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Metal-insulator transition induced by mass imbalance in a three-component Hubbard model
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The effects of mass imbalance in a three-component Hubbard model are studied by the dynamical mean-field
theory combined with exact diagonalization. The model describes a fermion-fermion mixture of two different
particle species with a mass imbalance. One species is two-component fermion particles, and the other is
single-component ones. The local interaction between particle species is considered isotropically. It is found
that the mass imbalance can drive the mixture from insulator to metal. The insulator-metal transition is a
species-selective-like transition of lighter mass particles and occurs only at commensurate particle densities and
moderate local interactions. For weak and strong local interactions the mass imbalance does not change the
ground state of the mixture.
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I. INTRODUCTION

One of the fascinating problems in condensed matter
physics is the metal-insulator transition (MIT). Especially,
the MIT driven by electron correlations has attracted a lot
of attention. The electron correlations suspend the double
occupancy of electrons, and the suspension causes the electron
localization [1]. With the achievements of ultracold atom tech-
niques, optical lattices can experimentally simulate various
theoretical models of electron correlations [2]. They have
been providing a novel stage for studying correlation effects
in materials. In particular, the Mott insulator was observed
in optical lattices of fermionic 40K atoms with two hyperfine
states and repulsive interaction between them [3,4]. These
optical lattices really simulate the two-component Hubbard
model and they provide a connection between experimental
observations and theoretical predictions. The optical lattices
can also be established with different particle species which
can be extended to have both large hyperfine multiplets and
mass imbalances. For example, a mixture of single-spin state
40K immersed in two-component fermionic atoms 6Li or a mix-
ture of two-component state 171Yb and six-component state
173Yb have already been achieved [5,6]. Such achievements
provide possible realizations of the MIT in multicomponent
correlation systems. Theoretical studies already predicted a
MIT in three-component Hubbard models [7,8]. The MIT
occurs at commensurate particle densities when the local
interaction is isotropic [7]. With an anisotropy of the local
interactions, the MIT is also found at incommensurate half
filling [8]. However, in these studies, all component particles
have the same mass. Experiments can also separately tune
the individual effective mass of each particle species and
establish imbalanced mass mixtures. Indeed, in a mixture of
6Li and 40K atoms, the mass imbalance can be tuned in a
wide range [9]. The mixtures of two-component particles with
different masses in the optical lattice generally lead to the
difference between the hopping amplitudes associated with
each component. With deviation from the balance limitation,
some phase transitions might happen and change the ground
state. Low-temperature properties of the optical lattice in
the influence of the imbalance therefore are important and
need to be considered. Indeed, mass imbalance in the two-

component Hubbard model has been studied in detail in the
one-dimensional and three-dimensional cases that clarified
the competing of some order states such as superfluid,
charge-, and spin-ordered states in the optical lattices [10–13].
Increasing the hopping imbalance or increasing difference
between the bandwidth of each particle species might lead
the systems to a situation that one species is transformed from
the metallic to the insulating state due to electron-electron
correlations while the other still remains in its metallic or
insulating state. The transition is similar to the orbital-selective
MIT in correlated multiorbital systems [14–17]. However, in
ultracold multicomponent mixtures the MIT may deal with
odd numbers of components, whereas in multiorbital systems
it is impossible [7,8]. Therefore, studying the effects of mass
imbalance on the MIT therefore is an interesting subject of
the optical lattice systems. Actually, the effects of the mass
imbalance on the MIT in fermion mixtures of two single-
component particle species have been studied [10–13]. The
two species show distinct properties, which deviate from the
behaviors of balanced mass mixtures [13]. In fermion-fermion
mixtures of multicomponent particle species with extreme
mass imbalance, where one particle species is extremely heavy
and immobile, distinct MITs were also found [18]. The MIT
can occur at both commensurate and incommensurate particle
densities. Despite that one species is always localized, the MIT
can be classified as a collective, species-selective, or inverse
transition, depending on the local interaction and particle
densities [18].

In this paper we study the effects of the mass imbalance
on the MIT in multicomponent fermion-fermion mixtures.
The mixtures consist of two-component and single-component
fermion particles. In contrast to the previous study [18],
both particle species have finite masses and mobilities. Such
fermion-fermion mixtures can be realized by 40K with 6Li
atoms, or light 6Li or 40K with heavy fermionic isotopes of
Sr or Yb. To model these mixtures with a mass imbalance
we propose a three-component Hubbard model with different
hopping amplitudes. Actually, the hopping amplitudes can
experimentally be tuned by the lattice potential and the
recoil energy [19]. In the balanced mass mixtures, the local
interaction can drive the mixtures from metal to insulator states
at commensurate particle densities [7]. In the extreme case,
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where one species is completely localized or nonhopping, the
Hubbard model above reduces to a three-component Falicov-
Kimball model and the MIT is found existing in both states
of commensurate and incommensurate particle densities [18].
Studying the MIT in between, i.e., with the hopping imbalance
in the systems, therefore seems to be important to release the
low-temperature quantum properties under the competition
between the complex of electronic kinetic energy and the
strong correlations.

We study the three-component Hubbard model by employ-
ing dynamical mean-field theory (DMFT) with exact diagonal-
ization (ED). The DMFT has been used successfully to study
the strongly correlated electron systems [20,21]. The previous
studies of MIT in the three-component Hubbard and Falicov-
Kimball models were also based on the DMFT [7,8,18]. The
DMFT is exact in infinite dimensions and fully captures local
dynamical fluctuations [20,21]. However, it loses nonlocal
correlations in finite dimensions. Within the DMFT, we found a
MIT that is solely driven by the mass imbalance. This transition
is a species-selective-like transition of lighter particles and
occurs only at commensurate total particle densities and
moderate local interactions. For weak and strong correlations,
the mass imbalance cannot drive the mixture out of its
state.

The present paper is organized as follows. In Sec. II we
describe the three-component Hubbard model with a mass
imbalance. In this section we also present the application of
the DMFT to the proposed Hubbard model. Numerical results
for the detected MIT is presented in Sec. III. Finally, the
conclusion is presented in Sec. IV.

II. THREE-COMPONENT HUBBARD MODEL AND ITS
DYNAMICAL MEAN-FIELD THEORY

We consider a three-component Hubbard model, the Hamil-
tonian of which reads

H = −
∑

〈i,j〉,α
tαc

†
iαcjα + U

2

∑
i,α �=α′

niαniα′ , (1)

where c
†
iα (ciα) is the creation (annihilation) operator for the

fermionic particle with hyperfine multiplet α at site i. α takes
three different values, for instance, α = 1,2,3. niα = c

†
iαciα is

the number operator of the α-component fermionic particles
at site i. tα is the hopping parameter of the α-component
fermionic particles. U is the local interaction between the
three component states of particles. A common chemical
potential μ is also introduced to control the total particle
density n = ∑

iα〈niα〉/N , where N is the number of lattice
sites. The three-component Hubbard model can be realized
by loading ultracold fermionic atoms with three hyperfine
multiplets or fermion-fermion mixtures of different atomic
species into optical lattices. However, in the Hamiltonian in
Eq. (1), the trapping potentials in the optical lattices are not
considered.

The mass imbalance solely depends on the hopping
parameters tα . In the three-component Hubbard model, the
mass imbalance actually means the difference of the hopping
parameters. In optical lattices, the particle hopping is estab-
lished by the particle tunneling between nearest- neighbor

lattice potential wells. It can be tuned by the lattice potential
amplitude V lat

α and the recoil energy Erα of each component
state of particles [19]

tα ≈ 4√
π

Erαv3/4
α exp(−2

√
vα), (2)

where vα = V lat
α /Erα . The recoil energy Erα = k2/2mα ,

where k is the wave number of the laser forming the optical
lattice, and mα is the mass of the α-component particles.
The lattice potential amplitude V lat

α can be different for
different hyperfine states of particles. As a result, the hopping
parameters can also be different even for the hyperfine states
of the same particles with identical masses. In the following,
we will consider the hopping imbalance t1 �= t2 = t3. This
case can be interpreted as a fermion-fermion mixture of two
different particle species. One species is particles with a single
hyperfine state (α = 1), while the other is particles with two
hyperfine states (α = 2,3). Such mixture can be realized by
loading fermion atoms 40K and 6Li, or of light atoms 6Li or
40K with heavy fermion isotopes of Sr or Yb, into optical
lattices. We parametrize the hopping amplitudes by

t = t1 + t2

2
, (3)

�t = t2 − t1

t1 + t2
. (4)

t is the average hopping amplitude of two particle species,
and �t describes the mass imbalance between them. It is
clear that −1 � �t � 1. �t = ±1 are the extreme mass
imbalance, where one particle species is extremely heavy and
localized [18]. Actually, the effective mass of the particles
is inversely proportional to their hopping parameter. �t > 0
indicates that the two-component particles are lighter than the
single-component particles, and vice versa for �t < 0. �t = 0
is the balanced mass mixture and the model corresponds to the
isotropic three-component Hubbard model [7]. In the balanced
mass case, with sufficiently strong local interaction, the Mott
insulator exists at commensurate particle densities [7]. The
mass imbalance parameter �t can experimentally be tuned in
a wide range. For instance, in a mixture of 6Li and 40K atoms,
�t can vary from 0.3 to 0.85 [9].

We study the three-component Hubbard model by em-
ploying the DMFT. Within the DMFT the self-energy is a
local function of frequency. It is exact in infinite dimensions.
However, in finite dimensions, the DMFT neglects nonlocal
correlations. The DMFT is well described in the literature,
for example, in Ref. [21]. For self-contained purposes, we
present here a description of applying the DMFT to the
three-component Hubbard model. The Green’s function of the
α-component particles reads

Gα(k,iωn) = 1

iωn + μ + tαεk − �α(iωn)
, (5)

where ωn is the Matsubara frequency, εk = ∑
〈i,j〉 exp[ik ·

(ri − rj )] is the lattice structure factor, and �α(iωn) is the
self-energy. The local self-energy is determined from the
dynamics of a single three-component particle embedded in
a dynamical mean field. The action of the effective single
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particle reads

Simp = −
∫ β

0

∫ β

0
dτdτ ′ ∑

α

c†α(τ )G−1
α (τ − τ ′)cα(τ ′)

+ U

2

∫ β

0
dτ

∑
α �=α′

nα(τ )nα′(τ ), (6)

where Gα(τ ) is a Green’s function which represents the
dynamical mean field. Gα(τ ) plays as the bare Green’s function
in relation to the local Green’s function. It relates to the
self-energy and the local Green’s function by the Dyson
equation

G−1
α (iωn) = G−1

α (iωn) + �α(iωn). (7)

Here, the local Green’s function is

Gα(iωn) =
∫

dερ0(ε)
1

iωn + μ − �α(iωn) + tαε
, (8)

where ρ0(ε) = ∑
k δ(ε − εk) is the bare density of states

(DOS). Without loss of generality, we use the semicircular
DOS

ρ0(ε) = 2

π

√
1 − ε2. (9)

With the semicircular DOS, from Eqs. (7) and (8) we immedi-
ately obtain the Green’s function representing the dynamical
mean field G(iωn) from the local Green’s function [21]

G−1
α (iωn) = iωn + μ − t2

α

4
Gα(iωn). (10)

The self-consistent condition of the DMFT requires that the
Green’s function obtained from the effective action in Eq. (6)
be identical to the local Green’s function in Eq. (8); i.e.,

Gimp
α (iωn) = Gα(iωn). (11)

This equation completes the set of self-consistent equations
for the Green’s function. It can be solved numerically by
iterations [21]. The most time-consuming part is the solving of
the action Simp in Eq. (6). There are several ways to calculate
the Green’s function from the action Simp [21]. Here, we
employ an ED method to calculate it [21,22]. The action
in Eq. (6) is essentially equivalent to the Anderson impurity
model [21,22]

HAIM = −μ
∑

α

c†αcα + U

2

∑
α �=α′

nαnα′ +
∑
p,α

Vpαa†
pαcα

+ H.c. +
∑
p,α

Epαa†
pαapα, (12)

where a
†
pα (apα) is the creation (annihilation) operator which

represents a conduction bath with energy level Epα . Vpα is
the coupling of the conduction bath with the impurity. The
connection between the Anderson impurity model in Eq. (12)
and the action in Eq. (6) is the following identity relation of
the bath parameters [21,22]

∑
p

|Vpα|2
iωn − Epα

= λα(iωn), (13)

where λα(iωn) = iωn + μ − G−1
α (iωn). The ED limits the

conduction bath to finite ns − 1 orbits (p = 1,2, . . . ,ns − 1).
Then λ(iωn) is approximated by

λ(ns )
α (iωn) =

ns−1∑
p=1

|Vpα|2
iωn − Epα

. (14)

The bath parameters are determined from minimization of the
distance d between λα(iωn) and λ(ns )

α (iωn),

d = 1

M + 1

M∑
n=0

ω−k
n

∣∣λα(iωn) − λ(ns )
α (iωn)

∣∣2
, (15)

where M is a large upper cutoff of the Matsubara frequen-
cies [21,22]. The parameter k is introduced to improve the
minimization at low Matsubara frequencies. In particular,
we take k = 1 in the numerical calculations. When the bath
parameters are determined, we calculate the Green’s function
of the Anderson impurity model in Eq. (12) by ED [21,22].
We also calculate the interspecies double occupancy Dinter =∑

i〈ni1(ni2 + ni3)〉/N , and the intraspecies double occupancy
Dintra = ∑

i〈ni2ni3〉/N . These double occupancies show the
rate of the lattice sites occupied by two particles, and are
experimentally accessible [3].

III. METAL-INSULATOR TRANSITION

In this section we present numerical results analyzing the
MIT under the influence of the mass-imbalance indicated
by �t [cf. Eq. (4)]. The numerical results are obtained
by the DMFT+ED with 3 bath orbits per one impurity
component (i.e., ns = 4). Actually, the computational time
grows quickly with ns , since the impurity has 3 components.
For the single-band Hubbard model, the DMFT+ED shows
that two bath levels per one impurity component usually give
adequate results [23]. To check the accuracy of the ED, we
compare our results with the ones obtained by the DMFT plus
the Hirsch-Fye quantum Monte Carlo (QMC) simulations in
the case of mass balance (�t = 0) [7]. The QMC simulations
are an exact impurity solver, and unlike the ED they do not
suffer the finite-size effects [21]. First, Fig. 1 illustrates the
comparison of the total particle density n as a function of
the chemical potential μ obtained by DMFT combining with
ED and QMC for two different U values. When the line
n(μ) exhibits a plateau, it indicates an insulating state. The
width of the plateau is equal to the insulating gap. Figure 1
apparently shows an excellent agreement between the ED and
QMC simulations for both metallic and insulating phases in a
whole range of the total particle density. In Fig. 2 we continue
specifying the efficiency of the DMFT+ED calculation to
consider the MIT in the Hubbard model by putting it beside
DMFT+QMC results of the intraspecies double occupancy
Dintra. As a function of the chemical potential μ, Dintra again
recovers the excellent agreement between the ED and QMC
simulations for both metallic and insulating phases. The double
occupancy is suppressed in the insulating phase. However, it
still remains finite. The finite value of the double occupancy
in the insulating phase therefore is not a finite-size effect
of the ED impurity solver. As pointed out in the literature,
the Brinkman-Rice approximation shows that the double
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FIG. 1. (Color online) The total particle density n, calculated by
DMFT+ED (lines) and by DMFT+QMC (symbols), as a function of
the chemical potential μ for different values of interaction U in the
balanced mass case �t = 0 (T = 0.025t). The DMFT+QMC results
are reproduced from Ref. [7].

occupancy vanishes in the Mott insulator [24]. In reality a
finite local interaction always allows virtual hoppings, that
produce very small but nonzero double occupancy in the
insulating state. That feature has been addressed by the DMFT
[21,25–27]. The double occupancy vanishes only at the strong-
interaction limit. Actually, the Brinkman-Rice approximation
is based on the Gutzwiller variational wave function and
the Gutzwiller approximation for evaluating the variational
ground-state energy, and it admits the vanishing of the double
occupancy in the insulating phase [24,28]. However, at finite
dimensions, without the additional Gutzwiller approximation,
the Gutzwiller variational wave function always produces
a finite double occupancy for any local interaction [29].
Moreover, extending DMFT for the finite-dimension case
where the nonlocal correlations are taken into account has also
illustrated the incomplete suppression of the double occupancy
in the Mott insulator [30,31]. In experiment, suppression
of the double occupancy in the MIT of the ultracold two-

FIG. 2. (Color online) The double occupancy as a function of
the chemical potential μ, calculated by DMFT+ED (lines) and by
DMFT+QMC (symbols) for different values of interaction U in the
balanced mass case �t = 0 (T = 0.025t). The DMFT+QMC results
are reproduced from Ref. [7].

FIG. 3. (Color online) The density of states (DOS), calculated
by DMFT+ED (lines) and by DMFT+QMC (symbols) for different
chemical potentials μ in the balanced mass case �t = 0 (U = 3t ,
T = 0.05t). The DMFT+QMC results are reproduced from Ref. [7].

component fermion atoms has been observed, but a small
number of lattice sites, typically a few percent, still remain
doubly occupied in the Mott insulator [3]. To complete the
comparison, Fig. 3 illustrates the density of states (DOS)
of the particle component ImGα(ω − iη)/π , evaluated by
both DMFT+QMC [7] and DMFT+ED. In the DMFT+ED
calculation, we used η = 0.01t . Despite the spiky structure
in the DOS, the main features of the DOS obtained by the
DMFT+ED resemble the ones shown by the DMFT+QMC.
Inspecting the DOS at the chemical potential (i.e., the DOS at
ω = 0) we see that the quantities determined by both ED and
QMC simulations fit well together. In the metallic phase the
DOS at the chemical potential level is always finite, while it
vanishes in the insulating phase. From the above comparisons
of ED and QMC results, we conclude that the ED solving
for the effective impurity problem with ns = 4 in the DMFT
already gives adequate results. In the following, we extend the
calculation to the mass imbalance case (i.e., �t �= 0) and then
discuss its effects on the MIT in the three-component Hubbard
model.

In Fig. 4 we plot the total particle density as a function
of the chemical potential when the mass imbalance varies in
the region �t > 0 at a given isotropic local interaction U . The
value of the local interaction is chosen that allows a MIT. In the
case of U = 4t we observe that the mass imbalance possibly
drives the mixture only from insulator to metal. Figure 4 also
shows that when the mass imbalance is absent, �t = 0, the
line n(μ) exhibits plateaus at n = 1 and n = 2. The mixture is
in the insulating phase at the commensurate densities only [7].
With increasing the mass imbalance �t , the plateaus reduce
and then disappear at large mass imbalances. These behaviors
show a transition from insulator to metal solely driven by the
mass imbalance at the commensurate densities. Actually, when
�t increases, the two-component particles become lighter and
the single-component particles become heavier. Due to this
property, the mobility of the two-component particles tends to
increase too. At large mass imbalances it overcomes the local
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FIG. 4. (Color online) The total particle density n as a function
of the chemical potential μ for positive mass imbalances (�t > 0) at
fixed interaction U = 4t (T = 0.02t).

interaction, and the mixture becomes metallic. In the �t = 1
limit, the single-component particles are localized due to the
vanishing of their hopping, but the two-component particles
can be in the metallic phase [18]. In such way, the mass
imbalance can only drive the mixture from insulator to metal.
It cannot drive the mixture out of the metallic state.

Next, we continue considering a dependence of the total
particle density on chemical potential but in the opposite
region of the mass imbalance (�t < 0). Figure 5 shows us that
for a given local interaction, U = 2.5t , the mass imbalance
can only drive the mixture from metal to insulator. With
the increasing of |�t |, the two-component particles become
heavier, and the single-component particles become lighter.
When |�t | remains being small, n(μ) does not show any
plateau and the system is in the metallic state. The plateaus
indicating an insulating state only appear if |�t | is larger than
a critical value. That happens at the commensurate densities
n = 1 and n = 2, similar to the opposite situation with �t > 0
(see Fig. 4). In the limit of �t = −1, the two-component
particles become localized due to the vanishing of their
hopping. However, the hopping of single-component particles

FIG. 5. (Color online) The total particle density n as a function
of the chemical potential μ for negative mass imbalances (�t < 0)
at fixed interaction U = 2.5t (T = 0.02t).

FIG. 6. (Color online) The density of states (DOS) of the two-
component particles (blue solid lines) and of single-component
particles (red dotted lines) for positive mass imbalances (�t > 0) at
fixed total particle density n = 1 and interaction U = 4t (T = 0.02t).

remains finite. For weak interspecies interactions, the single-
component particles are in a metallic phase. However, with
increasing the interspecies interaction, the band of the single-
component particles is split into two subbands, separated
by a gap. This constitutes a MIT driven by interspecies
particle correlations. Actually, the model with �t = −1 is
equivalent to the spinless Falicov-Kimball model for strong
interactions [32]. The spinless Falicov-Kimball model also
exhibits a Mott-like MIT by splitting the conduction band into
two subbands [32–34].

The MIT can be understood in more detail in a feature of
the DOS. In Figs. 6 and 7 we plot the DOS of particles at
the commensurate density n = 1. The other commensurate
density n = 2 is equivalent to n = 1 via the particle-hole
symmetry. Figures 6 and 7 confirm again the MIT driven
by the mass imbalance in both regions �t > 0 and �t < 0.
When the mass imbalance is absent, �t = 0, particles of two
species equally participate in the MIT driven by the local
interaction [7]. However, as addressed before in Fig. 4 and
Fig. 5, in the region of �t > 0, the mass imbalance can
drive the mixture only from insulator to metal, whereas in
the region of �t < 0, it only drives the mixture from metal to
insulator. In the �t > 0 region, with increasing �t the two-
component particles become lighter, and the bands are mostly
occupied by them. This indicates that the mass imbalance
also induces a population imbalance between the two particle
species. In the extreme limit, �t = 1, the single-component
particles are localized, and only the two-component particles
take part in the MIT [18]. We can refer to the MIT driven
by the mass imbalance as a species-selective-like MIT. In
this MIT the lighter particles are dominantly involved in
driving the mixtures to the metallic state. However, this
species-selective-like MIT is different in comparison with the
orbital-selective MIT [14–17]. In the orbital-selective MIT, the
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FIG. 7. (Color online) The density of states (DOS) of the two-
component particles (blue solid lines) and of single-component
particles (red dotted lines) for negative mass imbalances (�t <

0) at fixed total particle density n = 1 and interaction U = 2.5t

(T = 0.02t).

wide band remains metallic when the narrow band becomes
insulating. In this selective-species-like MIT, the bands of both
species are insulating and when the MIT occurs, they together
become metallic, but the lighter particles are dominant.
Only at the limit �t = 1, the heavier particles are always
localized.

Similarly to the region of �t > 0, when �t < 0, the mass
imbalance also induces a population imbalance between two
particle species, but this population imbalance is not strong
as in the region of �t > 0. The band filling of the single-
component particles, which become lighter with increasing
|�t |, is larger than the one of the two-component parti-
cles. At the limit of �t = −1, the two-component particles
are localized due to vanishing of their hopping amplitude.
We also refer to the MIT driven by the mass imbalance in
the �t < 0 region as a species-selective-like MIT, because the
lighter particles are dominant over the heavier ones in the tran-
sition. In contrast to the orbital-selective MIT, where particles
of both spins always participate in the transition [14–17],
in this �t < 0 region, particles of a single component are
dominantly involved in the MIT. It is similar to the Mott-
like MIT of the spinless electrons in the Falicov-Kimball
model [32–34]. The MIT occurs when the band of the single-
component particles is split by a gap due to the interspecies
interaction.

Experiments could observe the mass-imbalance-driven
MIT by measuring the doubly occupied sites. Indeed, the MIT
of ultracold 40K atoms was detected by measuring the double
occupancy [3]. In Fig. 8 we plot the intra- and interspecies
double occupancies at total particle density n = 1 in both
�t > 0 and �t < 0 regions. One can see a kink of these
double occupancies at the point of the MIT. It indicates that
the MIT is a first-order phase transition. In the region of

FIG. 8. (Color online) The intraspecies double occupancy Dintra

(red filled circles) and the interspecies double occupancy Dinter (blue
filled squares) at fixed total density n = 1 (T = 0.02t). The left panel
plots the region of �t < 0 (U = 2.5t), while the right panel plots the
region of �t > 0 (U = 4t).

�t > 0, the right panel of Fig. 8 shows us that the double
occupancies in the insulating phase are small, but nonzero,
as we have discussed previously. With increasing the mass
imbalance, at the MIT, the intraspecies double occupancy
abruptly increases, while the interspecies double occupancy
decreases to zero. Actually, with large mass imbalances the
metallic state is dominantly occupied by the two-component
particles. As a consequence, the intraspecies double occupancy
increases, while the interspecies double occupancy tends to
vanish when �t → 1. In contrast to the region of �t > 0, in
the region of �t < 0 (the left panel of Fig. 8), the intraspecies
double occupancy decreases to zero, when |�t | increases. It is
clear that in this region, the two-component particles become
heavier, and in the �t → −1 limit, they are actually localized.
Consequently, the intraspecies double occupancy tends to
vanish when �t → −1. However, the interspecies double
occupancy remains finite in the insulating phase. Actually, in
the region of �t < 0, the mass imbalance drives the mixture
from the metallic to the insulating state. Therefore, the MIT
may occur only for the intermediate local interaction that
should be smaller than the critical value of the local interaction
for the MIT in the mass balanced case. The local interaction
in such value range is not strong enough to suppress the
double occupation. Instead, it allows virtual hoppings that
produce double occupation of interspecies particles, despite
that the band of the single-component particles already opens a
gap.

To characterize the influence of the correlation-driven
MIT in the case of mass imbalance, in Fig. 9 we show the
dependence of the double occupancies on the local interaction
for different �t . In the balanced mass case (�t = 0), Dinter =
2Dintra. Both inter- and intraspecies double occupancies
abruptly change at the MIT, and they are suppressed in the
insulating state. In the presence of the mass imbalance, only
the intra- or interspecies double occupancy exhibits a kink at
the MIT. In the region of �t > 0, the double occupancy of the
two-component particles also indicates the rapid suppression at

115140-6



METAL-INSULATOR TRANSITION INDUCED BY MASS . . . PHYSICAL REVIEW B 91, 115140 (2015)

FIG. 9. (Color online) The intraspecies double occupancy Dintra

(red filled circles) and the interspecies double occupancy Dinter

(blue filled squares) at fixed total density n = 1 and different mass
imbalances (T = 0.02t).

the MIT, while the interspecies double occupancy continuously
decreases with increasing the local interaction. These behav-
iors interchange each other in the opposite region with �t < 0.
They indicate the active role of the two-component particles in
the �t > 0 region and of the single-component particles in the
region of �t < 0 in the MIT. It means that only lighter particles
are actively involved in the MIT. In the insulating phase, the
double occupancies are suppressed, but they remain finite and
only vanish at the strong-interaction limit. The double oc-
cupancies are experimentally accessible, but it is a challenge
to experimental observations of the kink of the double
occupancies.

In Fig. 10 we summarize a phase diagram expressing
the MIT in the (�t , U ) plane at the commensurate total
particle densities. The phase diagram is constructed from
the dependence of the total particle density on the chemical
potential as discussed before. The insulating phase is detected
when a plateau appears in the line of n(μ). In contrast
to the two-component Hubbard model, we do not observe
any phase coexistence of metal and insulator [26,35]. By
increasing �t the critical U value monotonically increases.
However, since −1 � �t � 1, the MIT driven by the mass
imbalance can occur only at a finite moderate range of the
local interaction. For weak and strong local interactions, the
mass imbalance cannot drive the mixture out of its ground
state. In fermion mixtures of 40K and 6Li atoms, �t can
vary from 0.3 to 0.85 [9]. One may expect to detect the
mass-imbalance-driven MIT in such ultracold atom mix-

FIG. 10. Phase diagram at total particle density n = 1 (T = 0.02).

tures at commensurate particle densities and moderate local
interactions.

IV. CONCLUSION

We have studied the MIT driven by the mass imbalance
in the three-component Hubbard model. Within the DMFT
with exact diagonalization, we have found the MIT driven
by the mass imbalance at commensurate total densities, like
in the balanced three-component Hubbard model [7]. The
MIT is solely driven by the mass imbalance. The positive
mass imbalance can only drive the mixture from insulator to
metal, while the negative one drives the mixture from metal to
insulator. In order to explore the MIT in the three-component
Hubbard model with mass imbalance, we have also calculated
the double occupancies of both two-component particles
(Dintra) and different species particles (Dinter) as functions of
�t and local interaction U . At a critical U value, the double
occupancies exhibit a kink, indicating the MIT transition of
the first order. The more enhancing the mass imbalance,
the MIT takes place at larger critical U value. The phase
diagram expressing the MIT in the (�t , U ) plane is also
constructed. It shows that the MIT occurs only at moderate
local interactions. For weak and strong local interactions, the
mass imbalance cannot drive the system out of its ground
state. Actually, the mass imbalance induces a population
imbalance between particle species, and the lighter particles
dominantly take part in the MIT. The MIT can be interpreted as
a light-particle species selective transition. These features are
distinct from the behaviors of balanced systems. We predict
the MIT driven by the mass imbalance in fermion-fermion
mixtures of ultracold atoms, loading into optical latices, for
instance, the mixture of 40K and 6Li atoms. By measuring
the ratio of the doubly occupied sites in the optical lattices,
the MIT could be observed by tuning the mass imbalance
ratio.
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