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We argue that the gauge symmetry which includes SUð3ÞL as a higher weak-isospin symmetry is
manifestly given by SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN, where the last two factors determine the
electric charge and B − L, respectively. This theory not only provides a consistent unification of the
electroweak and B − L interactions, but also gives insights in dark matter, neutrino masses, and inflation.
The dark matter belongs to a class of new particles that have wrong B − L numbers, and is stabilized due to
a newly realized W-parity as residual gauge symmetry. The B − L breaking field is important to define the
W-parity, seesaw scales, and the inflaton. Furthermore, the number of fermion generations and the electric
charge quantization are explained naturally. We also show that the previous 3-3-1 models are only an
effective theory, as the B − L charge and the unitarity argument are violated. This work substantially
generalizes our recently proposed 3-3-1-1 model.
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I. INTRODUCTION

The standard model is incomplete, since it leaves many
striking features of the physics of our world unanswered
[1]. The leading questions perhaps include the neutrino
masses, dark matter, matter-antimatter asymmetry, and
cosmic inflation. The standard model also cannot explain
why there are only three fermion generations and what
makes the electric charges be quantized.
The most popular solutions for the observed small

neutrino masses could be the seesaw mechanisms [2].
Interestingly, they also lead to leptogenesis processes that
address the matter-antimatter asymmetry. The crucial keys
of the type-I and type-II seesaw mechanisms are at the
seesaw scales, which keep the small neutrino masses.
However, at present they have been less understood.
What is their origin? Which is the physics behind them?
Can the seesaw scales be related? Further, the generation of
the thermal dark matter relic density implies the existence
of a weakly interacting massive particle (WIMP) [3]. Many
simple extensions of the standard model provide WIMPs.
But what is the WIMP’s nature? Why is it stabilized? Can a
WIMP that is bounded below some hundreds of TeV be
correlated to the inflationary dynamics at the grand uni-
fication scale? Could the seesaw and inflationary scales be
common?
As an attempt to address those questions, this work is a

substantial generalization of a recently proposed SUð3ÞC ⊗
SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN (3-3-1-1) gauge model [4]. We
will strictly derive the 3-3-1-1 gauge symmetry, along with
the introduction of the most general fermion content. For
this aim, we start from SUð3ÞL, a higher weak-isospin
symmetry directly extended from SUð2ÞL, which is best
known for solving the number of observed fermion

generations. To preserve the electric charge, baryon-
number, and lepton-number symmetries, the complete
gauge symmetry must be SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN
[besides the SUð3ÞC color group], where X and N define
the electric charge and the baryon-minus-lepton number,
respectively. The general fermion content is free from all
the anomalies, where the most new fermions (including the
non-Hermitian gauge bosons) have new, characteristic B −
L quantum numbers.
The scalar sector is introduced, and the 3-3-1-1 sym-

metry breaking is discussed. The new model yields a
discrete symmetry, called W-parity (although it is actually
larger than Z2), as a remnant of the gauge symmetry, which
separates the model particles into two classes, normal
particles and wrong particles. The wrong particles trans-
form nontrivially under the W-parity, and are only coupled
in pairs in interactions, similarly to the superparticles in
supersymmetry. TheW-parity makes some wrong lepton or
baryon particles stable, providing dark matter candidates.
The neutrino masses are generated as a result of the gauge
symmetry breaking, where the seesaw mechanisms are
naturally realized. The model also provides an inflatons as
the dynamics of B − L breaking as well as leptogenesis
processes automatically. The hints of the electric charge
quantization are shown. The gauge bosons are identified,
and the corresponding constraints are given. The unitarity
of the model as well as that of the previous theories is also
investigated.
The rest of this work is organized as follows: In Sec. II

we construct the model. Here, the dark matter, neutrino
masses, and the quantization of charges are also discussed.
Section III is devoted to the gauge bosons and some
constraints. The unitarity is considered in Sec. IV. The
cosmological inflation and leptogenesis are discussed in
Sec. V. We summarize our results and conclude this work
in Sec. VI.*pvdong@iop.vast.ac.vn
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II. PROPOSAL OF THE MODEL

A. 3-3-1-1 symmetry and fermion content

The first observation is that in the standard model the
½SUð2ÞL�3 anomaly always vanishes, Tr½fTa; TbgTc� ¼ 0,
for any chiral fermion representation, where Taða ¼
1; 2; 3Þ indicate SUð2ÞL generators. Let SUð2ÞL be
enlarged to SUð3ÞL, a higher weak-isospin symmetry.
As a result, the corresponding anomaly ½SUð3ÞL�3 does
not vanish, Aijk ≡ Tr½fTi; TjgTk� ≠ 0, for complex repre-
sentations, where Tiði ¼ 1; 2; 3;…; 8Þ denote SUð3ÞL
generators. This subsequently gives constraints on the
new fermion content [5]. The new gauge symmetry must
span SUð3ÞC ⊗ SUð3ÞL, where the first factor is the
ordinary color group.
The fundamental representations of SUð3ÞL are decom-

posed as 3 ¼ 2 ⊕ 1 and 3� ¼ 2� ⊕ 1 under SUð2ÞL.
Therefore, all the (left-handed) fermion doublets of
SUð2ÞL will be embedded into 3 or 3�, where for the
latter the antidoublets take the form ðf2 − f1Þ, provided
that ðf1f2Þ is a doublet. We also suppose that all the (right-
handed) fermion singlets of SUð2ÞL by themselves trans-
form as corresponding singlets of SUð3ÞL. Because of
Aijkð3�Þ ¼ −Aijkð3Þ, the ½SUð3ÞL�3 anomaly is canceled
out if the number of 3 is equal the number of 3� (where the
color number must be appropriately counted). Therefore,
the fermion representations under SUð3ÞL are arranged as

ψaL ≡
0
B@

νaL

eaL
kaL

1
CA ∼ 3; Q3L ≡

0
B@

u3L
d3L
j3L

1
CA ∼ 3;

QαL ≡
0
B@

dαL
−uαL
jαL

1
CA ∼ 3�; ð1Þ

νaR; eaR; kaR; uaR; daR; jaR ∼ 1; ð2Þ

where a ¼ 1; 2; 3 and α ¼ 1; 2 are generation indices, and
νaR; ka; ja are new particles, which are SUð2ÞL singlets
added to complete the representations.
As a matter of fact, we possibly have a special case where

ka are excluded (not needed). Instead, the third components
of ψa (like the 1’s in the above decompositions) can be
assigned by either eaR or νaR, called minimal versions.
Namely, kaR are suppressed, while kaL are replaced by
either ðeaRÞc or ðνaRÞc, where “c” indicates the charge
conjugation, ðfRÞc ≡ Cf̄RT ¼ ðfcÞL, as usual. However,
this does not work for the case of quarks, because SUð3ÞL,
SUð3ÞC, and the space-time symmetry commute. Hence,
the introduction of ja is necessary. Furthermore, the results
obtained below generally apply for all cases. A direct
consequence of the above proposal is that the number of

fermion generations must be equal to the fundamental color
number [6,7].
Since ka are unknown, let their electric charges be q.

Furthermore, the electric charge operator Q does not
commute and noncloses algebraically with SUð3ÞL.
Indeed, for a lepton triplet, we have Q ¼ diagð0;−1; qÞ,
which is generally not commuted with Ti ¼ 1

2
λi for

i ¼ 1; 2; 4; 5; 6; 7:

½Q; T1 � iT2� ¼ �ðT1 � iT2Þ;
½Q; T4 � iT5� ¼∓ qðT4 � iT5Þ;
½Q; T6 � iT7� ¼∓ ð1þ qÞðT6 � iT7Þ: ð3Þ

The algebraic noncloseness results from the fact that
if Q is some generator of SUð3ÞL, we have a combination
Q ¼ xiTi, which is invalid for uR, dR, even for some
triplets/antitriplets, since TrQ ¼ 0. In other words, Q and
Ti by themselves do not make a symmetry.
To have a closed algebra, we introduce an Abelian

charge X so that Q is a residual charge of the closed group
SUð3ÞL ⊗ Uð1ÞX, i.e., Q ¼ xiTi þ yX. With Q acting on a
lepton triplet, we obtain

Q ¼ T3 þ βT8 þ X; ð4Þ

where β ¼ −ð1þ 2qÞ= ffiffiffi
3

p
, and the weak hypercharge is

identified as Y ¼ βT8 þ X. The electric charges of ja are
easily obtained: Qðj3Þ ¼ 2

3
þ q and QðjαÞ ¼ − 1

3
− q.

Remark: since T3;8 are gauged charges, Q and X must
be gauged charges. This is a consequence of the non-
commutation of Q and SUð3ÞL. At this stage, we conclude
that the gauge symmetry of the theory must span
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX. It has been extensively stud-
ied in the literature [8,9].
Since ka are unknown, let their B − L charges be n. We

also assume that B − L is conserved, which is actually
approved by the standard model and experiments [1].
Similarly to Q, we can show that B − L does not commute
and noncloses algebraically with SUð3ÞL, which differs
from the standard model. Indeed, for a lepton triplet,
B − L ¼ diagð−1;−1; nÞ, and we have

½B − L; T4 � iT5� ¼∓ ð1þ nÞðT4 � iT5Þ;
½B − L; T6 � iT7� ¼∓ ð1þ nÞðT6 � iT7Þ; ð5Þ

which nonvanish since n can in principle be arbitrary. Even
for the minimal versions aforementioned, the noncommu-
tation is explicitly hinted due to n ¼ 1, thus 1þ n ≠ 0.
Also, if B − L is algebraically closed with SUð3ÞL, it yields
B − L ¼ aiTi which is incorrect for the right-handed
fermions as well as for some triplets/antitriplets due
to TrðB − LÞ ¼ 0. Therefore, an Abelian charge N must
be imposed so that B − L is a residual charge of
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SUð3ÞL ⊗ Uð1ÞN , B − L ¼ aiTi þ bN. Acting on a lepton
triplet, it follows

B − L ¼ β0T8 þ N; ð6Þ

where β0 ¼ −2ð1þ nÞ= ffiffiffi
3

p
. The B − L charges of ja are

easily identified: ½B − L�ðj3Þ ¼ 4
3
þ n and ½B − L�ðjαÞ ¼

− 2
3
− n. Similarly to Q and X, the charges B − L and N

must be gauged, because T8 is gauged, which is a
consequence of the B − L and SUð3ÞL noncommutation.
Note that N cannot be identified as X, since they generally
differ for the right-handed fermions and for the triplets/
antitriplets. Hence, they are independent charges as the
charges B − L and Q are.
To summarize, the gauge symmetry of the theory is

manifestly given as

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN; ð7Þ

which is called 3-3-1-1 for short. It is noteworthy that
the new weak-isospin theory, SUð3ÞL, contains two con-
served, noncommutative charges, Q and B − L, and their
algebraic closure yields the 3-3-1-1 gauge model, which
describes the strong, electroweak, and B − L interactions.
Interestingly enough, the last two interactions (electroweak
and B − L) are unified in the same manner as those in the
electroweak theory. In Appendix A, we present another
approach which comes to the same conclusion regarding
the 3-3-1-1 gauge symmetry.
The fermion multiplets possess the following quantum

numbers:

ψaL ∼
�
1; 3;

−1þ q
3

;
−2þ n

3

�
; Q3L ∼

�
3; 3;

1þ q
3

;
2þ n
3

�
; QαL ∼

�
3; 3�;−

q
3
;−

n
3

�
;

νaR ∼ ð1; 1; 0;−1Þ; eaR ∼ ð1; 1;−1;−1Þ; kaR ∼ ð1; 1; q; nÞ; uaR ∼
�
3; 1;

2

3
;
1

3

�
;

daR ∼
�
3; 1;−

1

3
;
1

3

�
; j3R ∼

�
3; 1;

2

3
þ q;

4

3
þ n

�
; jαR ∼

�
3; 1;−

1

3
− q;−

2

3
− n

�
; ð8Þ

which are given upon the 3-3-1-1 gauge symmetries. The
fermion content as given is free fromall the anomalies. Indeed,
we are concerned with the following nontrivial anomalies:
½SUð3ÞC�2Uð1ÞX, ½SUð3ÞC�2Uð1ÞN , ½SUð3ÞL�2Uð1ÞX,
½SUð3ÞL�2Uð1ÞN , ½Gravity�2Uð1ÞX, ½Gravity�2Uð1ÞN ,
½Uð1ÞX�2Uð1ÞN , Uð1ÞX½Uð1ÞN �2, ½Uð1ÞX�3, and ½Uð1ÞN �3,
which are potentially troublesome. They are verified in
Appendix B. Here, note that νaR as included from the outset
are to cancel the gravity anomaly ½Gravity�2Uð1ÞN as well as
the self-anomaly ½Uð1ÞN �3.
A direct consequence of this note is that the often studied

3-3-1 models are only self-consistent if they include B − L,
and thusUð1ÞN , as a gauge symmetry. Otherwise, the 3-3-1
models are only effective theories at a low-energy scale as
often given in TeV range, for which B − L acts as an
approximate symmetry. And the corresponding interactions
that explicitly violate B − L must be present, in order for
the 3-3-1 models to survive. All these will be proved in the
next section, by verifying the unitarity argument of the
current model and the 3-3-1 models.

B. Scalar sector, symmetry breaking,
and W-parity

To break the 3-3-1-1 symmetry and generate the
correct masses for the particles, we introduce the following
scalars:

η ¼

0
BB@

η0;01

η−1;02

ηq;nþ1
3

1
CCA ∼

�
1; 3;

q − 1

3
;
nþ 1

3

�
; ð9Þ

ρ ¼

0
BB@

ρ1;01

ρ0;02

ρqþ1;nþ1
3

1
CCA ∼

�
1; 3;

qþ 2

3
;
nþ 1

3

�
; ð10Þ

χ¼

0
BB@
χ−q;−n−11

χ−q−1;−n−12

χ0;03

1
CCA∼

�
1;3;−

2qþ1

3
;−

2

3
ðnþ1Þ

�
; ð11Þ

ϕ ∼ ð1; 1; 0; 2Þ; ð12Þ

where the superscripts denote ðQ;B − LÞ values respec-
tively, while the subscripts indicate component fields under
SUð3ÞL. The scalars have such quantum numbers since η,
ρ, χ couple a left-handed fermion to a corresponding right-
handed fermion, whereas ϕ couples to νRνR (as explicitly
shown in the Yukawa Lagrangian below). Because Q is
conserved, only the electrically neutral components η1, ρ2,
χ3, ϕ can develop vacuum expectation values (VEVs),
given by
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hηi ¼ 1ffiffiffi
2

p

0
B@

u

0

0

1
CA; hρi ¼ 1ffiffiffi

2
p

0
B@

0

v

0

1
CA;

hχi ¼ 1ffiffiffi
2

p

0
B@

0

0

w

1
CA; hϕi ¼ 1ffiffiffi

2
p Λ: ð13Þ

The 3-3-1-1 symmetry is broken down to SUð3ÞC ⊗
Uð1ÞQ ⊗ Uð1ÞB−L due to u, v, w. Here, it undergoes two
stages: the 3-3-1-1 symmetry to SUð3ÞC ⊗ SUð2ÞL ⊗
Uð1ÞY ⊗ Uð1ÞB−L due to w, then SUð3ÞC ⊗ SUð2ÞL ⊗
Uð1ÞY ⊗ Uð1ÞB−L to SUð3ÞC ⊗ Uð1ÞQ ⊗ Uð1ÞB−L due to
u; v. Note that u, v, w break only N, not B − L. Further, Λ
breaks B − L, or N totally, since it also breaks N in the
previous stages, to a discrete symmetry, Uð1ÞB−L → P
(shown below). In contrast to Q, the B − L charge must be
broken, since its corresponding gauge boson should have a
large mass to escape from the detection. In summary, the
gauge symmetry is broken as follows:

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN
!u;v;w;Λ

SUð3ÞC ⊗ Uð1ÞQ ⊗ P: ð14Þ

The VEVs w;Λ provide the masses for the new particles,
whereas u; v are for those of the ordinary particles. To
keep consistency with the standard model, we
assume u; v ≪ w;Λ.
The charge B − L ¼ β0T8 þ N is the residual symmetry

of SUð3ÞL ⊗ Uð1ÞN , since ½B − L�hηi ¼ ½B − L�hρi ¼
½B − L�hχi ¼ 0 for u; v; w ≠ 0. It transforms component
fields/particles (Φ) as

Φ → Φ0 ¼ UðωÞΦ; UðωÞ ¼ eiωðB−LÞ; ð15Þ
where ω is a transforming parameter. Further, B − L
is broken by hϕi, since ½B − L�hϕi ¼ ffiffiffi

2
p

Λ ≠ 0. Its
remnant will conserve the vacuum, UðωÞhϕi ¼ hϕi, i.e.,
ei2ω ¼ 1, and thus ω ¼ mπ for m ¼ 0;�1;�2;… We
identify P ¼ eiωðB−LÞ ¼ eimπðB−LÞ ¼ ð−1ÞmðB−LÞ. Among
such survival transformations, consider m ¼ 3, thus
P¼ð−1Þ3ðB−LÞ, called matter parity. In addition, P can
be rewritten in a convenient form,

P ¼ ð−1Þ3ðB−LÞþ2s; ð16Þ

when multiplying the spin parity ð−1Þ2s, which is always
conserved due to the angular momentum conservation. This
is commonly known as R-parity, but in our case it results as
a remnant of the gauge symmetry, given by

P ¼ ð−1Þ3ðβ0T8þNÞþ2s: ð17Þ

If ka have ordinary B − L numbers like those of the
standard model, n ¼ 2m−1

3
¼ � 1

3
;�1;� 5

3
;…, the equation

above yields P ¼ 1 for all the fields of the model, which is
trivial. The minimal versions belong to this case. However,
since ka are new particles, we generally assume that n is
arbitrarily different from the ordinary ones, n ≠ 2m−1

3
.

Hence, the parity P divides the model particles into two
classes:
(1) Normal particles: P ¼ 1. Include the standard model

particles and some new ones: ν, e, u, d, γ, W, Z, Z0,
Z00, η1;2, ρ1;2, χ3, ϕ. They have ordinary B − L
numbers (or differ from these by even units as ϕ
does), similarly to those of the standard model. They
are even particles since P ¼ 1, as displayed in
Table I.

(2) Wrong particles: P ¼ Pþ or P−, where
P� ≡ ð−1Þ�ð3nþ1Þ. All the remaining particles, k,
j, X, Y, η3, ρ3, χ1;2, have incorrect (wrong) B − L
numbers, in comparison to those of the standard
model. They have a parity value of either Pþ or P−,
which is nontrivial due to P� ≠ 1, as shown in
Table I. Specially, the wrong particles become odd
particles, i.e., P ¼ Pþ ¼ P− ¼ −1, provided
that n ¼ 2m

3
¼ 0;� 2

3
;� 4

3
;�2;….

Therefore, a few remarks are in order:
(1) P is called W-parity, which distinguishes the wrong

particles, called W-particles, from the normal (even)
particles.

(2) Since P is conserved, the W-particles are only
coupled in pairs in interactions, which is analogous
to superparticles in supersymmetry. Indeed, consid-
ering an interaction of rþ s W-fields, the P con-
servation implies ðPþÞrðP−Þs ¼ 1, where r; s are
integer, which happens if and only if r ¼ s. The Pþ
and P− fields always appear in pairs.

(3) Since P is conserved, the lightest W-particle (LWP)
is stabilized, which can be a dark matter candidate.
The candidate must be electrically neutral, thus we
have two dark matter models: (i) Model with q ¼ 0:

TABLE I. The Q, B − L charges and W-parity values for the model particles. The corresponding antiparticles have opposite Q and
B − L charges, and W-parity conjugated.

Particle νa ea ua da γ W Z Z0 Z00 η1;2 ρ1;2 χ3 ϕ ka jα j3 X Y η3 ρ3 χ1;2

Q 0 −1 2
3

− 1
3

0 1 0 0 0 0;−1 1,0 0 0 q − 1
3
− q 2

3
þ q −q −1 − q q 1þ q −q;−1 − q

B − L −1 −1 1
3

1
3

0 0 0 0 0 0 0 0 2 n − 2
3
− n 4

3
þ n −1 − n −1 − n 1þ n 1þ n −1 − n

P 1 1 1 1 1 1 1 1 1 1 1 1 1 Pþ P− Pþ P− P− Pþ Pþ P−
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the candidates are a fermion (as some combination
of ka), a gauge boson (Xμ), and a scalar (as some
combination of η3 and χ1); (ii) Model with q ¼ −1:
the candidates are a gauge boson (Yμ) and a scalar
(as some combination of ρ3 and χ2).

(4) Since P is conserved, the W-scalars, if electrically
neutral, cannot develop VEVs. The VEVs as given
above are unique. Also, there is no mixing between
the W-particles and the normal particles if they have
the same electric charge. Here, the possible mixings
are between exotic quarks and ordinary quarks as
well as between new non-Hermitian gauge bosons
and ordinary gauge bosons including Z0, Z00. Con-
sequently, the dangerous tree-level flavor-changing
neutral currents and CP asymmetries due to such
mixings are suppressed.

C. Total Lagrangian, fermion masses, and electric
charge quantization

The total Lagrangian, up to the gauge fixing and ghost
terms, is given by

L ¼
X

fermion multiplets

F̄ iγμDμF þ
X

scalar multiplets

ðDμSÞ†ðDμSÞ

−
1

4
GiμνG

μν
i −

1

4
AiμνA

μν
i −

1

4
BμνBμν −

1

4
CμνCμν

þ LYukawa − Vðη; ρ; χ;ϕÞ; ð18Þ

where the covariant derivative and field strength tensors are
defined as

Dμ¼∂μþ igstiGiμþ igTiAiμþ igXXBμþ igNNCμ; ð19Þ

Giμν ¼ ∂μGiν − ∂νGiμ − gsfijkGjμGkν; ð20Þ

Aiμν ¼ ∂μAiν − ∂νAiμ − gfijkAjμAkν; ð21Þ

Bμν ¼ ∂μBν − ∂νBμ; Cμν ¼ ∂μCν − ∂νCμ; ð22Þ

where fgs; g; gX; gNg, fti; Ti; X; Ng, and fGi; Ai; B; Cg are
coupling constants, generators, and gauge bosons of the
3-3-1-1 groups, respectively, and fijk are SUð3Þ structure
constants.
The Yukawa Lagrangian and scalar potential are

obtained by

LYukawa ¼ hνabψ̄aLηνbR þ heabψ̄aLρebR þ hkabψ̄aLχkbR þ h0νabν̄
c
aRνbRϕþ hj33Q̄3Lχj3R þ hjαβQ̄αLχ

�jβR þ hu3aQ̄3LηuaR

þ huαaQ̄αLρ
�uaR þ hd3aQ̄3LρdaR þ hdαaQ̄αLη

�daR þ H:c:; ð23Þ

Vðη; ρ; χ;ϕÞ ¼ μ21η
†ηþ μ22ρ

†ρþ μ23χ
†χ þ μ24ϕ

†ϕþ λ1ðη†ηÞ2 þ λ2ðρ†ρÞ2 þ λ3ðχ†χÞ2 þ λ4ðϕ†ϕÞ2 þ λ5ðη†ηÞðρ†ρÞ
þ λ6ðη†ηÞðχ†χÞ þ λ7ðρ†ρÞðχ†χÞ þ λ8ðϕ†ϕÞðη†ηÞ þ λ9ðϕ†ϕÞðρ†ρÞ þ λ10ðϕ†ϕÞðχ†χÞ
þ λ11ðη†ρÞðρ†ηÞ þ λ12ðη†χÞðχ†ηÞ þ λ13ðρ†χÞðχ†ρÞ þ ðμηρχ þ H:c:Þ; ð24Þ

where the Yukawa couplings h and the scalar couplings λ
are dimensionless, while μ1;2;3;4 and μ have the mass
dimension.
When the scalars develop VEVs, the fermions obtain

masses. Conventionally, we write Dirac mass terms as
−f̄LmffR þ H:c: and Majorana mass terms as
− 1

2
f̄cL;Rm

L;R
f fL;R þ H:c. The new fermions ka and ja

possess ½mk�ab ¼ −hkab
wffiffi
2

p , ½mj�ab ¼ −hjab
wffiffi
2

p , with

hj3α ¼ hjα3 ¼ 0, which all have masses in w scale. The
masses of ea, ua, and da are given by ½me�ab ¼ −heab

vffiffi
2

p ,

½mu�3a ¼ −hu3a uffiffi
2

p , ½mu�αa ¼ huαa vffiffi
2

p , ½md�3a ¼ −hd3a vffiffi
2

p , and

½md�αa ¼ −hdαa uffiffi
2

p . Therefore, the ordinary charged leptons

and quarks gain the masses in the weak scales u; v, as usual.
For the neutrinos, including the standard model νaL and
their counterpart νaR, we have Dirac masses ½mν�ab ¼
−hνab

uffiffi
2

p and Majorana masses ½mR
ν �ab ¼ −

ffiffiffi
2

p
h0νabΛ.

Because of u ≪ Λ, the observed neutrinos ð∼νaLÞ obtain
masses via a type-I seesaw mechanism, given by
mL

ν ≃ −mνðmR
ν Þ−1ðmνÞT ∼ u2=Λ, which is naturally small,

whereas the heavy neutrinos ð∼νaRÞ have masses mR
ν as

retained.
Indeed, such tiny masses for the neutrinos can be

perturbatively (or dynamically) generated via a tree-level
diagram in Fig. 1, attached by three external Higgs fields η,
ϕ, η with two respective internal lines νR, νcR, when the
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electroweak and B − L breakings happen, correspondingly
determined by hηi and hϕi. The Majorana masses of νaR are
also generated due to their interaction with ϕ (as the middle
part in the Fig. 1 graph) and the B − L breaking by hϕi. The
new observation is that the 3-3-1-1 symmetry suppresses all
the neutrino mass types, but the electroweak and B − L
breakdown, it provides consistent masses for the neutrinos
via such a generalized Higgs mechanism. The type-I
seesaw mechanism is naturally recognized in this frame-
work because it contains νaR as fundamental fermion
constituents, and the Majorana masses are induced due
to the B − L gauge symmetry breaking. Further, this also
works for a type-II seesaw mechanism as mediated by a
hypothetical scalar sextet (if one includes it) that couples to
ψaLψbL and to ηηϕ�. This contribution is just ∼u2=Λ, as the
type-I one is, since the sextet mass is set by Λ scale. Both
the mechanisms are correlated as achieved by the same
symmetry-breaking sources Λ and u.
The standard model does not predict the electric charge

quantization because of Q ¼ T3 þ Y, where the values of
T3 are quantized due to the non-Abelian nature of SUð2ÞL
algebra, whereas the values of Y are completely arbitrary. It
is only chosen to describe the observed charges; it does not
explain them. The grand unified theories solve this issue,
since both T3 and Y are embedded in simple groups, and
thus the values of Y are constrained due to the algebra
structure. Our model provides an alternative solution,
which is again due to the B − L dynamics. For some
pioneering works on the electric charge quantization,
see Ref. [10].
The electric charge operator is given by

Q ¼ T3 þ βT8 þ X, where T3;8 are quantized due to the
SUð3ÞL algebra structure. Therefore,Q is quantized if X for
all multiplets is fixed. The ingredients in Ref. [7] are
convenient for discussing further. First of all, the X-charges
of η, ρ, χ, and ϕ are constrained by Qhηi ¼ Qhρi ¼
Qhχi ¼ Qhϕi ¼ 0 because Q is conserved. This gives
Xϕ ¼ 0, while Xη;ρ;χ depend on β. The Yukawa
Lagrangian is invariant under Uð1ÞX, which yields that
all the right-handed fermions have X-charges related to
those of the corresponding left-handed fermions and
scalars. Also, the flavors ψaL have the same X-charge,
i.e., Xψ1L

¼ Xψ2L
¼ Xψ3L

≡ XψL
, and this applies for other

repetitive flavors such as νaR, eaR, kaR, QαL, uaR, daR, and
jαR, correspondingly. We denote Xf1R ¼ Xf2R ¼
Xf3R ≡ XfR (f ¼ ν; e; k; u; d), XQ1L

¼ XQ2L
≡ XQαL

, and
Xj1R ¼ Xj2R ≡ XjαR . At this stage, we see that the charge
of Q3L is related to that of QαL. Specially, we have the so-
called quantization condition XνR ¼ − 1

2
Xϕ ¼ 0 due to the

unique interaction of ϕ to νRνR. This leads to XψL
¼ Xη as

fixed. The ½SUð3ÞL�2Uð1ÞX anomaly cancellation gives
XQαL

related to XψL
as fixed. Therefore, all X-charges are

constrained, of which most depend on β. Substituting into
the electric charge operator, the ordinary particles have
electric charges as observed, while the new particles have
electric charges depending on β, i.e., q—the electric charge
of ka. Note that the electric charges of gauge bosons are
always independent of X and are either zero or fixed by
T3;8. If there is no νRνRϕ interaction, the X-charges are
unfixed, which means they are left as free parameters.
Therefore, the B − L dynamics is crucial to obtaining the
quantization of charges. The minimal versions have a
different quantization condition [7].
Let us stress that the above ingredient (i.e., this model)

explains only the electric charge quantization of ordinary
particles. For the new particles, such as ka, jα, j3, X and Y
bosons, and so on, their electric charges are not quantized,
since q (or β) is arbitrary.

III. GAUGE BOSONS AND CONSTRAINTS

The mass Lagrangian of the gauge bosons is given byP
S¼η;ρ;χ;ϕðDμhSiÞ†ðDμhSiÞ. We see that the gluons are

always massless. The non-Hermitian gauge bosons W, X,
and Y, which have been identified in Appendix A, are
physical particles with the corresponding masses

m2
W ¼ g2

4
ðu2 þ v2Þ; m2

X ¼ g2

4
ðw2 þ u2Þ;

m2
Y ¼ g2

4
ðw2 þ v2Þ: ð25Þ

Here, X and Y are new gauge bosons, having large
masses in w scale, due to w ≫ u; v. The field W is
identified as that of the standard model, which implies
u2 þ v2 ¼ ð246 GeVÞ2. The neutral gauge bosons A3, A8,
B, and C mix by themselves. However, it is easy to
determine the photon, Z boson, and new Z0, given by

A ¼ sWA3 þ cW

�
βtWA8 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

q
B

�
; ð26Þ

Z ¼ cWA3 − sW

�
βtWA8 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

q
B
�
; ð27Þ

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

q
A8 − βtWB; ð28Þ

where sW ¼ e=g ¼ tX=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ β2Þt2X

p
, with tX ¼ gX=g,

is the sine of the Weinberg angle [11]. Here, Z0 is

FIG. 1. Improved canonical seesaw mechanism for neutrino
masses.
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orthogonal to the field in the parentheses (i.e., to both A and
Z) that is coupled to the hypercharge Y ¼ βT8 þ X, while
C is orthogonal to all A, Z, and Z0.
The photon A is massless and decoupled (i.e., a physical

particle) [11], while Z,Z0, and Cmix. However, the mixing
of Z with the new Z0 and C is negligible due to the
fu2; v2g=fw2;Λ2g suppressions. Hence, the Z boson can
be considered as a physical particle with mass

m2
Z ≃ g2

4c2W
ðu2 þ v2Þ; ð29Þ

which is identical to that of the standard model. The fields
Z0 and C finitely mix via a mass matrix as obtained by

�
m2

Z0 m2
Z0C

m2
Z0C m2

C

�
; ð30Þ

where we have denoted tN ¼ gN=g, and

m2
Z0 ¼ g2w2

3ð1 − β2t2WÞ
; m2

Z0C ¼ −
g2tNβ0w2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p ;

m2
C ¼ 4g2t2NΛ

2 þ 1

3
g2t2Nβ

02w2: ð31Þ

The Z0 − C mixing angle is defined as

t2ξ ¼
2m2

Z0C

m2
C −m2

Z0

¼ −2tNβ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p
w2

12t2Nð1 − β2t2WÞΛ2 þ ½t2Nβ02ð1 − β2t2WÞ − 1�w2
:

ð32Þ
Therefore, the new neutral gauge bosons are

Z0 ¼ cξZ0 − sξC; Z00 ¼ sξZ0 þ cξC; ð33Þ

with corresponding masses

m2
Z0;Z00 ¼ 1

2

�
m2

Z0 þm2
C ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Z0 −m2
CÞ2 þ 4m4

Z0C

q �
:

ð34Þ

We rewrite s2W ¼ g2X
g2þð1þβ2Þg2X

< 1
1þβ2

. The model may

encounter a Landau pole (M) at which s2WðMÞ ¼ 1
1þβ2

or

gXðMÞ ¼ ∞. Hence, the model is consistent only if M is
larger than w;Λ, and certainly it is larger than the weak
scales u; v. We have a corresponding relation,
s2WðMÞ > s2Wðu; vÞ, since gX=g increases when the energy
scale increases, which yields jβj < cotWðu; vÞ≃ 1.82455
[for s2Wðu; vÞ≃ 0.231]. With the aid of β ¼ − 1þ2qffiffi

3
p , we have

−2.08011 < q < 1.08011. Therefore, the charge of ka is

very constrained, and its bounds are very close to −2 and 1,
respectively. Demanding that q be an integer yields
q ¼ −2;−1; 0; 1. As a matter of fact, the model presents
a low Landau pole of a few TeV for the bounds q ¼ 1 or −2
(see also Ref. [12]).
The quark flavors are nonuniversal under SUð3ÞL ⊗

Uð1ÞX ⊗ Uð1ÞN gauge symmetry because one generation
of quarks transforms differently from the two others, so
there are FCNCs. Indeed, using X ¼ Q − T3 − βT8 and
N ¼ B − L − β0T8, the interaction of neutral currents is
given by

LNC ¼ −gF̄γμ½T3A3μ þ T8A8μ þ tXðQ − T3 − βT8ÞBμ

þ tNðB − L − β0T8ÞCμ�F; ð35Þ

where F runs over all fermion multiplets of the model. It is
easily realized that the leptons (νa; ea; ka) and exotic quarks
(jα; j3) do not flavor-change. Also, the terms that contain
T3, Q, and B − L do not lead to flavor changing. The
relevant part is

LNC ⊃ −gq̄LγμT8qqLðA8μ − βtXBμ − β0tNCμÞ
¼ −q̄LγμT8qqLðg0Z0

μ þ g00Z00
μÞ; ð36Þ

where g0 ≡ gðcξ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p
þ sξβ0tNÞ, g00≡

gðsξ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p
− cξβ0tNÞ, and the field q indicates all

ordinary quarks of either up type q ¼ ðu1; u2; u3Þ or down
type q ¼ ðd1; d2; d3Þ, with the corresponding T8 values,
T8q ¼ 1

2
ffiffi
3

p diagð−1;−1; 1Þ. We change to mass basis,

qL;R ¼ VqL;qRq0L;R, where q0 is either q0 ¼ ðu; c; tÞ or
q0 ¼ ðd; s; bÞ, and

LNC ⊃ −q̄0LγμðV†
qLT8qVqLÞq0Lðg0Z0

μ þ g00Z00
μÞ;

⊃ −
1ffiffiffi
3

p q̄0iLγ
μq0jLðV�

qLÞ3iðVqLÞ3jðg0Z0
μ þ g00Z00

μÞ; ð37Þ

where the last one is FCNC Lagrangian, with i ≠ j. This
leads to the mixings of meson systems as described by the
effective Lagrangian,

Leff
FCNC ¼ 1

3
ðq̄0iLγμq0jLÞ2½ðV�

qLÞ3iðVqLÞ3j�2
�
g02

m2
Z0
þ g002

m2
Z00

�
:

ð38Þ
A strong bound comes from the K0 − K̄0 mixing, which

constrains [1]

1

3
½ðV�

dLÞ31ðVdLÞ32�2
�
g02

m2
Z0
þ g002

m2
Z00

�
<

1

ð104 TeVÞ2 : ð39Þ

Assuming that the up-type quarks are flavor diagonal, i.e.,
VuL ¼ 1, the CKM matrix is just VdL. We have
jðV�

dLÞ31ðVdLÞ32j≃ 3.6 × 10−4 [1], and thus
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02

m2
Z0
þ g002

m2
Z00

s
<

1

2.078 TeV
; ð40Þ

which directly implies mZ0 > 2.078 × g0 TeV and
mZ00 > 2.078 × g00 TeV. The new gauge bosons Z0, Z00
are in the TeV range, provided that g0, g00 are in unity order.
Another strong bound comes from the B0

s − B̄0
s mixing,

given by [1]

1

3
½ðV�

dLÞ32ðVdLÞ33�2
�
g02

m2
Z0
þ g002

m2
Z00

�
<

1

ð100 TeVÞ2 : ð41Þ

The CKM factor is jðV�
dLÞ32ðVdLÞ33j≃ 3.9 × 10−2. Hence,

we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02

m2
Z0
þ g002

m2
Z00

s
<

1

2.25 TeV
; ð42Þ

which leads to mZ0 > 2.25 × g0 TeV and
mZ00 > 2.25 × g00 TeV, slightly larger than the correspond-
ing bounds obtained from the neutral kaon mixing.
Further, without loss of generality, consider the first

bound (40) for two cases [for the second bound (42), this
can similarly be done]:
(1) Z00 is superheavy, i.e., w ≪ Λ. We have

m2
Z0 ≃ g2w2

3ð1−β2t2WÞ, m2
Z00 ≃ 4g2t2NΛ

2, and ξ≃ 0. The

condition (40) becomes

1

2.078 TeV
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

w2
þ β02

4Λ2

s
≃

ffiffiffi
3

p

w
→ w > 3.6 TeV:

ð43Þ

This is the common bound often derived for the
3-3-1 models, which is independent of β—the class
of the 3-3-1 models.

(2) Z00 is comparable in mass to Z0, i.e., w ∼ Λ. The
condition (40) leads to�

1

2.078 TeV

�
2

>
2jg0g00j
mZ0mZ00

¼ 6s2ξtNΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − β2t2WÞ

p
w3

: ð44Þ

For simplicity, let us consider the Z0−C mixing
to be maximal, i.e., ξ ¼ π=4 or Λ=w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β02t2Nð1 − β2t2WÞ

p
=½2tN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − β2t2WÞ

p
�. The

constraint becomes

w > 3.6 × ½1 − β02t2Nð1 − β2t2WÞ�1=4 TeV: ð45Þ

We have w > 3.57 TeV and Λ ¼ 1.8w for the
charges of ka as ðq; nÞ ¼ ð1; 0Þ; ð−2; 0Þ, and

w > 3.3 TeV and Λ ¼ 0.5w for ðq; nÞ ¼ ð0; 0Þ.
Here, we have taken tN ¼ 0.5 and s2W ¼ 0.231.

Finally, let us investigate the LEPII bounds for the
process eþe− → ff̄, where f is an ordinary fermion,
due to the exchange of new neutral gauge bosons such
as Z0 and Z00 [13]. The effective Lagrangian is therefore
given by

Leff
LEPII ¼

g2

c2Wm
2
I
½ēγμðaILðeÞPL þ aIRðeÞPRÞe�

× ½f̄γμðaILðfÞPL þ aIRðfÞPRÞf�; ð46Þ

where I ¼ Z0; Z00 and aIL;RðfÞ ¼ 1
2
½gIVðfÞ � gIAðfÞ�.

Particularly considering f ¼ μ, we have

Leff
LEPII ¼

g2

c2W

�½aZ0
L ðeÞ�2
m2

Z0
þ ½aZ00

L ðeÞ�2
m2

Z00

�
ðēγμPLeÞ

× ðμ̄γμPLμÞ þ ðLRÞ þ ðRLÞ þ ðRRÞ; ð47Þ

where the last three terms differ from the first one only in
chiral structures, and

aZ
0

L ðeÞ ¼
cW þ ffiffiffi

3
p

βsWtW
2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p cξ þ tNcW

�
1þ β0

2
ffiffiffi
3

p
�
sξ;

aZ
0

R ðeÞ ¼
βsWtWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2t2W

p cξ þ tNcWsξ;

aZ
00

L;RðeÞ ¼ aZ
0

L;RðeÞjcξ→sξ;sξ→−cξ : ð48Þ

Taking the typical bound as derived for the B − L gauge
boson from Ref. [13], we get

g2

c2W

�½aZ0
L ðeÞ�2
m2

Z0
þ ½aZ00

L ðeÞ�2
m2

Z00

�
<

1

ð6 TeVÞ2 : ð49Þ

Again, the masses of Z0; Z00 are bounded in the TeV range,
mZ0 > 6 × g

cW
aZ

0
L ðeÞ TeV and mZ00 > 6 × g

cW
aZ

00
L ðeÞ TeV,

assuming that aZ
0;Z00

L ðeÞ are in unity order. To be concrete,
consider that Z00 is superheavy, i.e., w ≪ Λ. With the aid of
ξ≃ 0 and m2

Z0 ≃ g2w2=½3ð1 − β2t2WÞ�, we get

w > 3 × ð1þ
ffiffiffi
3

p
βt2WÞ TeV: ð50Þ

Noting that β ¼ −ð1þ 2qÞ= ffiffiffi
3

p
, the bound for w is 5.7, 3.9,

2.1, and 0.3 TeV for q ¼ −2, −1, 0, and 1, respectively. The
last case means that the Z0; Z00 contributions are negligible,
since w is in several TeV due to the other constraints
aforementioned.

IV. UNITARITY

To investigate the unitarity of this model as well as
that of the previous proposals, it is enough to consider a
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high-energy scattering process of the standard model
neutrinos (νL) to the new gauge bosons (X):
νcLðp1ÞνLðp2Þ → X†ðk1ÞXðk2Þ. The tree-level contributions
to the process are given in Fig. 2. The relevant interactions
are obtained in Table II.
The amplitude of the kL exchange channel is

computed as

iMðkLÞ ¼ v̄ðp1Þ
�
−

igffiffiffi
2

p γμPL

�
i

p2 − k2 −mk

×

�
−

igffiffiffi
2

p γνPL

�
uðp2Þϵ�μðk1Þϵ�νðk2Þ

≃ ig2

2m2
X
v̄ðp1Þk1PLuðp2Þ: ð51Þ

Here, we have approximated mν; mk ≪ mX, and due to the
high-energy scattering, the longitudinal polarization com-

ponents of the gauge bosons dominate, for which ϵμðk1Þ≃
k1μ
mX

and ϵνðk2Þ≃ k2ν
mX
. The amplitude MðkLÞ is only one

partial wave, but it is proportional to s ¼ 4E2 at high
energy. This violates the unitarity bound, since the ampli-
tude must be smaller than a constant.
The amplitudes of the V ¼ Z; Z0; Z00 exchange channels

are obtained by

iMðVÞ ¼ v̄ðp1Þð−ifVγαPLÞuðp2Þ

×
−i½gαλ − ðk1 þ k2Þαðk1 þ k2Þλ=m2

V �
ðk1 þ k2Þ2 −m2

V

× ð−igVLλμνÞϵ�μðk1Þϵ�νðk2Þ;

where fV , gV stand for the coupling coefficients of
V to ν̄ν and X†X, respectively, which should be
understood, and identified from Table II. We approximate
Lλμνϵ�μðk1Þϵ�νðk2Þ≃ ðk1 − k2Þλk1k2=m2

X, as s is large.
Hence, the amplitudes become

iMðVÞ≃ ifVgV
m2

X
v̄ðp1Þk1PLuðp2Þ: ð52Þ

For each V, it also goes as s, which violates the unitarity.
Summing all the contributions, we have

iM ¼ iMðkLÞ þ iMðZÞ þ iMðZ0Þ þ iMðZ00Þ ∼ 1

2
g2

þ fZgZ þ fZ0gZ0 þ fZ00gZ00

¼ 0; ð53Þ

which exactly cancel out at high energy. The unitarity
condition is satisfied by the 3-3-1-1 model. It is noteworthy
that if the Z00 contribution is neglected, the unitarity is
spoiled. Therefore, the 3-3-1 contributions by themselves
violate the unitarity. The way for the 3-3-1 models to avoid
this constraint is if ξ ¼ 0 or the B − L breaking scale goes
to infinity, Λ ¼ ∞; otherwise, it should include B − L as a
gauge symmetry.
Note that a 3-3-1 model that regards B − L as an

approximate symmetry is only an effective theory because
all B − L violating interactions, which mostly include
higher-dimensional ones, can enter as perturbations.
Such a theory loses predictive possibility, and the unitarity
is obviously violated at a high-energy scale.

V. REMARKS ON COSMOLOGICAL INFLATION
AND BARYON ASYMMETRY

If the energy scale ofUð1ÞN symmetry breaking happens
at a very high scale like the grand unification one, the
inflationary scenario which solves the difficulties of the hot

FIG. 2. Tree-level diagrams for νcLνL → X†X, where the ðQ;B − LÞ charges for X and k are explicitly displayed. We see that Z00
contributes, since it interacts with B − L charged particles such as νL and X. The remaining channels are identical to those in the 3-3-1
models.

TABLE II. Relevant interactions for the νcLνL → X†X
process. Here, PL ¼ 1

2
ð1 − γ5Þ and Lμνα ¼ gμνðq1 − q2Þαþ

gναðq2 − q3Þμ þ gαμðq3 − q1Þν, provided that all the momenta
of Vμðq1Þ, X†

νðq2Þ, Xαðq3Þ gauge bosons go into the vertex
(otherwise, the signs of outgoing momenta are reversed).

Vertex Coupling

ν̄kXμ − igffiffi
2

p γμPL

ν̄νZμ − ig
2cW

γμPL

ν̄νZ0
μ −ig½ 1þ ffiffi

3
p

βt2W
2
ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
1−β2t2W

p cξ þ ð1þ β0

2
ffiffi
3

p ÞtNsξ�γμPL

ν̄νZ00
μ −ig½ 1þ ffiffi

3
p

βt2W
2
ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
1−β2t2W

p sξ − ð1þ β0

2
ffiffi
3

p ÞtNcξ�γμPL

ZμX
†
νXα − ig

2
ð ffiffiffi

3
p

βsWtW − cWÞLμνα

Z0
μX

†
νXα

ig
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − β2t2WÞ

p
cξLμνα

Z00
μX

†
νXα

ig
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − β2t2WÞ

p
sξLμνα
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big bang theory as well as quantum fluctuations in the
inflating background can be obtained in this framework as
linked (identical) to Uð1ÞN breaking dynamics and driven
by the ϕ potential. The ϕ field is inflaton. BecauseUð1ÞN is
a local gauge symmetry, the radiative corrections to the
inflaton potential include the interaction of inflaton with the
Uð1ÞN gauge boson (Z00) as well as the interactions of
inflaton with right-handed neutrinos (νaR) and scalar
triplets (η; ρ; χ). Such interacting couplings are independent
of the details of β. Furthermore, due to the W-parity
conservation, we can show that the physical scalar fields
and their corresponding masses do not change when β
varies. That is, that the inflaton effective potential and its
consequences as given in the third article of Ref. [4]
generally apply for any β. Namely, the inflaton mass is
of 1013 GeV order. The reheating temperature is either of
109 GeV order if it dominantly decays into a pair of light
Higgs bosons or a lower value if it dominantly decays into a
pair of right-handed neutrinos.
The baryon-number asymmetry of the Universe can be

obtained via lepogenesis processes due to the decays of
νaR. Again, the Uð1ÞN breaking dynamics is crucial to
generate the Majorana masses of νaR in order to find a
viable leptogenesis process. The CP asymmetry decays of
νaR proceed via two possibilities: (i) to ordinary charged
leptons and corresponding charged scalars, and (ii) to ka
and a scalar combination of η3 and χ1. The first case
produces a baryon number as induced from the normal
particle sector, whereas the second case generates a baryon
number from the dark sector. If the right-handed neutrinos
are produced as a result of the inflaton decays, we have the
nonthermal leptogenesis processes. Otherwise, if the right-
handed neutrinos are generated in the thermal bath of the
Universe (i.e., the inflaton dominantly decays into a pair of
light Higgs bosons), we have the thermal leptogenesis
scenario. Although the general conclusions are similar to
those of the third article of Ref. [4], the details of the baryon
number produced also depend on β due to the contributions
that come from interactions with the 3-3-1 gauge bosons.

VI. CONCLUSION

We have proved that the most economical gauge sym-
metry that supports the weak-isospin enlargement to
SUð3ÞL, regarding electric charge and B − L conservation,
must be SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN . The fact is
that the existence of Uð1ÞN respecting B − L symmetry is
the same Uð1ÞX for electromagnetic symmetry. The uni-
fication of electroweak and B − L interactions is analogous
to the Glashow-Weinberg-Salam criterion for weak and
electromagnetic interactions. The theory predicts the fer-
mion generation number and electric charge quantization,
which all result from its consistent dynamics such as
anomaly cancellation, QCD asymptotic freedom, and mass
generation. Note that the electric charge quantization in the

3-3-1 models is only valid for those corresponding to the
minimal versions as discussed.
The most general fermion content has been introduced,

which is independent of all the anomalies. The right-
handed neutrinos νaR exist to cancel B − L anomalies. The
new fermions ka, ja have general electric and B − L
charges and are related. The electric charge of ka is
constrained by −2.08011 < q < 1.08011 (if integer
charges are assumed, it is −2 ≤ q ≤ 1), while its B − L,
n, is arbitrary, which has been assumed differently from
ordinary ones [n ≠ ð2m − 1Þ=3 for any integer m]. This
suppresses the minimal versions. The third quark gen-
eration has been arranged differently from the first two
under SUð3ÞL. This leads to bounds for the new
physics scales w;Λ in the TeV range. Such a different
arrangement for the first or second generation instead is
possible, but the new physics scales get a much higher
bound, proportional to 103 TeV (see, for a reference,
Ref. [14]).
The scalar sector has three triplets and one singlet,

appropriately for the symmetry breaking and mass gen-
eration. A new W-parity (actually larger than Z2) is
recognized as a residual gauge symmetry. The wrong
particles transform nontrivially under W-parity and are
only coupled in pairs (Pþ; P−) in interactions. The normal
particles, most of which are the standard model particles,
are W-parity even. There are two dark matter models
corresponding to q ¼ 0 and q ¼ −1. The previous analysis
only realizes the former with n ¼ 0 [4]. It is able to show
that the neutral non-Hermitian gauge boson (either X or Y)
cannot be dark matter, since it completely annihilates
before freeze-out. However, the fermion and scalar candi-
dates are realistic, since they can provide the right abun-
dance and relax search bounds. We have also shown that all
the fermions and gauge bosons get consistent masses. The
seesaw mechanisms responsible for small neutrino masses
are naturally realized. The singlet scalar that breaks B − L
is crucial to determine the residual gauge symmetry, seesaw
scales, charge quantization condition, and cosmological
inflation [4].
There is a finite mixing between the new neutral gauge

bosons Z0 and C. Unlike the new non-Hermitian gauge
bosons X; Y, the physical new neutral gauge bosons Z0; Z00
can interact with the ordinary fermions. The tree-level
FCNCs due to Z0 and Z00 are bounded, yielding their
masses in the TeV range. The LEPII searches for Z0 and Z00
present similar bounds. Since the model does not induce
proton decay despite the B − L conservation, the B − L-
breaking scale can be low such as the bounds obtained.
There is no dangerous FCNC due to ordinary and exotic
quark mixing since it is suppressed by W-parity. The
unitarity of the model is verified. There are two folds for
the 3-3-1 models: either they are this 3-3-1-1 model with
Λ ¼ ∞, or they work as an effective theory at low energy
respecting approximate B − L symmetry.
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APPENDIX A: CURRENT ALGEBRA APPROACH

The covariant derivative for SUð3ÞL is given byDμ ¼ ∂μ þ igTiAiμ, where Ti, Ai, and g are the generators, gauge bosons,
and coupling constant, respectively. Let us work in the weak basis, which consists of the weight-raising and lowering
operators, as well as the Cartan operators,

T� ≡ T1 � iT2ffiffiffi
2

p ; U� ≡ T4 � iT5ffiffiffi
2

p ; V� ≡ T6 � iT7ffiffiffi
2

p ; T3; T8: ðA1Þ

The corresponding gauge bosons are defined by

W�;0 ≡ A1 ∓ iA2ffiffiffi
2

p ; X∓q;∓ð1þnÞ ≡ A4 ∓ iA5ffiffiffi
2

p ; Y∓ð1þqÞ;∓ð1þnÞ ≡ A6 ∓ iA7ffiffiffi
2

p ; A3; A8; ðA2Þ

so that

Dμ ¼ ∂μ þ ig½ðTþW
þ;0
μ þUþX

−q;−1−n
μ þ VþY

−1−q;−1−n
μ þ H:c:Þ þ T3A3μ þ T8A8μ�: ðA3Þ

Above, the values superscripted to W;X; Y denote Q and B − L charges, respectively, whereas A3;8 do not carry these
charges. All these are obviously shown below.
The gauge interactions of fermions arise from

L ¼ F̄iγμDμF ⊃ ð−gF̄Lγ
μTþFLW

þ;0
μ − gF̄Lγ

μUþFLX
−q;−1−n
μ − gF̄Lγ

μVþFLY
−1−q;−1−n
μ þ H:c:Þ

− gF̄Lγ
μT3FLA3μ − gF̄Lγ

μT8FLA8μ; ðA4Þ

where F runs over all fermion multiplets of the model, and note that the generators vanish for FR. Thus, the currents of
SUð3ÞL, which appear in the Lagrangian as −gJμAAμ, can be read off,

JμW ¼ F̄Lγ
μTþFL; JμX ¼ F̄Lγ

μUþFL; JμY ¼ F̄Lγ
μVþFL; Jμ3 ¼ F̄Lγ

μT3FL; Jμ8 ¼ F̄Lγ
μT8FL: ðA5Þ

This leads to the corresponding weak charges,

TþðtÞ≡
Z

d3xJ0W ¼ 1ffiffiffi
2

p
Z

d3xðν†aLeaL þ u†aLdaLÞ;

UþðtÞ≡
Z

d3xJ0X ¼ 1ffiffiffi
2

p
Z

d3xðν†aLkaL þ u†3Lj3L − j†αLdαLÞ;

VþðtÞ≡
Z

d3xJ0Y ¼ 1ffiffiffi
2

p
Z

d3xðe†aLkaL þ d†3Lj3L þ j†αLuαLÞ;

T3ðtÞ≡
Z

d3xJ03 ¼
1

2

Z
d3xðν†aLνaL þ u†aLuaL − e†aLeaL − d†aLdaLÞ;

T8ðtÞ≡
Z

d3xJ08 ¼
1

2
ffiffiffi
3

p
Z

d3xðν†aLνaL þ e†aLeaL − 2k†aLkaL þ u†3Lu3L

þ d†3Ld3L − 2j†3Lj3L − u†αLuαL − d†αLdαL þ 2j†αLjαLÞ; ðA6Þ

and T−ðtÞ ¼ ½TþðtÞ�†, U−ðtÞ ¼ ½UþðtÞ�†, V−ðtÞ ¼ ½VþðtÞ�†. Here, the charges ðQ;B − LÞ for the new particles such as
X; Y; jα; j3 can be understood, provided that those charges for ka are ðq; nÞ, as well as that they are conserved.
Using the canonical anticommutation relations for fermions, ffð~x; tÞ; f†ð~y; tÞg ¼ δð3Þð~x −~yÞ, we can check that the

weak charges exactly satisfy the algebra of SUð3ÞL as usual. Particularly, the important commutation relations are
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½TþðtÞ; T−ðtÞ� ¼ T3ðtÞ;

½UþðtÞ; U−ðtÞ� ¼
1

2
ðT3ðtÞ þ

ffiffiffi
3

p
T8ðtÞÞ;

½VþðtÞ; V−ðtÞ� ¼
1

2
ð−T3ðtÞ þ

ffiffiffi
3

p
T8ðtÞÞ: ðA7Þ

The QðtÞ and ½B − L�ðtÞ charges have the form

QðtÞ ¼
Z

d3xJ0em ¼
Z

d3xF†QF

¼
Z

d3x½−e†aLeaL þ qk†aLkaL þ ð2=3Þu†aLuaL − ð1=3Þd†aLdaL
þð2=3þ qÞj†3Lj3L þ ð−1=3 − qÞj†αLjαL þ ðLL → RRÞ�; ðA8Þ

½B − L�ðtÞ ¼
Z

d3xJ0bl ¼
Z

d3xF†½B − L�F

¼
Z

d3x½−ν†aLνaL − e†aLeaL þ nk†aLkaL þ ð1=3Þu†aLuaL þ ð1=3Þd†aLdaL
þð4=3þ nÞj†3Lj3L þ ð−2=3 − nÞj†αLjαL þ ðLL → RRÞ�: ðA9Þ

We see that QðtÞ and ½B − L�ðtÞ cannot, respectively, be any combination of T3ðtÞ and T8ðtÞ, because QðtÞ and ½B − L�ðtÞ
have the right currents as well (indeed, they are vectorlike). Therefore, the SUð3ÞL charges, Q, and B − L, do not form a
closed algebra. Moreover, we derive

½QðtÞ; T�ðtÞ� ¼ �T�; ½QðtÞ; U�ðtÞ� ¼∓ qU�ðtÞ; ½QðtÞ; V�ðtÞ� ¼∓ ð1þ qÞV�ðtÞ; ðA10Þ
½½B − L�ðtÞ; U�ðtÞ� ¼∓ ð1þ nÞU�ðtÞ; ½½B − L�ðtÞ; V�ðtÞ� ¼∓ ð1þ nÞV�ðtÞ; ðA11Þ

which imply that the SUð3ÞL generators, Q, and B − L, do not commute.
Putting β ¼ −ð1þ 2qÞ= ffiffiffi

3
p

, we deduce

QðtÞ − T3ðtÞ − βT8ðtÞ ¼
Z

d3x

�
−1þ q

3
ψ†
aLψaL þ 1þ q

3
Q†

3LQ3L −
q
3
Q†

αLQαL − e†aReaR þ qk†aRkaR

þ 2

3
u†aRuaR −

1

3
d†aRdaRþ

�
2

3
þ q

�
j†3Rj3R þ

�
−
1

3
− q

�
j†αRjαR

�
≡

Z
d3xF†XF; ðA12Þ

which defines a new Abelian charge, X, with the values for the multiplets, coinciding with those in (8). Surely, it is easy to
check that the new charge XðtÞ commutes with all the SUð3ÞL charges.
Setting β0 ¼ −2ð1þ nÞ= ffiffiffi

3
p

, we obtain

½B − L�ðtÞ − β0T8ðtÞ ¼
Z

d3x

�
−2þ n

3
ψ†
aLψaL þ 2þ n

3
Q†

3LQ3L −
n
3
Q†

αLQαL − ν†aRνaR − e†aReaR þ nk†aRkaR

þ 1

3
u†aRuaR þ 1

3
d†aRdaRþ

�
4

3
þ n

�
j†3Rj3R þ

�
−
2

3
− n

�
j†αRjαR

�
≡

Z
d3xF†NF; ðA13Þ

which yields another Abelian charge, N, with the values in agreement with (8). Also, NðtÞ must commute with the SUð3ÞL
charges.
Again, we conclude that the manifest gauge symmetry must be

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN; ðA14Þ
where X and N, respectively, define the electric-charge and B − L operators:

Q − T3 − βT8 ¼ X; B − L − β0T8 ¼ N: ðA15Þ
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APPENDIX B: ANOMALY CHECKING

First, note thatN ¼ B − L − β0T8 and X ¼ Q − T3 − βT8. Furthermore, with the fermion content as given, the anomalies
associated with Ti, Q, and B − L always vanish. Therefore, the X and N anomalies are also canceled. To see this explicitly,
let us compute

½SUð3ÞC�2Uð1ÞX ∼
X
quarks

ðXqL − XqRÞ ¼ 3XQ3
þ 2 × 3XQα

− 3Xua − 3Xda − Xj3 − 2Xjα

¼ 3ð1þ qÞ=3þ 6ð−q=3Þ − 3ð2=3Þ − 3ð−1=3Þ − ð2=3þ qÞ − 2ð−1=3 − qÞ ¼ 0; ðB1Þ

½SUð3ÞC�2Uð1ÞN ∼
X
quarks

ðNqL − NqRÞ ¼ 3NQ3
þ 2 × 3NQα

− 3Nua − 3Nda − Nj3 − 2Njα

¼ 3ð2þ nÞ=3þ 6ð−n=3Þ − 3ð1=3Þ − 3ð1=3Þ − ð4=3þ nÞ − 2ð−2=3 − nÞ ¼ 0; ðB2Þ

½SUð3ÞL�2Uð1ÞX ∼
X

ðantiÞtriplets
XFL

¼ 3Xψa
þ 3XQ3

þ 2 × 3XQα

¼ 3ð−1þ qÞ=3þ 3ð1þ qÞ=3þ 6ð−q=3Þ ¼ 0; ðB3Þ

½SUð3ÞL�2Uð1ÞN ∼
X

ðantiÞtriplets
NFL

¼ 3Nψa
þ 3NQ3

þ 2 × 3NQα

¼ 3ð−2þ nÞ=3þ 3ð2þ nÞ=3þ 6ð−n=3Þ ¼ 0; ðB4Þ

½Gravity�2Uð1ÞX ∼
X

fermions

ðXfL − XfRÞ ¼ 3 × 3Xψa
þ 3 × 3XQ3

þ 2 × 3 × 3XQα

− 3 × 3Xua − 3 × 3Xda − 3Xj3 − 2 × 3Xjα − 3Xka − 3Xea − 3Xνa

¼ 3 × 3ð−1þ qÞ=3þ 3 × 3ð1þ qÞ=3þ 2 × 3 × 3ð−q=3Þ
− 3 × 3ð2=3Þ − 3 × 3ð−1=3Þ − 3ð2=3þ qÞ − 2 × 3ð−1=3 − qÞ − 3q − 3ð−1Þ − 3ð0Þ ¼ 0; ðB5Þ

½Gravity�2Uð1ÞN ∼
X

fermions

ðNfL − NfRÞ ¼ 3 × 3Nψa
þ 3 × 3NQ3

þ 2 × 3 × 3NQα

− 3 × 3Nua − 3 × 3Nda − 3Nj3 − 2 × 3Njα − 3Nka − 3Nea − 3Nνa

¼ 3 × 3ð−2þ nÞ=3þ 3 × 3ð2þ nÞ=3þ 2 × 3 × 3ð−n=3Þ
− 3 × 3ð1=3Þ − 3 × 3ð1=3Þ − 3ð4=3þ nÞ − 2 × 3ð−2=3 − nÞ − 3n − 3ð−1Þ − 3ð−1Þ ¼ 0; ðB6Þ

½Uð1ÞX�2Uð1ÞN ¼
X

fermions

ðX2
fL
NfL − X2

fR
NfRÞ ¼ 3 × 3X2

ψa
Nψa

þ 3 × 3X2
Q3
NQ3

þ 2 × 3 × 3X2
Qα
NQα

− 3 × 3X2
uaNua − 3 × 3X2

da
Nda − 3X2

j3
Nj3

− 2 × 3X2
jα
Njα − 3X2

ka
Nka − 3X2

eaNea − 3X2
νaNνa

¼ 3 × 3½ð−1þ qÞ=3�2ð−2þ nÞ=3þ 3 × 3½ð1þ qÞ=3�2ð2þ nÞ=3
þ 2 × 3 × 3ð−q=3Þ2ð−n=3Þ − 3 × 3ð2=3Þ2ð1=3Þ − 3 × 3ð−1=3Þ2ð1=3Þ
− 3ð2=3þ qÞ2ð4=3þ nÞ − 2 × 3ð−1=3 − qÞ2ð−2=3 − nÞ − 3q2n

− 3ð−1Þ2ð−1Þ − 3ð0Þ2ð−1Þ ¼ 0; ðB7Þ
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Uð1ÞX½Uð1ÞN �2¼
X

fermions

ðXfLN
2
fL
−XfRN

2
fR
Þ¼3×3Xψa

N2
ψa
þ3×3XQ3

N2
Q3
þ2×3×3XQα

N2
Qα

−3×3XuaN
2
ua

−3×3XdaN
2
da
−3Xj3N

2
j3
−2×3XjαN

2
jα
−3XkaN

2
ka
−3XeaN

2
ea −3XνaN

2
νa

¼3×3½ð−1þqÞ=3�½ð−2þnÞ=3�2þ3×3½ð1þqÞ=3�½ð2þnÞ=3�2þ2×3×3ð−q=3Þð−n=3Þ2
−3×3ð2=3Þð1=3Þ2−3×3ð−1=3Þð1=3Þ2−3ð2=3þqÞð4=3þnÞ2−2×3ð−1=3−qÞð−2=3−nÞ2−3qn2

−3ð−1Þð−1Þ2−3ð0Þð−1Þ2¼0; ðB8Þ

½Uð1ÞX�3 ¼
X

fermions

ðX3
fL

− X3
fR
Þ ¼ 3 × 3X3

ψa
þ 3 × 3X3

Q3
þ 2 × 3 × 3X3

Qα

− 3 × 3X3
ua − 3 × 3X3

da
− 3X3

j3
− 2 × 3X3

jα
− 3X3

ka
− 3X3

ea − 3X3
νa

¼ 3 × 3½ð−1þ qÞ=3�3 þ 3 × 3½ð1þ qÞ=3�3 þ 2 × 3 × 3ð−q=3Þ3 − 3 × 3ð2=3Þ3 − 3 × 3ð−1=3Þ3 − 3ð2=3þ qÞ3
− 2 × 3ð−1=3 − qÞ3 − 3q3 − 3ð−1Þ3 − 3ð−0Þ3 ¼ 0; ðB9Þ

½Uð1ÞN �3 ¼
X

fermions

ðN3
fL

− N3
fR
Þ ¼ 3 × 3N3

ψa
þ 3 × 3N3

Q3
þ 2 × 3 × 3N3

Qα

− 3 × 3N3
ua − 3 × 3N3

da
− 3N3

j3
− 2 × 3N3

jα
− 3N3

ka
− 3N3

ea − 3N3
νa

¼ 3 × 3½ð−2þ nÞ=3�3 þ 3 × 3½ð2þ nÞ=3�3 þ 2 × 3 × 3ð−n=3Þ3 − 3 × 3ð1=3Þ3 − 3 × 3ð1=3Þ3 − 3ð4=3þ nÞ3
− 2 × 3ð−2=3 − nÞ3 − 3n3 − 3ð−1Þ3 − 3ð−1Þ3 ¼ 0: ðB10Þ

It is interesting that the anomalies are always canceled, independent of q and n, the corresponding Q and B − L charges
of the new particles ka.
We see that although the B; L symmetries are separately anomalous, taking B − L into account makes the 3-3-1-1 model

free from all the leptonic and baryonic anomalies [4].
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