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Abstract: Dynamics of an open system is vividly influenced by the
structure of environments. This paper studies in detail the dynamics of a
two-level atom in the presence of an overall environment composed of
two hierarchies. The first hierarchy is just a single lossy cavity while the
second hierarchy consists of a number of other lossy cavities. The atom
is coupled directly to the first hierarchy but indirectly to the second one
via the couplings between the two hierarchies. We show that even when
the coupling between the atom and the first hierarchy is weak the atom’s
dynamics can become non-Markovian if the number of cavities in the
second hierarchy or/and the coupling between the two hierarchies are large
enough. We also analyze the case when the coupling between the atom and
the first hierarchy is strong and show that the non-Markovian dynamics
exhibits different patterns depending on both the number of cavities in the
second hierarchy and the coupling between the two hierarchies.
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1. Introduction

The dynamics of open quantum systems is not only a fundamental issue [1] but also rele-
vant to the realization of quantum information technology [2] that employs practical quantum
systems as basic resources. In application, the unavoidable influences of various surroundings
make the useful characters of a quantum system, such as coherence and entanglement, degrade
with time. In this connection, a lot of efforts have been devoted towards a thorough under-
standing of open system dynamics in various practical environments. From a point of view
of information flow between the system and the environment, the system’s dynamics can be
divided into two categories: Markovian dynamics when the information flows only one-way,
from the system to the environment, and non-Markovian one when, thanks to the memory
effect of the environment, the information can flow two-way, from the system to the envi-
ronment and vice versa. Recently, the non-Markovian dynamics has attracted ever increasing
interests [3–18], partially because of its domination in practical physical processes and useful-
ness in schemes relying on non-Markovian evolutions, such as quantum-state engineering and
quantum control [19–32]. So far, many factors that can trigger non-Markovian dynamics have
been found, for example, strong system-environment coupling, structured reservoirs, low tem-
peratures, and initial system-environment correlations [33–36]. Apart from those conventional
scenarios, some anomalous ones have also been found enabling emergence of non-Markovian
dynamics. As reported in Ref. [37], revivals of quantum correlations of a composite system
may occur even when the environment is classical and does not back react on the quantum
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system. Such a prediction has been realized in an all-optical experiment [38]. Furthermore, for
a bipartite open system with each of its subsystems locally interacting with a subsystem of a
composite environment, the initial correlations between the subsystems of the environment can
lead to non-Markovian behavior of the total open system, although the local dynamics of both
subsystems of the system are Markovian [39]. Subsequently, an experimental demonstration
of that phenomenon has also been achieved by using photonic open system [40]. These re-
sults hint that the origin of non-Markovian dynamics is very subtle and there remain unknown
causes for non-Markovian dynamics. In order to quantify the degree of a non-Markovian pro-
cess, i.e., the so-called non-Markovianity, several measures have been proposed, such as the
Breuer-Laine-Piilo measure based on the distinguishability between different initial states of
the system [41], the Lorenzo-Plastina-Paternostro measure based on the volume of accessible
states of the system [42], and the Rivas-Huelga-Plenio measure based on the entanglement
that the system shares with an ancilla [43]. Recently, some new methods are also proposed to
deal with non-Markovian environment, such as the quantum trajectory [44] and diagrammatic
approaches [45].

Although a system being coupled to a single environment is a commonplace for studying
the open system dynamics, in many realistic situations the system of interest is simultaneously
affected by several environments. For example, the electron spin in a quantum dot may at the
same time be influenced strongly by the surrounding nuclei and weakly by the phonons [46,47].
The surrounding nitrogen impurities constitute the principal bath for a nitrogen-vacancy center,
while the carbon-13 nuclear spins also have some influences on it [48]. Similar scenario oc-
curs for a single-donor electron spin in silicon [49, 50]. Motivated by these realistic scenarios,
explorations are made regarding the dynamical behaviors of an open system in the presence
of multiple environments. In Ref. [51], it is found that when a quantum system interacts with
multiple non-Markovian environments, quantum interference effect occurs between the inde-
pendent environments, which can qualitatively modify the dynamics of the interested system.
Reference [52] studies the dynamics of a single spin being simultaneously coupled to two de-
coherence channels, one is Markovian and the other is non-Markovian. The competition of the
two channels and the condition for the occurrence of non-Markovian dynamics is considered
for different decoherence mechanisms [52]. It is known that the dynamics of a two-level atom
that is coupled to a single vacuum bosonic reservoir may be Markovian or non-Markovian de-
pending on whether the atom-reservoir coupling is weak or strong [1]. However, if the atom
is simultaneously coupled to several reservoirs its dynamics is always (i.e., independent of the
coupling strength between the system and a reservoir) non-Markovian provided that the num-
ber of the contributed reservoirs is not less than a critical value depending on the reservoirs’
parameters [53]. In Ref. [54], the authors study the dynamics of a two-level atom coupled
to a composite environment that is composed of a single-mode cavity and a structured reser-
voir with a Lorentzian spectrum. They focus on how the atom dynamics is influenced by the
atom-cavity coupling strength and the reservoir memory time. For any given reservoir memory
time, the atom experiences a crossover from Markvovian to non-Markovian dynamics when the
atom-cavity coupling is increasing. However, for certain values of the atom-cavity coupling, the
atom dynamics exhibits two crossovers, one from non-Markvovian to Markovian and the other
from Markvovian to non-Markovian, as the reservoir memory time is decreasing [54]. That is,
a shorter (longer) memory time of the reservoir does not universally mean a weaker (stronger)
non-Markovianity of the system.

In this work, we study the dynamics of a two-level system in the presence of an overall envi-
ronment hierarchically structured as follows. The system is only coupled to the first hierarchy
of the environment, which is in turn connected to the second one. We are interested in the ef-
fects of the coupling strength between the two hierarchies and the size of the second hierarchy
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Fig. 1. A two-level system (circle) is coupled with strength Ω0 to a mode (large ellipse)
m0 which decays to a memoryless reservoir (rectangle) with a rate Γ0. The mode m0 is fur-
ther coupled simultaneously with strengths Ω1,Ω2, ...,ΩN to modes m1,m2, ...,mN (small
ellipses) which also decay to their respective memoryless reservoirs (rectangles) with rates
Γ1,Γ2, ...,ΓN .

on the system’s dynamics, focusing on the non-Markovianity of the system. It is known that
in the absence of the second environmental hierarchy, such as the case of a two-level system
transversally coupled to a vacuum bosonic reservoir [1], the system will exhibit Markovian
dynamics in the weak coupling regime and non-Markovian dynamics in the strong coupling
regime. Therefore, we carry out our study in both the weak and the strong coupling regimes
between the system and the first environmental hierarchy. As we shall show in this work, even
in the weak coupling regime the dynamics of the system can still become non-Markovian if
the coupling strength between the two environmental hierarchies and/or the size of the second
hierarchy satisfy certain conditions. Moreover, the backflow of information could occur with-
out the requirement for the system to decay to its ground state that is nevertheless necessary
in the conventional models of a two-level system being transversely coupled to a single [1] or
multiple reservoirs [53]. As a result, a larger non-Markovianity can be achieved without the
cost of faster decay of the system. In the strong coupling regime, we shall show that under the
influence of the second environmental hierarchy the system’s non-Markovian dynamics would
exhibit different patterns along with the variations of the coupling strengths between the two
hierarchies of the environment.

2. The model

The model we shall study is sketched in Fig. 1. A two-level system is coupled with strength Ω0

to a mode m0 which decays to a memoryless reservoir with a rate Γ0. The mode m0 and its cor-
responding damping reservoir comprise the first hierarchy of the environment. If there are no
any other environmental hierarchies, the system’s dynamics depends on the parameters Ω0 and
Γ0 in such a way that Ω0 < Γ0/4 (Ω0 > Γ0/4), identified as the weak (strong) coupling regime,
leads to Markovian (non-Markovian) dynamics. In the present model, the mode m0 is further
coupled simultaneously with strengths Ω1,Ω2, ...,ΩN to modes m1,m2, ...,mN which decay to
their respective memoryless reservoirs with decay rates Γ1,Γ2, ...,ΓN . The modes m1,m2, ...,mN

#231926 - $15.00 USD Received 5 Jan 2015; revised 13 Feb 2015; accepted 13 Feb 2015; published 24 Feb 2015 
© 2015 OSA 9 Mar 2015 | Vol. 23, No. 5 | DOI:10.1364/OE.23.005763 | OPTICS EXPRESS 5767 



and their associated reservoirs form the second hierarchy of the environment. To keep a visu-
alized picture in mind, we map our general model to a more practical scenario as follows. The
system s we are interested in is specified as a two-level atom which is placed inside a single-
mode lossy cavity m0 with decay rate Γ0. The cavity m0 is in turn at the same time coupled to
N (N ≥ 1) other lossy cavities m1,m2, ...,mN with decay rates Γ1,Γ2, ...,ΓN , respectively. The
total Hamiltonian can be written as H = H0+HI , where H0 is the free Hamiltonian of the atom
plus N +1 cavities,

H0 =
ωs

2
σz +ωca

†a+
N

∑
n=1

ωnb†
nbn, (1)

and HI is composed of two parts: one describes the s-m0 coupling of the atom s with the cavity
m0 and the other describes m0-mn (n = 1,2, ...,N) coupling between the cavity m0 and each of
the remaining N cavities m1,m2, ...,mN ,

HI = Ω0(σ+a+σ−a†)+
N

∑
n=1

Ωn(ab†
n +a†bn). (2)

In Eqs. (1) and (2), ωs is the atomic level spacing and σ± denote the lowing and rasing operators
of the atom, a (a†) and bn (b†

n) are the bosonic annihilation (creation) operators for cavity m0

with frequency ωc and the nth cavity mn with frequency ωn, while Ω0 and Ωn stand for the
corresponding couplings. In practice, the nonperfect reflectivity of the cavity mirrors lead to
the loss of photon, therefore it is relevant to take the dissipations of all the cavities into account.
In this case, the density operator ρ(t) of the total system (i.e., the atom plus the N +1 cavities)
obeys the following master equation

ρ̇(t) = −i[H,ρ(t)]− Γ0

2
[a†aρ(t)−2aρ(t)a† +ρ(t)a†a]

−
N

∑
n=1

Γn

2
[b†

nbnρ(t)−2bnρ(t)b†
n +ρ(t)b†

nbn], (3)

where Γ0 and Γn denote, as mentioned above, the decay rates of cavities m0 and mn, respec-
tively. Generally, an environment may have a finite memory time so that the master equation
is not necessarily in the time-independent Lindblad form. Here, however, we are only con-
cerned with a particular situation where non-Markovianity is generated by a drive (Ω j with
j = 0,1,2, ...,N) plus a Lindblad decay.

We consider the situation in which the atom is initially in its excited state |1〉s, while all
the cavities are in their ground states |00...0〉m0m1...mN

, i.e., the total initial state is ρs,m(0) ≡
ρs,m0,m1,...,mN (0) = |ψ(0)〉s,m 〈ψ(0)| with |ψ(0)〉s,m = |10...0〉s,m ≡ |1〉s ⊗ |00...0〉m0m1...mN

.
Since there exist at most one excitation in the total system at a time, we make the ansatz for
ρs,m(t) at time t in the form

ρs,m(t) = (1−λ (t)) |ψ(t)〉s,m 〈ψ(t)|+λ (t) |00...0〉s,m 〈00...0| , (4)

where 0 ≤ λ (t) ≤ 1 with λ (0) = 0 and |ψ(t)〉s,m = h(t) |10...0〉s,m + c0(t) |01...0〉s,m + ...+
cN(t) |00...1〉s,m with h(0) = 1 and c0(0) = c1(0) = ...= cN(0) = 0. It is convenient to introduce
the unnormalized state vector [55]

|˜ψ(t)〉s,m ≡
√

1−λ (t) |ψ(t)〉s,m

= ˜h(t) |10...0〉s,m + c̃0(t) |01...0〉s,m + ...+ c̃N(t) |00...1〉s,m , (5)
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where ˜h(t) ≡ √

1−λ (t)h(t) represents the probability amplitude of the atom and c̃n(t) ≡
√

1−λ (t)cn(t) that of the nth cavity being in its excited state. Then, in terms of the unnor-
malized state vector,

ρs,m(t) = |˜ψ(t)〉s,m 〈˜ψ(t)|+λ (t) |00...0〉s,m 〈00...0| . (6)

Governed by the Hamiltonians Eq. (1) and Eq. (2), the time-dependent amplitudes ˜h(t), c̃0(t),
..., c̃N(t) in Eq. (5) are determined by a set of differential equations as

i
d˜h(t)

dt
= ωs

˜h(t)+Ω0c̃0(t), (7)

i
dc̃0(t)

dt
=

(

ωc − i
2

Γ0

)

c̃0(t)+Ω0˜h(t)+
N

∑
n=1

Ωnc̃n(t), (8)

i
dc̃n(t)

dt
=

(

ωn − i
2

Γn

)

c̃n(t)+Ωnc̃0(t), n = 1,2, ...,N. (9)

We can solve the above differential equations by means of Laplace transformations combined
with numerical simulations to obtain the reduced density operators of the atom as well as of
each of the involved cavities.

The degree of a non-Markovian process can be quantified by the so-called non-Markovianity
in terms of different measures [41–43], as mentioned above. Here, we adopt the dynamics
of trace distance between two different initial states ρ1(0) and ρ2(0) of an open system to
witness and quantify the non-Markovianity [41]. A Markovian evolution can never increase
the trace distance, hence violation of the contractiveness of the trace distance would signify
non-Markovian dynamics of the system. Based on this concept, the non-Markovianity can be
quantified by a measure N defined as [41]

N = max
ρ1(0),ρ2(0)

∫

σ>0
σ [t,ρ1(0),ρ2(0)]dt, (10)

in which σ [t,ρ1(0),ρ2(0)] = dD[ρ1(t),ρ2(t)]/dt is the rate of change of the trace distance given
by

D[ρ1(t),ρ2(t)] =
1
2

Tr|ρ1(t)−ρ2(t)|, (11)

where |X | =
√

X†X . In order to evaluate the non-Markovianity N , we have to find a specific
pair of optimal initial states to maximize the time derivative of the trace distance. In Ref. [56],
it is proved that the pair of optimal states is associated with two antipodal pure states on the
surface of the Bloch sphere. We can thus take ρ1(0) = |+〉〈+| and ρ2(0) = |−〉〈−| , with
|±〉= (|0〉± |1〉)/√2, as the optimal pair of initial states throughout the paper. This allows us
to derive the time derivative of the trace distance in the simple form

σ [t,ρ1(0),ρ2(0)] =
d|˜h(t)|

dt
. (12)

3. Markovian versus non-Markovian dynamics

It has been known so far that, for a two-level atom embedded in a lossy cavity, the atom exhibits
Markovian dynamics in the weak (strong) atom-cavity coupling regime determined by the in-
equality Ω0 < Γ0/4 (Ω0 > Γ0/4) . Naturally, in order to achieve a non-Markovian dynamics,
one has either to increase the atom-cavity coupling strength Ω0 for a given cavity decay rate
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Fig. 2. The non-Markovianity N as a function of the number N of identical cavities mn

(n = 1,2, ...,N) for different values of the m0-mn coupling strength Ω (= Ωn∀n) but fixed
values of the s-m0 coupling strength Ω0 = Γ0/5 and the cavity mn decay rate Γ (= Γn∀n) =
Γ0.

Fig. 3. Phase diagram in the N-Ω/Γ0 plane for the crossover between Markovian and non-
Markovian dynamics in the weak s-m0 coupling regime with Ω0/Γ0 = 0.2 while Γ = Γ0.
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Γ0 or to improve the cavity quality by reducing Γ0 for a fixed Ω0. However, retaining in the
weak coupling regime (i.e., Ω0 and Γ0 are such that the ratio 4Ω0/Γ0 cannot be for some
reasons made greater than 1), how one can transform the dynamics from Markovian to non-
Markovian is an interesting issue. Here, we show that if the cavity m0 is let be further coupled
simultaneously to some other cavities m1,m2, ...mN , then qualitative changes in behavior of
the atom dynamics may occur. In Fig. 2, we display the dependence of the non-Markovianity
N on the number N of the secondary cavities m1,m2, ...mN and on the coupling strengths Ωn

(n = 1,2, ...,N), when the s-m0 coupling is weak. Without loosing the physics feature of inter-
est, we assume for simplicity identical reservoirs with Γn = Γ and Ωn = Ω for n ∈ {1,2, ...,N}.
As shown in Fig. 2, for a relatively small m0-mn coupling strength, say, Ω = Γ0, the atom dy-
namics remains Markovian (N = 0) up to N = 3, but becomes non-Markovian (N >0) start-
ing from N = 4. However, non-Markovian dynamics is induced already from N = 3 (N = 2)
for an increased m0-mn coupling strength, say, Ω = 1.2Γ0 (Ω = 1.5Γ0) . In general, the non-
Markovianity N increases with N (Ω) for a given Ω (N) . We thus have two parameters, N
and Ω, that can be controlled to trigger non-Markovian dynamics as well as to manage the
non-Markovianity. Remarkably, this is an efficient alternative way to achieve non-Markovian
from Markovian dynamics in cases when direct manipulations of the s-m0 coupling strength
Ω0 and decay rate Γ0 are unavailable. The phase diagram in the N-Ω/Γ0 plane plotted in Fig. 3
clearly shows the crossover between Markovian and non-Markovian dynamics. For a given N
(Ω/Γ0) Markovian dynamics may turn out to be non-Markovian if Ω/Γ0 (N) is getting large
enough and vice versa. Although we consider equal coupling strengths and decay rates for the
leaky cavities in the second hierarchy, the general picture remains the same for the case of in-
homogeneous couplings. Actually, as we shall show below, the presence of secondary cavities
drives the cavity m0 to its ground state in a finite time, but for a later time m0 can reabsorb the
energy stored in the secondary cavities to return them to the atom inducing the non-Markovian
dynamics. Obviously, that process is due to the coupling of the cavity m0 to the overall (rather
than individual) cavities in the second hierarchy, so inhomogeneous couplings would not bring
any qualitative change compared with homogeneous ones.

In the model under consideration, the information of the atom flows firstly to the cavity m0

and then to the cavities m1,m2, ...,mN , while the retrieve of the decayed information from the
cavity m0 signifies the occurrence of non-Markovian dynamics of the atom. In the absence of
any of the cavities m1,m2, ...,mN , a strong s-m0 coupling can force a backflow of the infor-
mation, but a weak one cannot. In the presence of the cavities m1,m2, ...,mN , however, even
a weak s-m0 coupling could induce the non-Markovian dynamics under appropriate condi-
tions to be satisfied by N and Ωn. Although non-Markovian dynamics occurs in both the two
above-mentioned situations, the patterns of their curves are different, which represents differ-
ent mechanisms that cause the non-Markovian dynamics. In Fig. 4, we demonstrate two dif-
ferent non-Markovian dynamics patterns through the time-evolution of the trace distance with
emphasis on the moments at which the trace distance starts to grow. We choose Ω0 = 0.3Γ0

(> Γ0/4, i.e., the s-m0 coupling is strong) under the situation with no secondary cavities, while
Ω0 = 0.2Γ0 (< Γ0/4, i.e., the s-m0 coupling is weak) when some secondary cavities are in-
volved. For concreteness, in the latter situation the cavity m0 is assumed coupled with two
identical cavities m1 and m2 with the same coupling strengths Ω = Ω1 = Ω2 = Γ0 and decay
rates Γ = Γ1 = Γ2 = 0.5Γ0. From the shape of trace distance evolution in Fig. 4, we observe
that though in both situations the evolution of the trace distances is not monotonic, their pat-
terns exhibit clear distinctions. In the strong s-m0 coupling regime without any other secondary
cavities [Fig. 4(a)] the trace distance first decreases until touching the zero line and then gets
back to be positive (we call this type I pattern). We know that only when two states become
indistinguishable can their trace distance be zero, therefore the atom must have decayed to its
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Fig. 4. The trace distance evolution showing (a) type I pattern for the case of strong s-m0
coupling with Ω0 = 0.3Γ0 in the absence of any additional cavity and (b) type II pattern for
the case of weak s-m0 coupling with Ω0 = 0.2Γ0 in the presence of two identical additional
cavities with Ω = Ω1 = Ω2 = Γ0 and Γ = Γ1 = Γ2 = 0.5Γ0.

ground state before regaining part of the lost information. In other words, a strong s-m0 cou-
pling drives the atom decay to its ground state during a finite time so that the further interaction
with m0 that possesses a photon with nonzero probability results in the information backflow
from the cavity to the atom. In this case, an achievement of non-Markovian dynamics usually
implies a faster decay of the atom. By contrast, in the weak s-m0 coupling regime but, when the
cavities m1,m2, ...,mN are present [Fig. 4(b)], the trace distance first decreases, then, at some
moment during its evolution, turns out to grow up to a maximal value, and after that approaches
to zero in the long-time limit (we call this type II pattern). That is, contrary to the strong s-m0

coupling regime without any additional cavities, the atom can reabsorb the lost information
from the cavity m0 without the need to decay to its ground state. Therefore, the non-Markovian
dynamics as well as the larger non-Markovianity can be achieved without the cost of faster
decay of the atom. The two above-mentioned pattern types of non-Markovian dynamics are in
fact encountered in open systems [54]. To reveal the physics of the transition from Markovian
to non-Markovian dynamics with the influence of the secondary cavities in the weak s-m0 cou-
pling regime, we shall study in the following the energy flux along the atom and the cavities
m0,m1,m2, ...,mN .

The direction of energy flow between the atom and the cavity m0 can be indicated by the
trace distance evolution: an increase (decrease) of which specifies energy transfer from the
cavity (atom) to the atom (cavity). To witness the energy flow direction between the cavity m0

and the nth one mn, we employ the compensated rate of the population change of the cavity mn,
which in the spirit of Ref. [57] is defined as

Wn(t)≡ d|c̃n(t)|2
dt

+Γn|c̃n(t)|2, (13)

where |c̃n(t)|2 is the excited state population of the cavity mn given in Eqs. (7)-(9). If the en-
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Fig. 5. Evolution of (a) the trace distance, (b) the population |c0(t)|2 of the cavity m0 and (c)
the witness Wn(t), Eq. (13), for the case when the s-m0 coupling is weak with Ω0 = 0.2Γ0
while the cavity m0 is coupled, with the same strength Ω = Ω1 = Ω2 = Γ0, to two identical
cavities m1,m2, which decay with the same rate Γ = Γ1 = Γ2 = 0.5Γ0.

ergy of cavity mn decreases (i.e., d|c̃n(t)|2/dt < 0) and meanwhile such a decrease cannot be
accounted for by its dissipation determined by the term Γn|c̃n(t)|2 (i.e., Wn(t)< 0), then we are
sure that energy is flowing from cavity mn to cavity m0. That is, negativity of Wn(t) can serve
as a witness of the energy flow from the nth cavity mn to the cavity m0. In Fig. 5 we plot the
evolution of the trace distance [Fig. 5(a)], the population |c0(t)|2 of the cavity m0 [Fig. 5(b)] as
well as the witness Wn(t) [Fig. 5(c)] for the aforementioned situation (i.e., when the atom and
the cavity m0 are in the weak coupling regime) with Ω0 = 0.2Γ0 while the cavity m0 is coupled
with the same strength Ω = Ω1 = Ω2 = Γ0 to two cavities m1, m2, which damp with the same
rate Γ = Γ1 = Γ2 = 0.5Γ0. As seen from the figure, at a (scaled) time point τ1 = Γ0t1, when the
trace distance decreases to a minimum and starts to grow, the population of cavity m0 reaches
zero and the value of Wn(t) switches from positive to negative. The trace distance keeps grow-
ing and Wn(t) keeps being negative until a later time τ2 = Γ0t2, after which the trace distance
drops again and Wn(t) switches back from negative to positive. From that observation, we can
describe the energy transfer progress as follows. For τ (≡ Γ0t)< τ1, the energy flows from the
atom to cavity m0 and then to the cavities m1,m2, ...,mN apart from the dissipations into the
associated memoryless reservoirs. The thing changes at τ = τ1 at which the cavity m0 decays
to its vacuum state and begins to resorb the lost energy stored in the cavities m1,m2, ...,mN .
Thanks to the existence of the cavities m1,m2, ...,mN , the energy can flow back from them to
the cavity m0 and then to the atom during the whole period of τ1 < τ < τ2. Eventually, from
τ = τ2, the direction of energy flux changes again and the atom is loosing energy continuously
as time goes on. Here, it is worth noting that the change of the direction of energy flow be-
tween the cavity m0 and the cavities m1,m2, ...,mN leads to the same change of that between
the atom and the cavity m0. Therefore, we can conclude that it is the presence of the cavities
m1,m2, ...,mN that determines the emergence of non-Markovian dynamics of the atom in the
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weak s-m0 coupling regime.

4. Patterns of non-Markovian dynamics

If the s-m0 coupling is weak and there are no other cavities at all, then the atom dynamics can
only be Markovian. Nevertheless, as shown in the above discussions, non-Markovian dynam-
ics can be triggered by letting the cavity m0 be further coupled simultaneously to a number
of secondary cavities m1,m2,...,mN (N ≥ 1), no matter they are perfect or lossy. In this sec-
tion, we proceed to the strong s-m0 coupling regime in which the atom dynamics is already
non-Markovian even without any additional cavities. In this case, the non-Markovian dynam-
ics can be described by type I pattern, as manifested by the trace distance evolution. From a
microscopic physical point of view, that type of non-Markovian dynamics pattern is due to re-
absorption of lost energy from the cavity m0 after the atom has decayed to its ground state. Now,
we are interested in the non-Markovian patterns when the secondary cavities m1,m2, ...,mN are
involved. We shall show that apart from type I pattern, type II pattern as well as coexistence
of these two types may show up as the strengths of m0-mn coupling vary. To be visual, we
display in Fig. 6 the transformation of non-Markovian dynamics patterns through the variation
of non-Markovianity N versus the m0-mn couplings Ω/Γ0 for a fixed s-m0 coupling strength
Ω0 = 0.5Γ0 (> Γ0/4, i.e, in the strong coupling regime). The circles correspond to the situation
when only one (N = 1) hierarchical cavity is involved, while triangles to the situation when
two (N = 2) identical cavities m1 and m2 with the same coupling strength Ω = Ω1 = Ω2 and
the same decay rate Γ1 = Γ2 = Γ0 come into play. The different colors of the symbols denote
different patterns of non-Markovian dynamics: the white (black) color is for type I (type II)
pattern, while the black-white color represents coexistence of these two types of pattern. Note
also that there exist a domain (labeled by crosses) of Ω/Γ0 within which the non-Markovianity
N = 0. Generally, for both cases of N = 1 and N = 2, when Ω/Γ0 is increasing, the dynamics
changes from type I pattern to type II pattern after experiencing a coexistence of these two
types, then, at a critical value of Ω/Γ0, suddenly becomes Markovian (i.e., N = 0) and keeps
so within a domain of further increase of Ω/Γ0, but transforms back to be non-Markovian (i.e.,
N > 0) with type II pattern, as Ω/Γ0 continues to increase.

The transformation of non-Markovian dynamics patterns is obviously related to the strength
Ω/Γ0 of the m0-mn couplings. Therefore, we are going to analyze the underlying reason focus-
ing on the values of Ω/Γ0 in the domains before and after N = 0, respectively. In the strong
s-m0 coupling regime and for the values of Ω/Γ0 being in the domain before N = 0, both the
atom and the cavity m0 can decay to their respective ground states in a finite time. The former
situation leads to non-Markovian dynamics with type I pattern, while the latter situation to type
II pattern. Since it requires a relatively large m0-mn coupling to make the cavity m0 decay to
its ground state in a finite time, type II pattern appears posterior with respect to type I one, as
shown in Fig. 6. For the in-between values of Ω/Γ0, both two situations can take place, result-
ing in coexistence of those two types of patterns. Moreover, in the domain before N = 0, an
increase in Ω/Γ0 favors dissipation of the atom, therefore the non-Markovianity N decreases
with slight increases of Ω/Γ0 and eventually becomes zero. In the domain after N = 0, a fur-
ther increase in Ω/Γ0 even more favors the atom dissipation so the atom can be thought of as
belonging to weak coupling regime with respect to the overall environment (i.e., including all
the N+1 cavities m0,m1,m2, ...,mN). In this case, only finite-time decay of the cavity m0 to its
ground state can take place, which induces the non-Markovian dynamics. That is why we only
observe type II pattern of the non-Markovian dynamics. Also, the larger the values of Ω/Γ0,
the larger the non-Markovianity N .
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Fig. 6. The non-Markovianity N as a function of the coupling constant Ω/Γ0 =
(Ωn/Γ0,∀n) between the cavity m0 and the identical secondary cavities mn (n= 1,2, ...,N).
The circles represent N = 1 and the triangles N = 2. The white (black) color stands for type
I (type II) pattern of non-Markovian dynamics and the black-white color specifies the coex-
istence of these two types of patterns. The symbols with a cross denote N = 0. The other
parameters used are Ω0/Γ0 = 0.5 and Γn = Γ0 (n = 1,2).

5. Conclusion

In conclusion, we have investigated the dynamics of a two-level system in a composite environ-
ment with two hierarchies. The first hierarchy just contains a sub-environment which is in turn
coupled to the second hierarchy consisting of N ≥ 1 other sub-environments. Each of the N+1
sub-environment comprises a mode which is damped with a finite rate into an independent
memoryless reservoir. To be concrete, we take a two-level atom as the system s, a lossy cavity
with a mode m0 as the first environmental hierarchy and N other lossy cavities with modes
m1,m2, ...,mN , respectively, as the second environmental hierarchy. First we consider the weak
s-m0 coupling regime and show that the Markovian dynamics of the atom can become non-
Markovian one in the presence of the second environmental hierarchy. The non-Markovianity
is proportional to the size of the second environmental hierarchy (i.e., the number N of the
secondary cavities m1,m2, ...,mN) as well as to the m0-mn coupling strengths. Therefore, our
results indicate that enlargement of the second environmental hierarchy size as well as ability of
manipulation of coupling strengths between the first and the second environmental hierarchies
provide efficient alternative strategies to trigger non-Markovian dynamics of the interested sys-
tem. The non-Markovian dynamics pattern in this case is nevertheless different compared to
the usual situation of strong s-m0 coupling regime without the second environmental hierarchy.
To understand the occurrence mechanism of this type non-Markovian dynamics, we examine
the energy flux among the atom and the cavities m0,m1,m2, ...,mN . It is found that the m0-mn

coupling can make the cavity m0 decay to its ground state in a finite time, while at that moment
the atom still has nonzero probability in its excited state. As time goes on this coupling allows
the cavity m0 to retrieve the lost energy stored in the cavities m1,m2, ...,mN and meanwhile to
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transfer them to the atom, triggering the non-Markovian dynamics of the atom. We then con-
sider the strong s-m0 coupling regime. Although in the absence of any secondary cavities the
atom already exhibits non-Markovian dynamics, in the presence of the second hierarchy cavi-
ties the dynamics patterns may be transformed by varying the m0-mn coupling strengths. Since
the features, such as the revival moments, are different with respect to different non-Markovian
dynamics patterns, our results suggest a possible method to tailor an on-demand pattern for the
non-Markovian dynamics which plays a key application.
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