the impurity band is
not separated from the main band because the local magnetic
coupling is small [15]. Thus in this case, the spin dependent
potential is not sufficient to form a bound state. When J is
large enough, a hole with appropriate spin would be bound to
a magnetic ion site. In the paramagnetic state, some hopping
processes therefore are blocked [27], which diminish the spin
diffusion. In the limit of J → ∞, each carrier is bound to an
Mn site and all hopping processes of the carriers in the systems
are forbidden, i.e., in the case when the number of carriers is
exactly equal to the number of magnetic impurities, the spin
diffusion completely disappears. The spin diffusion is nonzero
only if n < x.

Finally, we present the temperature dependence of the spin
dynamics in the paramagnetic DMS. In Fig. 4, we show
the behavior of Dsχ versus temperature in the paramagnetic
state at J = 3, U = 0.5, and x = 0.1 for different carrier
concentrations n < x. Increasing temperature always leads to
enhancing the scattering between the carrier and impurities,
thus decreasing the spin lifetime [29]. Consequently, as
shown in Fig. 4, it lowers the spin diffusion constant. In
contrast, lowering temperature promotes a quantum coherent
of the magnetic order corresponding to favor the spin stiff-
ness before the temperature reaches the Curie point. This
behavior of Dsχ looks similar to that obtained in the t-J

model by using the high temperature Lanczos method [10].
Indeed, for small carrier concentrations (n < 0.005), Dsχ

displays a monotonic 1/T -like temperature dependence.
Increasing the carrier concentration, Dsχ increases, but for
larger n, Dsχ (T ) exhibits a minimum at an intermediate
temperature.

The unusual nonmonotonic temperature dependence of
Dsχ at large carrier densities can be explained if we attribute
an existence of low-energy short lived many body states
in the system [12]. The low-energy short lived many body
states are formed as consequence of many-body effect in the
paramagnetic state. Indeed, lowering temperature in the para-
magnetic state might form spin density excitations existing at a
short lived time. At low frequencies, these excitations become
non-negligible if the carrier density is large enough [31].
According to the enhancement of the low-energy states, the
inelastic magnetic scattering is enhanced and thereby the
spin diffusion is suppressed. Close to the Curie temperature
Tc, the static magnetic susceptibility χ rapidly increases,
the spin diffusion constant therefore would be systematically
decreased Ds ∼ 1/χ . Further information about the magnetic
correlations within the inhomogeneous paramagnetic state in
DMS systems therefore might be observed by analyzing the
measurements of the spin diffusion constant and the static
magnetic susceptibility [32].

V. CONCLUSION

We have discussed the spin dynamic scenario in paramag-
netic diluted magnetic semiconductors within the dynamical
mean-field theory, which is exactly solvable in the infinite
dimensional limit. The single-particle Green function of the
Kondo lattice model including the random disorder thereby
has been explicitly calculated. By employing the exact spectral
representation for the spin-spin correlation function and in the
hydrodynamic regime that can be applied to the spin relaxation
in the presented model, we have derived the general Einstein
relation between the spin diffusion coefficient and the spin
conductivity. Following the Greenwood formalism, the spin
conductivity has been expressed via the single-particle spectral
function, which allows us to calculate the spin diffusion
constant based on the dynamical mean-field theory. It is found
that the spin diffusion enhances if the Fermi level settles inside
the magnetic impurity band. Both magnetic scattering and
temperature suppress the spin diffusion in the paramagnetic
state. The existence of the minimum point in the Dsχ (T )
curve for high enough carrier dopings has been explained by
the occurrence of low-energy short lived many body states
in the system. The influence of random disorder in the spin
diffusion in the DMSs is also important, however, we will
leave its consideration to the future.
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A. J. Ferguson, and P. Němec, Rev. Mod. Phys. 86, 855 (2014).

[3] T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).
[4] H. Ohno, Science 281, 951 (1998).
[5] O. M. Fedorych, E. M. Hankiewicz, Z. Wilamowski, and J.

Sadowski, Phys. Rev. B 66, 045201 (2002).
[6] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,

Science 287, 1019 (2000).
[7] A. Chattopadhyay, S. Das Sarma, and A. J. Millis, Phys. Rev.

Lett. 87, 227202 (2001).
[8] R. S. Fishman, J. Phys. Condens. Matter 14, 1337 (2002).
[9] D. G. De Gennes, J. Phys. Chem. Solids 4, 223 (1958).
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