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Mott transitions in a three-component Falicov-Kimball model: A slave boson mean-field study
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Metal-insulator transitions in a three-component Falicov-Kimball model are investigated within the Kotliar-
Ruckenstein slave boson mean-field approach. The model describes a mixture of two interacting fermion atom
species loaded into an optical lattice at ultralow temperature. One species is two-component atoms, which can hop
in the optical lattice, and the other is single-component atoms, which are localized. Different correlation-driven
metal-insulator transitions are observed depending on the atom filling conditions and local interactions. These
metal-insulator transitions are classified by the band renormalization factors and the double occupancies of the
atom species. The filling conditions and the critical value of the local interactions for these metal-insulator
transitions are also analytically established. The obtained results not only are in good agreement with the
dynamical mean-field theory for the three-component Falicov-Kimball model but also clarify the nature and
properties of the metal-insulator transitions in a simple physics picture.
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I. INTRODUCTION

Recently, Mott transitions in multicomponent systems have
attracted a lot of attention [1–5]. They give rise to intriguing
and rich physics that does not have obvious counterparts in
physics of condensed matters. The multicomponent systems
are realized by cooling neutral atoms, for example, multi-
component lithium at ultralow temperature [6,7]. When these
multicomponent systems are loaded into optical lattices, they
simulate various theoretical models of electron correlations
with extensions of degrees of freedom, such as the multicom-
ponent Hubbard and Heisenberg models [8]. The simulations
provide a connection between the theoretical studies and
experimental observations. Indeed, experiments already found
the theoretically predicted Mott insulating phase in two-
component fermion systems which simulate the single-band
Hubbard model [9,10]. In three-component fermion systems
the Mott insulating phase still exists at commensurate fillings,
and in addition also at incommensurate fillings, depending on
the symmetry of the local interactions between the particle
components [4,5].

In a parallel development, experiments have also realized
multicomponent atom mixtures that pave the way to the
investigation of the Mott insulating states of different par-
ticle species [11–15]. This investigation has also attracted
a lot of theoretical studies. Various phase transitions have
been theoretically discussed for different kind of mixtures,
including boson-boson [16,17], boson-fermion [18,19], and
fermion-fermion mixtures [20,21]. In fermion-fermion mix-
tures, different metal-insulator transitions (MITs), which in-
clude collective, species selective, and inverse Mott transitions,
were theoretically found [21]. The finding is based on the
dynamical mean-field theory (DMFT) [22,23] for a three-
component Falicov-Kimball model (FKM), that describes a
fermion-fermion mixture of two-component light atoms and
single-component heavy atoms [21]. This model is an exten-
sion with odd number of components of the spinless FKM,
which exhibits a rich phase diagram and has also attracted a lot
of studies [24,25]. It can also be considered as a mass balanced

case of the three-component Hubbard model [1–5]. One may
expect rich phase transitions in the three-component FKM,
that reflect the odd and nonequivalent component multiplicity
and do not have obvious counterparts in two-component or
three equivalent component systems. Indeed, at commensurate
fillings both the inter- and intraspecies interactions collectively
drive the mixture from the metallic to the insulating state, and
at the incommensurate half filling only two-component light
atoms are involved in the Mott transition. The species-selective
MIT is reminiscent of the orbital-selective one, where the
narrow orbital band becomes insulating, while the wide band
is still metallic [26–29]. When the intraspecies interaction is
weaker than the interspecies one, the correlations between
atom components can also drive the system from the insulating
to the metallic state [21].

The aim of the present paper is twofold. First, in the
present paper, the Mott transitions in the three-component
Falicov-Kimball model are studied by the Kotliar-Ruckenstein
slave boson mean-field approach [30–34]. The previous work
has employed the DMFT plus exact diagonalization (ED) [21].
Although the ED is an exact impurity solver, it is limited to
a finite number of the energy levels of the dynamical mean
field and always admits finite-size effects. Within the DMFT
the double occupancy always remains finite even in the Mott
insulator state and it cannot be used as an order parameter of
the MIT [23,35]. In addition, within the DMFT, the dynamics
of the localized heavy fermions is complicated to calculate,
because it is completely excluded from the effective mean-field
single impurity dynamics [25,36]. In multiorbital systems,
different impurity solvers of the DMFT often capture different
aspects of the Mott transitions, and can partially lead to
different conclusions [26–29]. It is thus desirable to investigate
the properties of these Mott transitions within a more analytical
trackable theory. Therefore, we apply the Kotliar-Ruckenstein
slave boson approach [30–34] on the mean-field level to
the three-component FKM. Our reasonable results not only
agree well with the DMFT [21] but also clarify the nature
of the Mott transitions in a simple physics picture through
the band renormalization factors and the double occupancies.
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In addition, the slave boson mean-field approximation also
allows us to determine not only the dynamics of itinerant
fermions but also the dynamics of localized fermions, that is
complicated to calculate within the DMFT. The second aim of
the present paper is to show that the Kotliar-Ruckenstein slave
boson approach at the mean-field level already fully captures
the description of the MIT in the multicomponent fermion
mixtures, and it can even be analyzed in an analytical manner.
Since the slave boson mean-field approximation is quite
simple, and its description of the MIT is physically intuitive,
this approach serves an alternative method of investigating
multicomponent correlated systems.

The structure of the paper is as follows. In Sec. II
we present the model as well as introduce the auxiliary
boson representation in the mean-field approximation. In
Sec. III we present and discuss the numerical results of the
ground state in paramagnetic states at both commensurate and
incommensurate fillings. Finally, the conclusions are presented
in Sec. IV.

II. THREE-COMPONENT FALICOV-KIMBALL MODEL
AND THE KOTLIAR-RUCKENSTEIN SLAVE

BOSON APPROACH

We consider the following Hamiltonian of a three-
component FKM that describes a mixture of heavy and light
fermion atoms loaded in an optical lattice [21]:

H =−J
∑

〈i,j〉,σ
c
†
iσ cjσ − μc

∑
i,σ

c
†
iσ ciσ − μf

∑
i

f
†
i fi

+Ucc

∑
i

c
†
i↑ci↑c

†
i↓ci↓ + Ucf

∑
i,σ

f
†
i fic

†
iσ ciσ , (1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator for

two-component fermion atoms at lattice site i (σ ≡ ↑,↓),
and f

†
i (fi) is the creation (annihilation) operator for

single-component fermion atoms at lattice site i. J is the
nearest-neighbor hopping amplitude of the two-component
fermion atoms. μc and μf are the chemical potentials of
the two- and single-component atoms, respectively. They
control the particle species fillings ncσ = ∑

i〈c†iσ ciσ 〉/N and
nf = ∑

i〈f †
i fi〉/N , where N is the number of lattice sites.

Ucc is the intraspecies local repulsive interaction between the
two-component atoms, and Ucf is the interspecies one. The
Hamiltonian in Eq. (1) describes a fermion-fermion mixture,
where only the two-component atoms are able to hop in the
lattice, and the single-component atoms are extremely heavy
and are always localized. Actually, the hopping amplitude of
atoms in optical lattices is tuned by the optical potential and
the recoil energy of each atom species of the mixture [37].
With sufficiently deep potential, the energy band of atoms in
optical lattices can become flat and the hopping amplitude
vanishes. Actually, the Hamiltonian in Eq. (1) can be con-
structed based on the basis of the Wannier wave functions of
the fermion atoms in the periodic lattice potentials formed
by lasers, keeping only lowest-order contributions in the
harmonic approximation [38,39]. Interestingly, experiments
have already realized the optical lattices for immobile single-
component impurities correlated with mobile two-component

TABLE I. Local states (|�〉), their energy levels (E�), and
corresponding slave boson (φ�) representation.

� |�〉 E� φ
†
� Slave boson representation

1 |0〉 0 e† e†|0〉
2 c

†
↑|0〉 0 p

†
↑ ĉ

†
↑p

†
↑|0〉

3 c
†
↓|0〉 0 p

†
↓ ĉ

†
↓p

†
↓|0〉

4 f †|0〉 0 p
†
f f̂ †p

†
f |0〉

5 c
†
↑c

†
↓|0〉 Ucc d

†
↑↓ ĉ

†
↑ĉ

†
↓d

†
↑↓|0〉

6 c
†
↑f

†|0〉 Ucf d
†
↑f ĉ

†
↑f̂

†d
†
↑f |0〉

7 c
†
↓f

†|0〉 Ucf d
†
↓f ĉ

†
↓f̂

†d
†
↓f |0〉

8 c
†
↑c

†
↓f

†|0〉 Ucc + 2Ucf t † ĉ
†
↑ĉ

†
↓f̂

†t †|0〉

particles without their hybridization [14,15]. The model can
also be considered as an extreme mass imbalance case of
the three-component fermion Hubbard model [4,5], or a
multicomponent extension of the spinless FKM [24]. It has
two well-known limiting cases. When Ucc = 0, the three-
component FKM is reduced to the spinless FKM, which
exhibits a Mott-like MIT at half filling [40,41]. When Ucf = 0,
it is equivalent to the single-band Hubbard model, which also
exhibits the Mott MIT at half filling [42]. However, when
both Ucc and Ucf are finite, different MITs may occur in the
three-component FKM, that reflect the component multiplicity
and do not have obvious counterparts of the limiting cases [21].

We generalize the Kotliar-Ruckenstein slave boson rep-
resentation [30] for the three-component FKM described in
Eq. (1). Within the Kotliar-Ruckenstein slave boson repre-
sentation, every local state at each lattice site is represented
by an auxiliary (slave) boson [30–34]. Since each lattice site
of the three-component FKM can be empty, singly, doubly,
or triply occupied, we use eight slave bosons e†(i), p†

σ (i),
p
†
f (i), d

†
↑↓(i), d

†
↑f (i), d

†
↓f (i), and t†(i) to represent these eight

different local states. The notations of the slave bosons e,
p, d, and t denote the empty, singly, doubly, and triply
occupied states, respectively. For the sake of convenience,
the eight slave bosons are labeled by numbers as shown in
Table I, e.g., φ

†
1(i) = e†(i), φ

†
2(i) = p

†
↑(i), etc. In Table I for

the sake of clarity, we skip the site index. For the three fermion
components we use three auxiliary fermions ĉiσ and f̂i . The
original fermion operators are expressed in terms of auxiliary
slave bosons and fermions as follows [30–34]:

cσ = R̂†
σ [�]ĉσ , (2)

f = R̂
†
f [�]f̂ , (3)

where the operator R̂†
α[�] is defined as

R̂†
α[�] ≡ γ̂α[�]√

n̂α[�](1 − n̂α[�])
, (4)

with

γ̂α[�] ≡
∑
��′

|〈�|a†
α|�′〉|2φ†

�φ�′ , (5)

n̂α[�] ≡
∑

�

φ
†
�φ�〈�|a†

αaα|�〉. (6)
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Here we used the notation a†
α to denote either c†σ or f †, α =

σ,f , and skipped the lattice site index. The introduced slave
bosons already enlarge the local state space at each lattice
site. Therefore, we should eliminate the unphysical states by
imposing the local constraint

∑
�

φ
†
�(i)φ�(i) = 1. (7)

This constraint is the closure relation of the local states at each
lattice site. The other constraints which must be also imposed
are the identities of the fermion numbers counted through the
auxiliary fermions and original fermions:

∑
�

φ
†
�(i)φ�(i)〈�(i)|c†iσ ciσ |�(i)〉 = ĉ

†
iσ ĉiσ , (8)

∑
�

φ
†
�(i)φ�(i)〈�(i)|f †

i fi |�(i)〉 = f̂
†
i f̂i . (9)

The constraints in Eqs. (7)–(9) must be taken into account by
introducing the Lagrange multipliers.

The Hamiltonian in Eq. (1) without the chemical potential
terms now can be rewritten in terms of auxiliary fermions and
bosons as [31–34]

H =−J
∑

〈i,j〉, σ

[R̂σ [�(i)]R̂†
σ [�(j )]ĉ†iσ ĉjσ + H.c.]

+
∑
i, �

E�φ
†
�(i)φ�(i). (10)

Actually, the chemical potential terms can be absorbed into the
constraint terms (8) and (9). Within the Kotliar-Ruckenstein
slave boson representation, the local interaction terms become
quadratic of the slave bosons. This feature is a benefit of
the slave boson approach on the cost of a complication
of the hopping term and additional constraints. The single-
component atoms are localized; their effects only enter through
the constraint term in Eq. (9) like the chemical potential
term. However, the correlation effects still persist with the
single-component atoms through the slave bosons. At the
mean-field level, the slave bosons are replaced by c numbers
and in the homogeneous phases they can be assumed to be site
independent. This greatly simplifies calculations and allows
us to perform a trackable analysis. We use the following
notations: e, pσ , pf , d↑↓, d↑f , d↓f , and t for the mean-field
value of the slave bosons e†(i), p†

σ (i), p
†
f (i), d

†
↑↓(i), d

†
↑f (i),

d
†
↓f (i), and t†(i), respectively. At zero temperature we obtain

the ground-state energy per site [31–34]:

E = −
∑

σ

W

2
γσ [�]2 +

∑
�

E�φ2
�. (11)

Here for simplicity, a constant bare density of states ρ0(ω) =
1
W

θ (W
2 − |ω|) with the bandwidth W has been used. In order

to find the mean-field ground state, Eq. (11) is minimized
with the constraints (7)–(9), which are also in the mean-field
approximation. Solving the minimization equations, we obtain
the mean-field values of the slave bosons as well as the particle
fillings. After that we calculate the band renormalization
factor Zα , the intraspecies double occupancy Dcc, and the

interspecies double occupancy Dσf , which are defined as

Zα = R2
α[�] = γ 2

α

nα(1 − nα)
, (12)

Dcc ≡ 〈n↑n↓〉 = d2
↑↓ + t2, (13)

Dσf ≡ 〈nσnf 〉 = d2
σf + t2. (14)

The interactions between particles renormalize the effective
mass of the particles by the band renormalization factor. When
the band renormalization factor vanishes, the effective mass
becomes infinite and the particles become localized. This is
the standard Brinkman-Rice scenario of the Mott insulating
state [43]. Although the single-component atoms are localized,
the local interactions still renormalize their bare energy level
by the band renormalization factor Zf . Within the DMFT
the self-energy of the localized particles is complicated to
calculate, because their dynamics is completely excluded from
the effective single impurity dynamics of the dynamical mean
field [25,36]. By using the Kotliar-Ruckenstein slave boson
approach, the band renormalization factors of both itinerant
and localized atoms are determined on the same footing. The
band renormalization factors and the intra- and the interspecies
occupancies exhibit distinct behaviors in the metallic and
the insulating states. Therefore, we can use them to monitor
the MIT. Actually, experiments of ultracold atoms loaded in
optical lattices have also detected the Mott insulating state by
counting the doubly occupied sites [9]. In this work, we restrict
ourself to the paramagnetic phase; however, the calculations
for magnetically ordered phases are straightforward. Note
that, in the paramagnetic phase, one has p↑ = p↓ ≡ pc,
d↑f = d↓f ≡ dcf , nc↑ = nc↓ ≡ nc, D↑f = D↓f = Dcf , and
Z↑ = Z↓ ≡ Zc.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present the numerical results obtained
by minimizing the ground-state energy (11) with the con-
straints (7)–(9). We obtain 8 + 3 nonlinear equations. The
main difficulty here is how to reach the saddle point efficiently
in the 8 + 3-dimensional parameter space. The simple iterative
procedure is very hard to be converged and it is almost useless
in practice. Instead, we use a modification of the Powell
hybrid method [44]. This algorithm is a variation of Newton’s
method, which takes precautions to avoid large step sizes or
increasing residuals. In the numerical calculations we take the
bare bandwidth W = 1 as the unit of energy.

A. Mott transitions and their filling conditions

In this subsection we determine the particle filling condi-
tions, where the Mott transition may occur. We find different
kinds of the Mott transition depending on the local interactions
and the particle fillings [21]. First, we consider the region
of weak interspecies interactions (Ucf < W ). In Fig. 1 we
plot the band renormalization factors of both atoms species,
as well as the intra- and interspecies double occupancies
as a function of two-component atom filling nc for a given
weak interspecies local interaction at fixed single-component
atom filling nf = 1/2. One can see that for weak intraspecies
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FIG. 1. (Color online) The band renormalization factors Zc and
Zf and the intra-Dcc and the inter-Dcf species double occupancies as a
function of the two-component atom filling nc in the weak interspecies
interaction region (Ucf = 0.5) at the single-component atom filling
nf = 1/2.

local interactions Ucc the band renormalization factor Zc and
the double occupancy Dcc of the two-component atoms are
finite for all fillings nc. However, at strong intraspecies local
interactions Ucc, they together vanish at filling nc = 1/2.
This is a signal of the localization of the two-component
atoms. However, the single-component atoms exhibit different
behaviors. Figure 1 also shows that the band renormalization
factor Zf of the single-component atoms is always finite for
all fillings nc. In contrast to the two-component atoms, the
band renormalization factor Zf of the single-component atoms
approaches 1 at filling nc = 1/2, when the intraspecies local
interaction Ucc becomes strong. The interspecies double occu-
pancy Dcf also equals the noninteracting value 1/4 at filling
nc = 1/2. These features indicate that at half filling the single-
component atoms behave like free ones at strong intraspecies
local interactions. The vanishing of the band renormalization
factor Zc and the intraspecies double occupancy Dcc of the
two-component atoms, while the single-component atoms
become free at filling nc = 1/2, suggests that the MIT at
filling nc = 1/2 deals only with the two-component atoms.
This MIT is referred to as a species-selective one [21]. In
the species-selective MIT, only the two-component atoms are
involved in the forming of the Mott insulating state. This is
reminiscent of the orbital-selective MIT in the multiorbital
systems, where only the narrow orbital band becomes insu-
lating, while the broadbands still remain metallic [26–29].
However, in the multiorbital systems, all bands are always
renormalized by interactions, and the orbital-selective MIT
requires a finite Hund coupling. In this species-selective MIT,
the single-component atoms become free of the interaction
renormalization in the insulating state independently of the
local interactions and filling nf . Actually, in the insulating
state, the particle number fluctuations of the two-component
atoms are suppressed; the interspecies interaction acts like
a constant shift of the chemical potential for the single-
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FIG. 2. (Color online) The band renormalization factors Zc and
Zf and the intra-Dcc and the inter-Dcf species double occupancies
as a function of the two-component atom filling nc in the strong
interspecies interaction region (Ucf = 1.5) at the single-component
atom filling nf = 1/2.

component atoms. As a result, the single-component atoms
become effectively free in the insulating state irrespective
of the local interactions and single-component atom filling
nf . The freedom of the single-component atoms in the Mott
insulator is a unique feature of the species-selective MIT.
However, the effect of the interspecies local interaction still
persists. It reflects on the dependence of the critical value of
the intraspecies local interaction, where the MIT occurs, on
the interspecies local interaction, as we will show later.

Next, we consider the region of strong interspecies in-
teractions (Ucf > W ). In this region, we observe different
MITs. In Fig. 2 we plot the band renormalization factors
of both atom species, as well as the intra- and interspecies
double occupancies as a function of two-component atom
filling nc for a given strong interspecies local interaction at
fixed single-component atom filling nf = 1/2. One can see
the vanishing of the band renormalization factor Zc of the two-
component atoms at different fillings nc. First, we still observe
the vanishing of Zc at filling nc = 1/2. However, at filling
nc = 1/2 the band renormalization factor Zc vanishes at both
weak and strong intraspecies local interactions, for instance,
at Ucc = 0.5 and 3.0 as shown in Fig. 2. In contrast to the
species-selective MIT, for weak intraspecies local interactions,
the intraspecies double occupancy Dcc remains finite. The
vanishing of the band renormalization factor Zc indicates
the localization of the two-component atoms, but their weak
intraspecies local interaction does not prevent their double
occupation. On the other hand, the band renormalization factor
Zf of the single-component atoms and the interspecies double
occupancy Dcf vanish at filling nc = 1/2 for weak intraspecies
local interactions. When the intraspecies local interaction is
larger than a certain value, both the band renormalization
factors Zc and Zf stop vanishing. This indicates a transition
from insulating to metallic states. This MIT is referred to as an
inverse MIT, where particle correlations drive the mixture from
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insulator to metal [21]. For other fillings nf we still observe the
inverse MIT when nc + nf = 1 is fulfilled. This MIT is similar
to the Mott-like transition in the spinless Falicov-Kimball
model [25], where both band renormalization factors Zc and
Zf and the double occupancy Dcf vanish in the insulating state.
Figure 2 also shows the vanishing of the band renormalization
factor Zc of the two-component atoms at filling nc = 1/2 for
strong intraspecies local interactions Ucc. In this case Dcc = 0
and Zf = 1. These features constitute the species-selective
MIT, which we have discussed previously.

In Fig. 2 we also observe the vanishing of the band
renormalization factor Zc of the two-component atoms at other
fillings, nc = 1/4 and 3/4, when the local interactions are
strong. At filling nc = 1/4, the band renormalization factors
of both atom species as well as the inter- and the intraspecies
double occupancies vanish. This indicates that all atoms
are localized and the local interactions prevent any double
occupation. In this MIT, all atoms of both species equally
participate in the transition. Like in the three-component
Hubbard model [4,5], the MIT is referred to as the collective
MIT [21]. The filling nc = 3/4 can be considered as a
particle-hole symmetry of filling nc = 1/4 [21]. In this case,
instead of the particle double occupancies, the hole double
occupancies vanish. Since the hole double occupancies Dh

cc =
Dcc + 1 − 2nc and Dh

cf = Dcf + 1 − nf − nc, they indeed
vanish for strong interactions Ucc, as one can see in Fig. 2.
For other filings nf we still observe the collective MIT when
the total particle filling is commensurate, i.e., 2nc + nf = 1
or 2nc + nf = 2.

We summarize the characteristic features of the MIT,
observed in the three-component FKM: (1) collective MIT:
Zc = Zf = 0, Dcc = Dcf = 0 (or Dh

cc = Dh
cf = 0 for the hole

case); (2) species-selective MIT: Zc = 0, Zf = 1, Dcc = 0,
Dcf = ncnf ; and (3) inverse MIT: Zc = Zf = 0, Dcc 	= 0,
Dcf = 0.

The filling conditions of these MIT were previously found
numerically by the DMFT [21]. Within the mean-field slave
boson approximation, we can derive them analytically. The
constraint (7) and the band renormalized factors of both atom
species (12) in the mean-field approximation read

e2 + 2p2
c + p2

f + 2d2
cf + d2

↑↓ + t2 = 1, (15)

Zc = (epc + pcd↑↓ + pf dcf + dcf t)2

nc(1 − nc)
, (16)

Zf = (epf + 2pcdcf + d↑↓t)2

nf (1 − nf )
. (17)

The particle fillings of both species can be also calculated
analytically in the mean-field approximation:

nc = p2
c + d2

↑↓ + d2
cf + t2, (18)

nf = p2
f + 2d2

cf + t2. (19)

In the collective Mott insulator Zc = Zf = 0 and Dcc =
Dcf = 0. These conditions lead to e = d↑↓ = dcf = t = 0. In

this case, we obtain

2p2
c + p2

f = 1, (20)

nc = p2
c , (21)

nf = p2
f . (22)

These mean-field equations indeed lead to 2nc + nf = 1. This
is the filling condition for the collective Mott transition at the
commensurate fillings.

In the species-selective MIT Zc = 0, Zf = 1, Dcc = 0, and
Dcf 	= 0. Condition Dcc = 0 leads to d↑↓ = t = 0. Then we
obtain the mean-field equations

e2 + 2p2
c + p2

f + 2d2
cf = 1, (23)

epc + pf dcf = 0, (24)

(epf + 2pcdcf )2 = nf (1 − nf ), (25)

nc = p2
c + d2

cf , (26)

nf = p2
f + 2d2

cf . (27)

Without difficulty one can show that these mean-field equa-
tions lead to e = pf = 0, and nc = 1/2.

In the inverse MIT Zc = Zf = 0, Dcf = 0, and Dcc 	= 0.
These conditions lead to e = pc = dcf = t = 0. In this case
we obtain

p2
f + d2

↑↓ = 1, (28)

nc = d2
↑↓, (29)

nf = p2
f . (30)

These mean-field equations indeed lead to nc + nf = 1. This
is the filling condition for the inverse MIT.

So far we have analytically established the filling conditions
for different MIT, which may occur in the three-component
FKM. From these analyses of the slave boson mean-field
equations, one can see that in all insulating states there are no
empty or triply occupied sites. Since the considered mixture
has two different double occupancies, there are only three
possibilities of their vanishing. These three possibilities lead to
three different kinds of the Mott insulator. The collective Mott
insulator is similar to the one in the three-component Hubbard
model, and is quite well studied in literature. [4,5,21] The
species-selective and the inverse MIT exhibit special features
in the band renormalization factors and the double occupancies
of the atom species, that are not captured by the previous
DMFT study [21]. Therefore we will study them in detail.

B. Species-selective and inverse metal-insulator transitions

Since both the species-selective and the inverse MIT may
occur at half filling nc = nf = 1/2, in this subsection we study
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FIG. 3. (Color online) The band renormalization factors Zc (a)
and Zf (b), the boson condensation φ2

� (c), and the double occupan-
cies Dcc and Dcf (d) as a function of the intraspecies interaction Ucc

at half filling in the weak interspecies interaction region (Ucf < W ).

the half-filling case in detail. In contrast to the single-band
Hubbard model or the spinless FKM, where the half filling
is commensurate with the particle component number, the
half filling here is incommensurate. The considered three-
component FKM has two well-known limiting cases. When
Ucf = 0, the two-component and single-component atoms
are completely decoupled. The two-component atoms just
form the single-band Hubbard model [42]. The correlations
between the atom components drive the mixture from metal
to insulator. Within the Kotliar-Ruckenstein slave boson
mean-field approach, the MIT occurs at the critical value
UC

cc = 16
∫ W/2

0 ερ0(ε)dε = 2W [30]. In the insulating state,
both the band renormalization factor Zc and the intraspecies
double occupancy Dcc vanish. When Ucc = 0, the three-
component FKM is equivalent to the spinless FKM [24]. The
interspecies local interaction drives the mixture from metal
to insulator by splitting the two-component atom band. A
simple treatment within the Kotliar-Ruckenstein slave boson
mean-field approach gives a continuous MIT at UC

cf = W .
In the insulating state the interspecies double occupancy Dcf

vanishes while the intraspecies double occupancy Dcc remains
finite. When both local interactions Ucc and Ucf are finite,
these MITs may occur, as we have discussed in the previous
subsection.

In Figs. 3 and 4 we plot the band renormalization factors Zc

and Zf , the double occupancies Dcc and Dcf , and the boson
condensation φ2

� as a function of Ucc for different values of Ucf .
In the region of weak interspecies interactions (Ucf < W ), we
observe only the species-selective MIT. In this MIT the band
renormalization factor Zc and the double occupancy Dcc of the
two-component atoms vanish. However, the single-component
atoms behave like the free ones in the insulating state. This
MIT is similar to the Mott-Hubbard one of the single-band
Hubbard model of the two-component atoms. For weak
intraspecies interaction Ucc, the system is metallic, since the
weak correlations cannot drive the system out of the metallic
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FIG. 4. (Color online) The band renormalization factors Zc (a)
and Zf (b), the boson condensation φ2

� (c), and the double occupan-
cies Dcc and Dcf (d) as a function of the intraspecies interaction Ucc

at half filling in the strong interspecies interaction region (Ucf > W ).

state. The local interactions only renormalize the effective
mass of the two-component atoms and the energy level of
the single-component atoms through the boson condensations.
Due to particle-hole symmetry, we observe that the following
boson condensations are equal: e = t , pc = dcf , and d↑↓ =
pf . With further increasing Ucc, the boson condensations e, t ,
d↑↓, and pf decrease to zero value, as one can see in Fig. 3.
The vanishing of these boson condensations indicates the
vanishing of the band renormalization factor Zc and the double
occupancy Dcc of the two-component atoms. It also leads to
the localization of the two-component atoms. However, at
the same time, the vanishing of these boson condensations
also leads the band renormalization factor Zf of the single
component to be free of interactions. The freedom of the
single-component atoms occurs only in this species-selective
insulating state. In other insulating states and in the metallic
state, they are correlated and renormalized by interactions.
These features make a distinction of the species-selective
MIT from the Mott-Hubbard as well as the orbital-selective
ones [26–29]. Since the boson condensations must be fixed by
the constraint (7), the vanishing of the boson condensations e,
t , d↑↓, and pf results in a finite constant value of the boson
condensations pc and dcf . This leads the interspecies double
occupancy Dcf to reach the saturated value in the insulating
state. The saturated value of the interspecies double occupancy
is indeed the free one, since the single-component atoms are
free of the interaction renormalization in the insulating state.

When Ucf > W , in contrast to the region Ucf < W , we
observe two different MITs which occur with increasing Ucc.
Figure 4 shows the vanishing of the band renormalization
factor Zc of the two-component atoms in weak and strong
intraspecies local interaction Ucc regions. The boson conden-
sations of the empty and triply occupied states always vanish,
except for the metallic region, where the band renormalization
factor Zc is finite. When the intraspecies local interaction
Ucc is weak, the band renormalization factor Zf of the
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FIG. 5. (Color online) Phase diagram at half-filling nc = nf =
1/2.

single-component atoms and the interspecies double occu-
pancy Dcf vanish too. It is the inverse MIT, where the
intraspecies local interaction drives the mixture from insulator
to metal. In this insulating state, the boson condensations pc

and dcf vanish, while the other boson condensations pf and
d↑↓ are constant. This leads the interspecies double occupancy
to vanish, while the intraspecies double occupancy maintains
its constant value. With further increasing Ucc the mixture is
driven to the metallic state by correlations. In the metallic
state, all boson condensations acquire finite values, that give
finite values for the band renormalization factors Zc and Zf

as well as the double occupancies Dcc and Dcf . When the
intraspecies local interaction Ucc is strong, only the band
renormalization factor Zcc and the double occupancy Dcc of
the two-component atoms vanish. The band renormalization
factor Zf of the single-component atoms and the interspecies
double occupancy Dcf reach their free saturated values.
This is the species-selective MIT, which we have discussed
previously.

The above results are summarized into the phase diagram
plotted in Fig. 5. It shows possibilities of two distinct
MITs at half filling. One MIT is species selective, and the
other is the inverse one. The phase diagram agrees well
with the one obtained by the DMFT [21], except for the
first-order phase transition of the species-selective MIT. The
Kotliar-Ruckenstein slave boson mean-field approximation
usually overestimates the critical interaction values of the
Mott transitions. For instance, for the single-band Hubbard
model, the critical interaction value of the Mott transition
calculated by the Kotliar-Ruckenstein slave boson mean-field
approximation is almost twice as large as that obtained by
the DMFT [23,30]. The two obtained MITs occur in different
regions of the parameters. The species-selective MIT occurs in
the region of strong intraspecies local interactions (Ucc � 2W )
and the inverse MIT occurs in the region of weak ones
(Ucc < 2W ). The critical value U ss

cc of the species-selective
MIT monotonously increases with Ucf . Therefore at a given
strong Ucc, the interspecies local interaction drives the mixture
from insulator to metal. The critical value U inv

cc of the inverse

MIT is indeed linear in Ucf . It vanishes at Ucf = W . For
weak interspecies local interactions, i.e., Ucf < W , we cannot
observe the inverse MIT.

Within the Kotliar-Ruckenstein slave boson mean-field
approximation, the critical value of Ucc can also analytically be
obtained. For the species-selective MIT, as we have analyzed
in the previous section, when the transition approaches e → 0,
pf → 0 at d↑↓ = t = 0. Then, nearby the transition point, the
ground-state energy can be expanded up to second order of e

and pf :

E =−W (e + pf )2 + Ucc

(
p2

f + e2) + Ucf

(
1
2 + e2 − p2

f

)
.

(31)

Minimizing this ground-state energy with respect to e and pf ,
and then taking the limit e → 0, pf → 0, we obtain the critical
value of the species-selective MIT:

U ss
cc = W +

√
W 2 + U 2

cf . (32)

For the inverse MIT, when the transition approaches e → 0,
pc → 0 at dcf = t = 0. In a similar way, we obtain the critical
value of the inverse MIT:

U inv
cc = W + Ucf . (33)

One can see that U ss
cc is always larger than U inv

cc . This means
that the inverse MIT always occurs before the species-selective
one. Therefore, for strong interspecies interaction (Ucf > W ),
there would be a reentrant effect of MIT. With increasing
the intraspecies interaction Ucc, the mixture first stays in
the insulating state, then it is transformed into the metallic
state when Ucc > U inv

cc , and finally the mixture goes back
to the insulating state when Ucc > U ss

cc. Note that the first
and second insulating states are quite different. In the first
insulating state, the interspecies double occupancy vanishes,
while the intraspecies one remains finite. In the second
insulating state, the single-component atoms become free,
albeit being localized, and the intraspecies double occu-
pancy vanishes. Experiments observe this reentrant effect
of MITs by measuring the intra- and interspecies double
occupancies.

IV. CONCLUSION

We have studied the MIT in the three-component FKM
by the Kotliar-Ruckenstein slave boson approach at the mean-
field level. Although the slave boson mean-field approximation
is simple, the obtained results reproduce all important features
of the MIT that are obtained within the more sophisticated
DMFT. In particular, the filling conditions and the critical value
of the local interaction of the MIT are analytically established.
Moreover, the slave boson mean-field approximation allows
us to clarify the nature of different MITs, which occur in the
three-component FKM, in a simple physics picture. This is
an advantage of the slave boson approach. In the collective
Mott insulator, all band renormalization factors as well as
the double occupancies vanish. The collective MIT occurs
only at the commensurate fillings. At the incommensurate
fillings, the species-selective or the inverse MIT may occur.
The species-selective MIT occurs only at half filling of
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the two-component atoms irrespective of the filling of the
single-component atoms. Actually, in the species-selective
MIT only two-component atoms are involved, while the single-
component ones become free of interactions. The freedom
of the single-component atoms in the species-selective Mott
insulator is a special feature that makes its distinction from
other Mott insulators. The inverse MIT occurs when the total
filling of the single-component atoms and of one component of
the two-component atoms reaches a unit. This MIT occurs only
for weak intraspecies local interactions. The obtained results,
which are in good agreement with the DMFT, suggest that
the Kotliar-Ruckenstein slave boson at the mean-field level
is already adequate to describe the MIT in multicomponent
fermion-fermion mixtures of ultracold atoms. In addition,
the slave boson mean-field approximation also provides the

criteria of the MIT through the band renormalization factors
and the double occupancies. Since experiments of ultracold
atom mixtures detect the Mott insulator by counting the
number of doubly occupied sites, it is a challenge to observe
the MIT in multicomponent fermion-fermion mixtures of
ultracold atoms.
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