PHYSICAL REVIEW D 92, 055026 (2015)
Unifying the electroweak and B — L interactions

P.V. Dong"

Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
(Received 25 May 2015; revised manuscript received 25 August 2015; published 21 September 2015)

We argue that the gauge symmetry which includes SU(3), as a higher weak-isospin symmetry is
manifestly given by SU(3). ® SU(3), ® U(1)y ® U(1),, where the last two factors determine the
electric charge and B — L, respectively. This theory not only provides a consistent unification of the
electroweak and B — L interactions, but also gives insights in dark matter, neutrino masses, and inflation.
The dark matter belongs to a class of new particles that have wrong B — L numbers, and is stabilized due to
a newly realized W-parity as residual gauge symmetry. The B — L breaking field is important to define the
W-parity, seesaw scales, and the inflaton. Furthermore, the number of fermion generations and the electric
charge quantization are explained naturally. We also show that the previous 3-3-1 models are only an
effective theory, as the B — L charge and the unitarity argument are violated. This work substantially

generalizes our recently proposed 3-3-1-1 model.
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I. INTRODUCTION

The standard model is incomplete, since it leaves many
striking features of the physics of our world unanswered
[1]. The leading questions perhaps include the neutrino
masses, dark matter, matter-antimatter asymmetry, and
cosmic inflation. The standard model also cannot explain
why there are only three fermion generations and what
makes the electric charges be quantized.

The most popular solutions for the observed small
neutrino masses could be the seesaw mechanisms [2].
Interestingly, they also lead to leptogenesis processes that
address the matter-antimatter asymmetry. The crucial keys
of the type-I and type-II seesaw mechanisms are at the
seesaw scales, which keep the small neutrino masses.
However, at present they have been less understood.
What is their origin? Which is the physics behind them?
Can the seesaw scales be related? Further, the generation of
the thermal dark matter relic density implies the existence
of a weakly interacting massive particle (WIMP) [3]. Many
simple extensions of the standard model provide WIMPs.
But what is the WIMP’s nature? Why is it stabilized? Can a
WIMP that is bounded below some hundreds of TeV be
correlated to the inflationary dynamics at the grand uni-
fication scale? Could the seesaw and inflationary scales be
common?

As an attempt to address those questions, this work is a
substantial generalization of a recently proposed SU(3) - ®
SU33), ® U(1)y ® U(1)y (3-3-1-1) gauge model [4]. We
will strictly derive the 3-3-1-1 gauge symmetry, along with
the introduction of the most general fermion content. For
this aim, we start from SU(3),, a higher weak-isospin
symmetry directly extended from SU(2),, which is best
known for solving the number of observed fermion
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generations. To preserve the electric charge, baryon-
number, and lepton-number symmetries, the complete
gauge symmetry must be SU(3), ® U(l)y ® U(1)y
[besides the SU(3). color group], where X and N define
the electric charge and the baryon-minus-lepton number,
respectively. The general fermion content is free from all
the anomalies, where the most new fermions (including the
non-Hermitian gauge bosons) have new, characteristic B —
L quantum numbers.

The scalar sector is introduced, and the 3-3-1-1 sym-
metry breaking is discussed. The new model yields a
discrete symmetry, called W-parity (although it is actually
larger than Z,), as a remnant of the gauge symmetry, which
separates the model particles into two classes, normal
particles and wrong particles. The wrong particles trans-
form nontrivially under the W-parity, and are only coupled
in pairs in interactions, similarly to the superparticles in
supersymmetry. The W-parity makes some wrong lepton or
baryon particles stable, providing dark matter candidates.
The neutrino masses are generated as a result of the gauge
symmetry breaking, where the seesaw mechanisms are
naturally realized. The model also provides an inflatons as
the dynamics of B — L breaking as well as leptogenesis
processes automatically. The hints of the electric charge
quantization are shown. The gauge bosons are identified,
and the corresponding constraints are given. The unitarity
of the model as well as that of the previous theories is also
investigated.

The rest of this work is organized as follows: In Sec. II
we construct the model. Here, the dark matter, neutrino
masses, and the quantization of charges are also discussed.
Section III is devoted to the gauge bosons and some
constraints. The unitarity is considered in Sec. IV. The
cosmological inflation and leptogenesis are discussed in
Sec. V. We summarize our results and conclude this work
in Sec. VL.

© 2015 American Physical Society
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II. PROPOSAL OF THE MODEL

A. 3-3-1-1 symmetry and fermion content

The first observation is that in the standard model the
[SU(2),]? anomaly always vanishes, Tr[{T,,T,}T.] = 0,
for any chiral fermion representation, where 7,(a =
1,2,3) indicate SU(2), generators. Let SU(2), be
enlarged to SU(3),, a higher weak-isospin symmetry.
As a result, the corresponding anomaly [SU(3),]® does
not vanish, A;; = Tr[{T,,T;}T] # 0, for complex repre-
sentations, where T;(i =1,2,3,...,8) denote SU(3),
generators. This subsequently gives constraints on the
new fermion content [5]. The new gauge symmetry must
span SU(3)- ® SU(3),, where the first factor is the
ordinary color group.

The fundamental representations of SU(3); are decom-
posed as 3=2@ 1 and 3*=2*@ 1 under SU(2),.
Therefore, all the (left-handed) fermion doublets of
SU(2), will be embedded into 3 or 3*, where for the
latter the antidoublets take the form (f, — f), provided
that (f,f>) is a doublet. We also suppose that all the (right-
handed) fermion singlets of SU(2), by themselves trans-
form as corresponding singlets of SU(3),. Because of
A;jr(3%) = =A;;4(3), the [SU(3),]* anomaly is canceled
out if the number of 3 is equal the number of 3* (where the
color number must be appropriately counted). Therefore,
the fermion representations under SU(3), are arranged as

VaL usp,
Wi = | €ar | ~3, Oy = | dsr | ~3,
kar JaL
dar.
Qo = | —Ugr | ~ 3%, (1)
JoL
VaRs €ar> Kars Uar> dars Jar ~ 1, (2)

where a = 1,2,3 and @ = 1, 2 are generation indices, and
Varskas jo are new particles, which are SU(2), singlets
added to complete the representations.

As a matter of fact, we possibly have a special case where
k, are excluded (not needed). Instead, the third components
of y, (like the 1’s in the above decompositions) can be
assigned by either e,z or v,g, called minimal versions.
Namely, k,r are suppressed, while k,; are replaced by
either (e,z)¢ or (vg)¢, where “c” indicates the charge
conjugation, (fg)¢ = Cfr" = (f¢),, as usual. However,
this does not work for the case of quarks, because SU(3), ,
SU(3)¢, and the space-time symmetry commute. Hence,
the introduction of j, is necessary. Furthermore, the results
obtained below generally apply for all cases. A direct
consequence of the above proposal is that the number of
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fermion generations must be equal to the fundamental color
number [6,7].

Since k, are unknown, let their electric charges be g.
Furthermore, the electric charge operator Q does not
commute and noncloses algebraically with SU(3);.
Indeed, for a lepton triplet, we have Q = diag(0, -1, ¢),
which is generally not commuted with 7T; = %/1,» for
i=1,2,4,56,7:

[Q, Tl :l: sz] — Zl:(Tl j: iTz),
[0, T4 £iTs] =F q(T4 £iTs),
[0, Te £iT7] =F (1 +q)(Te £iT5). (3)

The algebraic noncloseness results from the fact that
if Q is some generator of SU(3),, we have a combination
Q = x;T;, which is invalid for ug, dg, even for some
triplets/antitriplets, since TrQ = 0. In other words, Q and
T; by themselves do not make a symmetry.

To have a closed algebra, we introduce an Abelian
charge X so that Q is a residual charge of the closed group
SU33), ® U(1)y,ie., Q = x;T; + yX. With Q acting on a
lepton triplet, we obtain

Q =T;+ BT + X. (4)

where = —(1 4+ 24q)/+/3, and the weak hypercharge is
identified as Y = fiTg + X. The electric charges of j, are
easily obtained: Q(j3) =3+¢ and Q(j,) =-3—gq.
Remark: since T5g are gauged charges, Q and X must
be gauged charges. This is a consequence of the non-
commutation of Q and SU(3), . At this stage, we conclude
that the gauge symmetry of the theory must span
SU(3)c ® SU(3), ® U(1)y. It has been extensively stud-
ied in the literature [8,9].

Since k, are unknown, let their B — L charges be n. We
also assume that B — L is conserved, which is actually
approved by the standard model and experiments [1].
Similarly to Q, we can show that B — L does not commute
and noncloses algebraically with SU(3),, which differs
from the standard model. Indeed, for a lepton triplet,
B — L = diag(—1,—1,n), and we have

[B—L.,T,+iTs] =F (1 +n)(T4 £ iTs),
[B—L,T¢+iT7] =F (1 +n)(Te £ iT), (5)

which nonvanish since n can in principle be arbitrary. Even
for the minimal versions aforementioned, the noncommu-
tation is explicitly hinted due to n =1, thus 1 +n # 0.
Also, if B — L is algebraically closed with SU(3), , it yields
B — L = a;T; which is incorrect for the right-handed
fermions as well as for some triplets/antitriplets due
to Tr(B — L) = 0. Therefore, an Abelian charge N must
be imposed so that B—L is a residual charge of
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SUB3), ® U(1)y, B—L = a;T; + bN. Acting on a lepton
triplet, it follows

B—L=pTs+N, (6)

where ' = =2(1 4 n)/+/3. The B — L charges of j, are
easily identified: [B — L](j3) =%+ n and [B—L](j,) =
—%— n. Similarly to Q and X, the charges B — L and N
must be gauged, because Ty is gauged, which is a
consequence of the B — L and SU(3), noncommutation.
Note that N cannot be identified as X, since they generally
differ for the right-handed fermions and for the triplets/
antitriplets. Hence, they are independent charges as the
charges B — L and Q are.

To summarize, the gauge symmetry of the theory is
manifestly given as

which are given upon the 3-3-1-1 gauge symmetries. The
fermion content as given is free from all the anomalies. Indeed,
we are concerned with the following nontrivial anomalies:
[SUB)PUM)x.  [SUB) UMy, [SUB)JPU)y
[SU3),PU(1)y, [Gravity]?U(1)y, [Gravity]?U(1)y,
[U(D)xPUM)y. UM[UQ)N]? [UL)x, and [U(1)y],
which are potentially troublesome. They are verified in
Appendix B. Here, note that v, as included from the outset
are to cancel the gravity anomaly [Gravity]?U (1), as well as
the self-anomaly [U(1)y]>.

A direct consequence of this note is that the often studied
3-3-1 models are only self-consistent if they include B — L,
and thus U(1),, as a gauge symmetry. Otherwise, the 3-3-1
models are only effective theories at a low-energy scale as
often given in TeV range, for which B — L acts as an
approximate symmetry. And the corresponding interactions
that explicitly violate B — L must be present, in order for
the 3-3-1 models to survive. All these will be proved in the
next section, by verifying the unitarity argument of the
current model and the 3-3-1 models.

B. Scalar sector, symmetry breaking,
and W-parity
To break the 3-3-1-1 symmetry and generate the
correct masses for the particles, we introduce the following
scalars:

PHYSICAL REVIEW D 92, 055026 (2015)
SUB)c ® SUB), @ U(l)x ® U(1)y, (7)

which is called 3-3-1-1 for short. It is noteworthy that
the new weak-isospin theory, SU(3),, contains two con-
served, noncommutative charges, Q and B — L, and their
algebraic closure yields the 3-3-1-1 gauge model, which
describes the strong, electroweak, and B — L interactions.
Interestingly enough, the last two interactions (electroweak
and B — L) are unified in the same manner as those in the
electroweak theory. In Appendix A, we present another
approach which comes to the same conclusion regarding
the 3-3-1-1 gauge symmetry.

The fermion multiplets possess the following quantum
numbers:

0,0
g 1 n+t1
~1.0 -1 n
— ’ ~ 1,3,—5 ’ 9
n M . ( 3 3 > ®)
ny
q n
o= pgo ~<1,3,3, 3 > (10)
+1,n+1
Py
)(l_q’_n_l 20+1 2
X: ){;q—l,—n—l ~<1,3,_qT9_§(n+1)>’ (11)
23"
¢~ (1,1,0,2), (12)

where the superscripts denote (Q,B — L) values respec-
tively, while the subscripts indicate component fields under
SU(3),. The scalars have such quantum numbers since 7,
p, y couple a left-handed fermion to a corresponding right-
handed fermion, whereas ¢ couples to vzvg (as explicitly
shown in the Yukawa Lagrangian below). Because Q is
conserved, only the electrically neutral components 7, p»,
¥3, ¢ can develop vacuum expectation values (VEVs),
given by
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u 0
1 1
(n) = NG 8 . = NG ;
1 0 1
) :7§ 3} , (¢) ZEA (13)

The 3-3-1-1 symmetry is broken down to SU(3). ®
U(1), ® U(1)p_; due to u, v, w. Here, it undergoes two
stages: the 3-3-1-1 symmetry to SU(3). ® SU(2), ®
U(l)y ® U(1)g_, due to w, then SU(3). ® SU(2), ®
U(l)y @ U(1)p_, 0 SU(3)c @ U(1), ® U(1)p_; dueto
u, v. Note that u, v, w break only N, not B — L. Further, A
breaks B — L, or N totally, since it also breaks N in the
previous stages, to a discrete symmetry, U(1)z_, — P
(shown below). In contrast to Q, the B — L charge must be
broken, since its corresponding gauge boson should have a
large mass to escape from the detection. In summary, the
gauge symmetry is broken as follows:

SUB)c ® SUB), @ U(1)x ® U(l)y

u,v,w, A

=" SUB3)c®U(l), ® P. (14)
The VEVs w, A provide the masses for the new particles,
whereas u, v are for those of the ordinary particles. To
keep consistency with the standard model, we
assume u, v < w, A.

The charge B — L = /'Tg + N is the residual symmetry
of SU(3), ® U(l)y. since [B—Lln) = [B~L](p) =
[B—L](y) =0 for u,v,w # 0. It transforms component
fields/particles (®) as

d - =U(w)?, U(w) = e®B-L), (15)
where @ is a transforming parameter. Further, B — L
is broken by (¢), since [B—L)(¢)=+2A#0. Its
remnant will conserve the vacuum, U(w)(¢) = (¢), ie.,
e =1, and thus w = mx for m=0,+1,4+2,... We
identify P = e@(B-L) = ima(B-L) — (_1)m(B-L)  Among
such survival transformations, consider m = 3, thus
P=(—1)3#-L) called matter parity. In addition, P can
be rewritten in a convenient form,

P = (_1)3(B—L)+2s’ (16)
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when multiplying the spin parity (—1)%, which is always
conserved due to the angular momentum conservation. This
is commonly known as R-parity, but in our case it results as
a remnant of the gauge symmetry, given by

P = (_1 )3(/7”T8+N)+2s.

(17)

If k, have ordinary B — L numbers like those of the
standard model, n = %=1 = +1 41,43, ..., the equation
above yields P = 1 for all the fields of the model, which is
trivial. The minimal versions belong to this case. However,
since k, are new particles, we generally assume that n is
arbitrarily different from the ordinary ones, n # 221,
Hence, the parity P divides the model particles into two
classes:

(1) Normal particles: P = 1. Include the standard model

particles and some new ones: v, e, u,d, y, W, Z, Z/,
Z", mas p12s X3 ¢. They have ordinary B — L
numbers (or differ from these by even units as ¢
does), similarly to those of the standard model. They
are even particles since P =1, as displayed in
Table 1.

(2) Wrong particles: P =P" or P~, where
P* = (=1)*Gm+D_ All the remaining particles, &,
J» X, Y, n3, p3, x12, have incorrect (wrong) B — L
numbers, in comparison to those of the standard
model. They have a parity value of either P™ or P~,
which is nontrivial due to P* # 1, as shown in
Table 1. Specially, the wrong particles become odd
particles, ie., P =P =P =-1, provided
that n =28 = 0,43, +3,£2, ...

Therefore, a few remarks are in order:

(1) P is called W-parity, which distinguishes the wrong
particles, called W-particles, from the normal (even)
particles.

(2) Since P is conserved, the W-particles are only
coupled in pairs in interactions, which is analogous
to superparticles in supersymmetry. Indeed, consid-
ering an interaction of r + s W-fields, the P con-
servation implies (P*)"(P7)* =1, where r,s are
integer, which happens if and only if r = s. The P*
and P~ fields always appear in pairs.

(3) Since P is conserved, the lightest W-particle (LWP)
is stabilized, which can be a dark matter candidate.
The candidate must be electrically neutral, thus we
have two dark matter models: (i) Model with ¢ = 0:

TABLE I. The Q, B — L charges and W-parity values for the model particles. The corresponding antiparticles have opposite Q and
B — L charges, and W-parity conjugated.

Patticle v, e, u, d, v W Z Z''Z' my pia x3 ¢ ki Ja J3 X Y 13 P3 X12

0 0 -1 2 -10100 00-11000 ¢qg -i1-gqi+q -9 -l-qg q 14+q —q-1-¢q
B-L -1 -1 % % 00 0 0 O 0 0 0 2 n —%—n §‘+n -1-n -1-n Il+n 1+n —l-n
P 1 1 1 1 1 1 1 1 1 1 1 1 Pt P Pt P~ P~ Pt Pt P~
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the candidates are a fermion (as some combination
of k,), a gauge boson (X,), and a scalar (as some
combination of 73 and y4); (ii) Model with ¢ = —1:
the candidates are a gauge boson (Y,) and a scalar
(as some combination of p; and y,).

(4) Since P is conserved, the W-scalars, if electrically
neutral, cannot develop VEVs. The VEVs as given
above are unique. Also, there is no mixing between
the W-particles and the normal particles if they have
the same electric charge. Here, the possible mixings
are between exotic quarks and ordinary quarks as
well as between new non-Hermitian gauge bosons
and ordinary gauge bosons including Z’, Z”. Con-
sequently, the dangerous tree-level flavor-changing
neutral currents and CP asymmetries due to such
mixings are suppressed.

C. Total Lagrangian, fermion masses, and electric
charge quantization

The total Lagrangian, up to the gauge fixing and ghost
terms, is given by

L= >  FiD,F+ (D*S)'(D,S)
fermion multiplets scalar multiplets
1 1 1
4GWG”” A ALY — ZBWB i —CWC’”’
+£Yukawa_V('7’paZ’¢)7 (18)
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where the covariant derivative and field strength tensors are
defined as

DM:(9”+igxt,-Gi”+igT,~Ai”+igXXBﬂ+igNNC”, (19)

Gi;w = 8;4Giz/ - aI/Giﬂ - gsfijij/tka (20)
Aim/ = 8ﬂA[U - 8I./Al/l - gf[jkAjﬂAle (21)
B, = aﬂBy - a,JBM, Cu = 8MC,, — 6DC,,, (22)

where {g,, 9, 9x,9n }» {t;, T;, X, N}, and {G,,A;, B, C} are
coupling constants, generators, and gauge bosons of the
3-3-1-1 groups, respectively, and f;; are SU(3) structure
constants.

The Yukawa Lagrangian and scalar potential are
obtained by

Lyvukawa = WoylariVpg + hopFarpepr + WeyFarkor + 1 Doxvpre + My Q30 izr + h,,/;QaL)( Jpr + 1, Q3muar
+ haaQaLp Ugr + h3g Q3LpdaR + haa QaLn*daR + H-C-v (23)

V(n.p.x.$)

=uin'n+13p"p + W'y + 130T + 2 (n"n)* + (') + (' x)* 4 Aa(dP)* + As(n'n) (pTp)

+ 26" n) ) + 20 (0"0) ) + As(@ ) (') + A9 (D7) () + A10(d70) (¥ %)
+ (' p) (") + (') (") + A3 (p"x) (X 'p) + (umpx + Hee.), (24)

where the Yukawa couplings / and the scalar couplings A
are dimensionless, while y;,34 and p have the mass
dimension.

When the scalars develop VEVs, the fermions obtain
masses. Conventionally, we write Dirac mass terms as

—J_‘mefR +H.c. and Majorana mass terms as
—%fi’Rm;’RfL,R + H.c. The new fermions k, and j,
possess  [my],, = —ht, 5 (mle = -, 25 with

héa = h£3 = 0, which all have masses in w scale. The

masses of e,, u,, and d, are given by [m, ] »=—ho 75
[mu]3a = hga \/_’ [ ](m = hga 17}" [md]%z = 3a \/—’ and
(Mgl = —hds 7 Therefore, the ordinary charged leptons

|

and quarks gain the masses in the weak scales u, v, as usual.
For the neutrinos, including the standard model v,; and
their counterpart v,;, we have Dirac masses [m,],, =

= _\/zh/ZbA

Because of u < A, the observed neutrinos (~v,;) obtain
masses via a type-I seesaw mechanism, given by
mb = —m,(mB)~"(m,)T ~ u?/A, which is naturally small,
whereas the heavy neutrinos (~v,;) have masses mX as
retained.

Indeed, such tiny masses for the neutrinos can be
perturbatively (or dynamically) generated via a tree-level
diagram in Fig. 1, attached by three external Higgs fields 7,

¢, n with two respective internal lines vg, v%, when the

—hiy 5 and  Majorana  masses [mR&],,
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FIG. 1. Improved canonical seesaw mechanism for neutrino
masses.

electroweak and B — L breakings happen, correspondingly
determined by (1) and (¢). The Majorana masses of v, are
also generated due to their interaction with ¢ (as the middle
part in the Fig. 1 graph) and the B — L breaking by (¢). The
new observation is that the 3-3-1-1 symmetry suppresses all
the neutrino mass types, but the electroweak and B — L
breakdown, it provides consistent masses for the neutrinos
via such a generalized Higgs mechanism. The type-I
seesaw mechanism is naturally recognized in this frame-
work because it contains v,p as fundamental fermion
constituents, and the Majorana masses are induced due
to the B — L gauge symmetry breaking. Further, this also
works for a type-II seesaw mechanism as mediated by a
hypothetical scalar sextet (if one includes it) that couples to
Wy and to yng* . This contribution is just ~u? /A, as the
type-I one is, since the sextet mass is set by A scale. Both
the mechanisms are correlated as achieved by the same
symmetry-breaking sources A and u.

The standard model does not predict the electric charge
quantization because of Q = T3 + Y, where the values of
T5 are quantized due to the non-Abelian nature of SU(2),
algebra, whereas the values of Y are completely arbitrary. It
is only chosen to describe the observed charges; it does not
explain them. The grand unified theories solve this issue,
since both T3 and Y are embedded in simple groups, and
thus the values of Y are constrained due to the algebra
structure. Our model provides an alternative solution,
which is again due to the B — L dynamics. For some
pioneering works on the electric charge quantization,
see Ref. [10].

The electric charge operator is given by
Q =T5+ pTg + X, where T;¢ are quantized due to the
SU(3), algebra structure. Therefore, Q is quantized if X for
all multiplets is fixed. The ingredients in Ref. [7] are
convenient for discussing further. First of all, the X-charges
of n, p, y, and ¢ are constrained by Qi) = Q{p) =
O(y) = Q{¢) =0 because Q is conserved. This gives
Xy =0, while X, , ~depend on f. The Yukawa
Lagrangian is invariant under U(1)y, which yields that
all the right-handed fermions have X-charges related to
those of the corresponding left-handed fermions and
scalars. Also, the flavors y,; have the same X-charge,

ie, X, =X, =X, =X,,, and this applies for other

Vi v’
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repetitive flavors such as v g, €.z, kurs Qars Uars> dar, and
Jar» correspondingly. We denote X, =X =
Xeo=Xp, (f=v,e,ku,d), Xo, =Xp,, =Xgp,, and

i = Xj,, =X, .- At this stage, we see that the charge
of Qs is related to that of Q,; . Specially, we have the so-
called quantization condition X, = — %X¢ = 0 due to the
unique interaction of ¢ to vgug. This leads to X, = X, as
fixed. The [SU(3),]?U(1)y anomaly cancellation gives
Xy, related to X, as fixed. Therefore, all X-charges are
constrained, of which most depend on /. Substituting into
the electric charge operator, the ordinary particles have
electric charges as observed, while the new particles have
electric charges depending on f, i.e., g—the electric charge
of k,. Note that the electric charges of gauge bosons are
always independent of X and are either zero or fixed by
T5g. If there is no vgrg¢ interaction, the X-charges are
unfixed, which means they are left as free parameters.
Therefore, the B — L dynamics is crucial to obtaining the
quantization of charges. The minimal versions have a
different quantization condition [7].

Let us stress that the above ingredient (i.e., this model)
explains only the electric charge quantization of ordinary
particles. For the new particles, such as k,, j,, j3, X and Y
bosons, and so on, their electric charges are not quantized,
since g (or f) is arbitrary.

ITII. GAUGE BOSONS AND CONSTRAINTS

The mass Lagrangian of the gauge bosons is given by
Y senprp(DH(S))T(D,(S)). We see that the gluons are
always massless. The non-Hermitian gauge bosons W, X,
and Y, which have been identified in Appendix A, are
physical particles with the corresponding masses

2 2
m%vzgf(u2+v2), mizg—(w2+u2),

4 4

2
m} = gz (w? + v?). (25)

Here, X and Y are new gauge bosons, having large
masses in w scale, due to w> u,v. The field W is
identified as that of the standard model, which implies
u? + v* = (246 GeV)?. The neutral gauge bosons A3, Ag,
B, and C mix by themselves. However, it is easy to
determine the photon, Z boson, and new Z’, given by

A= SwA3 -+ Cw (ﬂtwAg + \/ 1 —ﬁzt%‘/8> R (26)
Z = CWA3 — Sw (ﬁtwAg + \/ 1 —ﬂzt‘z)l/B>, (27)

2 = /1= PR, Ag — pryB. (28)
where sy = e/g = tx/\/1 + (1 + p?)t%, with tyx = gx/g,

is the sine of the Weinberg angle [11]. Here, Z' is
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orthogonal to the field in the parentheses (i.e., to both A and
Z) that is coupled to the hypercharge ¥ = T + X, while
C is orthogonal to all A, Z, and Z’.

The photon A is massless and decoupled (i.e., a physical
particle) [11], while Z, Z’, and C mix. However, the mixing
of Z with the new Z’ and C is negligible due to the
{u?, v*}/{w?, A*} suppressions. Hence, the Z boson can
be considered as a physical particle with mass

2
mg = (> + 17), (29)
4eyy

which is identical to that of the standard model. The fields
Z’ and C finitely mix via a mass matrix as obtained by

2 2

nz, m

Z Z'C

< 5 ) >, (30)
zZ'c C

where we have denoted fy = gy/g, and

m2 _ 92W2 mz — _ gthﬁ/WZ
2530 -pa) T TR i
1
mk = 4¢3\ + ggzt%,ﬂ’zwz. (31)

The Z’ — C mixing angle is defined as

2
2mz/c

tyy = ——25—
5 m%_m%/

. —2tNﬁ/mW2
S 1205(1 = B A+ [RBP(1 = Brry) — 1w
(32)

Therefore, the new neutral gauge bosons are
Z/ = CZ:Z/ - S(:C, Z” = S§Z/ -+ CSeC, (33)

with corresponding masses

1
ézﬁzi[méw+m%qiV&m%w—m@2+4mgc.

(34)

m

The model may

1+1/f2
gx(M) = oo. Hence, the model is consistent only if M is
larger than w, A, and certainly it is larger than the weak
scales u,v. We have a corresponding relation,
s3,(M) > s%,(u, v), since gy/g increases when the energy

scale increases, which yields |f| < coty (u, v) = 1.82455
[for s3,(u, v) = 0.231]. With the aid of = — H—\/%", we have
—2.08011 < g < 1.08011. Therefore, the charge of k, is

G 1
FHA+F)gy T 144
encounter a Landau pole (M) at which s},(M) =

We rewrite 53, =

or
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very constrained, and its bounds are very close to —2 and 1,
respectively. Demanding that ¢ be an integer yields
qg=-2,-1,0,1. As a matter of fact, the model presents
alow Landau pole of a few TeV for the bounds ¢ = 1 or -2
(see also Ref. [12]).

The quark flavors are nonuniversal under SU(3), ®
U(l)y ® U(1)y gauge symmetry because one generation
of quarks transforms differently from the two others, so
there are FCNCs. Indeed, using X = Q — T3 — T and
N = B — L — f'Tg, the interaction of neutral currents is
given by

L"NC = _ng”[T:‘)A:‘aﬂ + TgAgﬂ + tX(Q - T3 _[}TS)Bﬂ
+1y(B - L - fTs)C,)F, (35)

where F runs over all fermion multiplets of the model. It is
easily realized that the leptons (v,, e,, k,) and exotic quarks
(J4» J3) do not flavor-change. Also, the terms that contain
T3, Q, and B— L do not lead to flavor changing. The
relevant part is

Lne D =9q17"Tsqq1 (A, — PtxB, — f'tyC,)

= =" Ts,q:.(9Z, + 9'Z}), (36)
g =glcg/ /1= Bty + sefty), J'=

g(se/\/1 = P63, — cef'ty), and the field ¢ indicates all

ordinary quarks of either up type g = (u;, u, u3) or down

type g = (d,, d,,d3), with the corresponding T values,
Ty, = ﬁdiag(—l,—l, 1). We change to mass basis,

where

qrr = VgLqrqL > Where ¢ is either ¢’ = (u,c,t) or
q = (d,s,b), and

Lne D =4 (Vi Ts,Var)ai (92, + ¢'Z)).
1 = *
D _7§qg‘LY”CI;‘L(VqL)3i(VqL)3j(g/Z;4 +9"Zy), (37)

where the last one is FCNC Lagrangian, with i # j. This
leads to the mixings of meson systems as described by the
effective Lagrangian,

off L N2 2 J9*  g9”
Lenc :g(‘]iﬂ 4i)’1[(Vir)3:(Var)s)l >t .
mZ/ mZ/I

(38)

A strong bound comes from the K — K° mixing, which
constrains [1]

Lol (L 2) < — L (39)
3o AL 2 T 2, (10* TeV)?

Assuming that the up-type quarks are flavor diagonal, i.e.,
Vo =1, the CKM matrix is just V, .. We have
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Qf d/z 1
—_— 40
§,+ ms, S 2078 TeV' (40)
which directly implies my > 2.078 x ¢ TeV  and

my > 2.078 x ¢" TeV. The new gauge bosons Z', Z”
are in the TeV range, provided that ¢/, ¢’ are in unity order.

Another strong bound comes from the B — B? mixing,
given by [1]

/2 /12

1 g g
—[(v* \% 2( 2 -
3[( a)2(Var)ss] <m§+m§> <(100 TeV)?

(41)

The CKM factor is |(V%, )3»(Var)33| = 3.9 x 1072, Hence,
we have

2 12

1
NV
ms mZ,, 2.25 TeV’

(42)

which leads to my >225x g TeV and
my > 2.25 x ¢ TeV, slightly larger than the correspond-
ing bounds obtained from the neutral kaon mixing.

Further, without loss of generality, consider the first
bound (40) for two cases [for the second bound (42), this
can similarly be done]:

(1) Z” is superheavy, ie., w<A. We have
= s, =4GR A, and £=0. The
condition (40) becomes

1 3 ﬂ/Z \/_
LI A TeV.
2078 Tev ~ \[w2 Taaz T, T 0Te

(43)

This is the common bound often derived for the
3-3-1 models, which is independent of f—the class
of the 3-3-1 models.

(2) Z" is comparable in mass to Z', i.e., w~ A. The
condition (40) leads to

1 2
Py e— >
<2.078 TeV>

N 6S2§INA

//|

2lgg
mz/mz//

3(1 - p°13)

(44)

For simplicity, let us consider the Z'—C mixing
to be maximal, ie., é=xn/4 or A/w=

V=30 = B3 /2ix/3(1 - 7). The

constraint becomes

w > 3.6 x [l —f%%(1 — 213,)]'/* Tev.  (45)

We have w > 3.57 TeV and A = 1.8w for the
charges of k, as (¢g,n)=(1,0),(-2,0), and
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w>33TeV and A =0.5w for (g,n)=(0,0).
Here, we have taken 7y = 0.5 and s3, = 0.231.
Finally, let us investigate the LEPII bounds for the
process ete” — ff, where f is an ordinary fermion,
due to the exchange of new neutral gauge bosons such
as Z' and Z" [13]. The effective Lagrangian is therefore
given by

2

off g
Loy = 6,2—[67”(%( e)P, + ag(e)Pg)e]

< [Frulal(/)PL + ak(f)PR)S]. (40)
where 1=27'.2" and aj p(f) =3[g\(f) = g4(f)]

Particularly considering f = y, we have

[eft g_2<[a%/(e)]2+[a{”(e)]2

LEPII — 02 2 2

)(wne)
w mZ/ mz//

X (iy,Pru) + (LR) + (RL) + (RR),  (47)

where the last three terms differ from the first one only in
chiral structures, and

’ + \/gﬁsWtW ﬁ/
aze:CW—c +tyew | 1 +——= s,
=30 A P WVE Y
) Pswt
a%(e) = ﬁcé + tycwse.
a%,/R(e) = a%/,R(e)|c5—>.\'5,s§—>—c‘5' (48)

Taking the typical bound as derived for the B — L gauge
boson from Ref. [13], we get

7 (laf ()] | [af (o)) 1
%( m2, * m2, ><(6 TeV)?" (49)

Again, the masses of Z’, Z" are bounded in the TeV range,
my > 6 X "aL( ) TeV and my > 6 x "aL( ) TeV,

assuming that a;° z.z" (e) are in unity order. To be concrete,
consider that Z” is superheavy, i.e., w << A. With the aid of
E=0and m%, = ¢*w?/[3(1 - p°1})], we get

w > 3 x (14 V3p13,) TeV. (50)

Noting that # = —(1 + 2¢)/+/3, the bound for wis 5.7, 3.9,
2.1,and 0.3 TeV for ¢ = =2, —1, 0, and 1, respectively. The
last case means that the Z’, Z” contributions are negligible,
since w is in several TeV due to the other constraints
aforementioned.

IV. UNITARITY

To investigate the unitarity of this model as well as
that of the previous proposals, it is enough to consider a
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vy, X o-l-n vy,
MNNANNNNY
y k%’n
s e VA VAV VAVAV]
vy X al+n v

PHYSICAL REVIEW D 92, 055026 (2015)
X-a—1-n

Z7 Z/, Z//

X ¢1tn

FIG. 2. Tree-level diagrams for 15v; — X'X, where the (Q, B — L) charges for X and k are explicitly displayed. We see that Z"
contributes, since it interacts with B — L charged particles such as v; and X. The remaining channels are identical to those in the 3-3-1

models.

high-energy scattering process of the standard model
neutrinos (v;) to the new gauge bosons (X):
Y6 (p1)vi(pa) = XT(ky)X(k,). The tree-level contributions
to the process are given in Fig. 2. The relevant interactions
are obtained in Table II.

The amplitude of the k; exchange channel is
computed as

M(k,) = (1) (—%wn) —
x (—%m)u(m)e;;(koe:(kz)

2

= %U(Pl)k 1Pru(p,).

(51)

Here, we have approximated m,,, m; < my, and due to the
high-energy scattering, the longitudinal polarization com-

ponents of the gauge bosons dominate, for which ¢, (k;) =

b and €, (ks) 2%. The amplitude M(k;) is only one

my
partial wave, but it is proportional to s = 4E? at high
energy. This violates the unitarity bound, since the ampli-
tude must be smaller than a constant.

The amplitudes of the V = Z, Z’, Z” exchange channels
are obtained by

TABLE II. Relevant interactions for the w5y, — XX
process. Here, P, =1(1-y°) and L** = g*(q, —q;)"+
(g2 — g3)* + g™ (g3 — q,)", provided that all the momenta

of V,(q1), X}(g2), X,(qs) gauge bosons go into the vertex
(otherwise, the signs of outgoing momenta are reversed).

Vertex Coupling
kX, —%wm
wZ, 2cW Lyrpy
ovZ! . 143
Wy [2\/—\/1/;% e+ (1+ \/—)thg]YHPL
wZ" ; 14+V3p2

' [zf\/l—ﬂ%f e = (14 SR)meelr Py
Z,XiX, — 9 (\V3Bswtw — )L
ZLXiX, 9.\/3(1 = p1))c:Lre

g
2
ZIX}X, 9\/3(1 = pPe3y)se L

iM(V) = o(py)(=ifvr*Pr)u(p,)

y —ilgas — (ki + k) o (k1 + ko), /my]
(ki +ky)* = my,

x (—igy L )ey (ki )€y (k2),

where fy, gy stand for the coupling coefficients of
V to v and X'X, respectively, which should be
understood, and identified from Table II. We approximate
Lwer (ky)ey(ky) = (ky — ky)kyka/m%, as s is large.
Hence, the amplitudes become

lfvgv

iM(v) =2

o(p1)ki Pru(p,). (52)

For each V, it also goes as s, which violates the unitarity.
Summing all the contributions, we have

1
iM = iM (k) +iM(Z) +iM(Z') +iM(Z") ~ 5

+ 292+ f292 + 292

=0, (53)
which exactly cancel out at high energy. The unitarity
condition is satisfied by the 3-3-1-1 model. It is noteworthy
that if the Z” contribution is neglected, the unitarity is
spoiled. Therefore, the 3-3-1 contributions by themselves
violate the unitarity. The way for the 3-3-1 models to avoid
this constraint is if £ = 0 or the B — L breaking scale goes
to infinity, A = oo; otherwise, it should include B — L as a
gauge symmetry.

Note that a 3-3-1 model that regards B— L as an
approximate symmetry is only an effective theory because
all B— L violating interactions, which mostly include
higher-dimensional ones, can enter as perturbations.
Such a theory loses predictive possibility, and the unitarity
is obviously violated at a high-energy scale.

V. REMARKS ON COSMOLOGICAL INFLATION
AND BARYON ASYMMETRY

If the energy scale of U(1), symmetry breaking happens
at a very high scale like the grand unification one, the
inflationary scenario which solves the difficulties of the hot
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big bang theory as well as quantum fluctuations in the
inflating background can be obtained in this framework as
linked (identical) to U(1), breaking dynamics and driven
by the ¢ potential. The ¢ field is inflaton. Because U(1), is
a local gauge symmetry, the radiative corrections to the
inflaton potential include the interaction of inflaton with the
U(1)y gauge boson (Z”) as well as the interactions of
inflaton with right-handed neutrinos (v,z) and scalar
triplets (1, p, ). Such interacting couplings are independent
of the details of f. Furthermore, due to the W-parity
conservation, we can show that the physical scalar fields
and their corresponding masses do not change when f
varies. That is, that the inflaton effective potential and its
consequences as given in the third article of Ref. [4]
generally apply for any f. Namely, the inflaton mass is
of 103 GeV order. The reheating temperature is either of
10° GeV order if it dominantly decays into a pair of light
Higgs bosons or a lower value if it dominantly decays into a
pair of right-handed neutrinos.

The baryon-number asymmetry of the Universe can be
obtained via lepogenesis processes due to the decays of
vag- Again, the U(1)y breaking dynamics is crucial to
generate the Majorana masses of v,z in order to find a
viable leptogenesis process. The CP asymmetry decays of
v,g proceed via two possibilities: (i) to ordinary charged
leptons and corresponding charged scalars, and (ii) to &,
and a scalar combination of #3; and y;. The first case
produces a baryon number as induced from the normal
particle sector, whereas the second case generates a baryon
number from the dark sector. If the right-handed neutrinos
are produced as a result of the inflaton decays, we have the
nonthermal leptogenesis processes. Otherwise, if the right-
handed neutrinos are generated in the thermal bath of the
Universe (i.e., the inflaton dominantly decays into a pair of
light Higgs bosons), we have the thermal leptogenesis
scenario. Although the general conclusions are similar to
those of the third article of Ref. [4], the details of the baryon
number produced also depend on f due to the contributions
that come from interactions with the 3-3-1 gauge bosons.

VI. CONCLUSION

We have proved that the most economical gauge sym-
metry that supports the weak-isospin enlargement to
SU(3),, regarding electric charge and B — L conservation,
mustbe SU(3). ® SU(3), @ U(1)x ® U(1)y. The factis
that the existence of U(1), respecting B — L symmetry is
the same U(1)y for electromagnetic symmetry. The uni-
fication of electroweak and B — L interactions is analogous
to the Glashow-Weinberg-Salam criterion for weak and
electromagnetic interactions. The theory predicts the fer-
mion generation number and electric charge quantization,
which all result from its consistent dynamics such as
anomaly cancellation, QCD asymptotic freedom, and mass
generation. Note that the electric charge quantization in the

PHYSICAL REVIEW D 92, 055026 (2015)

3-3-1 models is only valid for those corresponding to the
minimal versions as discussed.

The most general fermion content has been introduced,
which is independent of all the anomalies. The right-
handed neutrinos v, exist to cancel B — L anomalies. The
new fermions k,, j, have general electric and B — L
charges and are related. The electric charge of k, is
constrained by —2.08011 < ¢ < 1.08011 (if integer
charges are assumed, it is =2 < ¢ < 1), while its B— L,
n, is arbitrary, which has been assumed differently from
ordinary ones [n # (2m — 1)/3 for any integer m]. This
suppresses the minimal versions. The third quark gen-
eration has been arranged differently from the first two
under SU(3),. This leads to bounds for the new
physics scales w, A in the TeV range. Such a different
arrangement for the first or second generation instead is
possible, but the new physics scales get a much higher
bound, proportional to 103 TeV (see, for a reference,
Ref. [14]).

The scalar sector has three triplets and one singlet,
appropriately for the symmetry breaking and mass gen-
eration. A new W-parity (actually larger than Z,) is
recognized as a residual gauge symmetry. The wrong
particles transform nontrivially under W-parity and are
only coupled in pairs (P*, P7) in interactions. The normal
particles, most of which are the standard model particles,
are W-parity even. There are two dark matter models
corresponding to ¢ = 0 and ¢ = —1. The previous analysis
only realizes the former with n = 0 [4]. It is able to show
that the neutral non-Hermitian gauge boson (either X or Y)
cannot be dark matter, since it completely annihilates
before freeze-out. However, the fermion and scalar candi-
dates are realistic, since they can provide the right abun-
dance and relax search bounds. We have also shown that all
the fermions and gauge bosons get consistent masses. The
seesaw mechanisms responsible for small neutrino masses
are naturally realized. The singlet scalar that breaks B — L
is crucial to determine the residual gauge symmetry, seesaw
scales, charge quantization condition, and cosmological
inflation [4].

There is a finite mixing between the new neutral gauge
bosons Z’ and C. Unlike the new non-Hermitian gauge
bosons X, Y, the physical new neutral gauge bosons Z’, Z”
can interact with the ordinary fermions. The tree-level
FCNCs due to Z' and Z"” are bounded, yielding their
masses in the TeV range. The LEPII searches for Z’ and Z”
present similar bounds. Since the model does not induce
proton decay despite the B — L conservation, the B — L-
breaking scale can be low such as the bounds obtained.
There is no dangerous FCNC due to ordinary and exotic
quark mixing since it is suppressed by W-parity. The
unitarity of the model is verified. There are two folds for
the 3-3-1 models: either they are this 3-3-1-1 model with
A = o0, or they work as an effective theory at low energy
respecting approximate B — L symmetry.
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APPENDIX A: CURRENT ALGEBRA APPROACH

The covariant derivative for SU(3), is givenby D, = 0, + igT;A;,, where T;, A;, and g are the generators, gauge bosons,

and coupling constant, respectively. Let us work in the weak basis, which consists of the weight-raising and lowering
operators, as well as the Cartan operators,

T, +iT, T, % iTs Te+iT,
T, =—F7-F, U,=—F7, Vy=s—F7-—, 15, Tg. Al
+ \/i + \/E + \/§ 3 8 ( )
The corresponding gauge bosons are defined by
wro ATy e ZA T A g o AT A 6

V2 V2 V2
so that
D, =0, +igl(T W' + U, X, """ + V, ¥, """ £ He.) + T3As, + TgAg,). (A3)
Above, the values superscripted to W, X, Y denote Q and B — L charges, respectively, whereas A3 g do not carry these
charges. All these are obviously shown below.

The gauge interactions of fermions arise from

L =Fiy*D,F > (—gF y"T F Wi — gF U F X, "7 = gF "V FL Y, 077"+ Hee)
— gF 1 Y*T3F Ay, — gF 1 y* TsF 1 Ay, (Ad)

where F runs over all fermion multiplets of the model, and note that the generators vanish for Fp. Thus, the currents of
SU(3),, which appear in the Lagrangian as —gJﬁA”, can be read off,

Sy = Fy*T  Fy, Sy =Fy'U, Fp, Sy =F /"V, Fp, J4 = Fy*T5Fp, Ji =Fy*TgFr.  (AS)

This leads to the corresponding weak charges,

1
T, (1) = /d3XJO _ﬁ/tpx(’/ZLeaL +ulpda),

1 - .
U (t)= /d3xJ?( = ﬁ/ dSX(VZLkaL + u;LJ3L - ]ZLdaL),
1 . :
V. (1) = /d3xj(} = 75/ d3x(eZLkaL +d5; jar —|—]ZLMQL),
1 . N N
T3(1) = /d3ng = §/d3x<V;1LUaL +ul gy — ehpeq — dypdar),

1 .
Ty(t) = d3xJ0:—/d3x Vv +e e =2k ky +ulu
8() / 8 2\/§ (aL L aL®aLl aL™aL 3L%3L
t dyydys = 2350 = g Uar, = Ao dat + 2ipat): (A6)
and T_(t) = [T, (1)]", U_(z) = [U.(0)]T, V_(t) = [V_(1)]T. Here, the charges (Q, B — L) for the new particles such as
X,Y, ju J3 can be understood, provided that those charges for k, are (g, n), as well as that they are conserved.

Using the canonical anticommutation relations for fermions, {f(x, ), f'(y,#)} = 8®(Cx ="y), we can check that the
weak charges exactly satisfy the algebra of SU(3); as usual. Particularly, the important commutation relations are
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[T4(2). T_(1)] = T5(2),

[U4 (1), U_(1)] = 5 (T5(1) + V3T (1)),

N = N =

[V (1), V_(1)] = 5 (=T5(1) + V3T(1)). (A7)

The Q(r) and [B — L](#) charges have the form
(1) :/d3xlgm = /d3xFTQF

= /d3x[—€ZLeaL + qlekaL + (2/3)MZLMaL — (1/3)d!1LdaL
+(2/3+ @)jspisn + (=1/3=q)jijar + (LL = RR)), (A8)

d*xJY, = / d*xF'|B — LIF

dSX[_DZL’/aL - EZLeaL + nkaLkaL + (1/3)MZL”uL + (1/3)dZLdaL

+(4/3 +n)jija + (=2/3 = n)jigja + (LL = RR)]. (A9)

We see that Q(¢) and [B — L](¢) cannot, respectively, be any combination of 73(¢) and Tg(¢), because Q(¢) and [B — L](¢)
have the right currents as well (indeed, they are vectorlike). Therefore, the SU(3), charges, Q, and B — L, do not form a
closed algebra. Moreover, we derive

(Q(0).To()] = £Ty.  [Q(0).UL()] =F qUs(1).  [Q(1). V()] =F (1 +q)VL (1) (A10)
[B=L)(1), U()] =F (1 +n)U=(1),  [[B=L](),VL()] =F (1 +n)V+(1), (A1)

which imply that the SU(3), generators, Q, and B — L, do not commute.
Putting f = —(1 + 2q)/\/§, we deduce

—1+4+g¢ 14+¢ q
Q(t) = Ts(1) = pTs(t) = /d3x [TWZLW(;L +TQ§LQ3L - ngLQaL - ejzReaR + quRkaR

2 + 1 1 2 K . 1 . .

+ 3 Uarttar =3 dupdart <§ + q> Jarisr + (— 3 q) ]ZR](:R:| = / FxFXF,  (Al2)
which defines a new Abelian charge, X, with the values for the multiplets, coinciding with those in (8). Surely, it is easy to
check that the new charge X(r) commutes with all the SU(3), charges.

Setting #/ = —2(1 + n)/+/3, we obtain

—2+n 2+n n f
[B—L](1) = p'Ts(t) = / dSX[ WZLV/aL + 3 Q;LQ3L 3 QiLQaL - I/:rle/aR - eZReuR + nkygkar
[ 1o 4 g 2 g 3t
+ 3 UarMar + gdaRdaR‘F 3 +n | japisr + =371 )JarJar | = d°xF'NF, (A13)
which yields another Abelian charge, N, with the values in agreement with (8). Also, N(¢) must commute with the SU(3),
charges.
Again, we conclude that the manifest gauge symmetry must be

SUB)c @ SUB), @ U(l)x ® U(1)y. (A14)
where X and N, respectively, define the electric-charge and B — L operators:

Q-Ty;—pTs=X, B—-L-pTg=N. (A15)
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APPENDIX B: ANOMALY CHECKING

First, note that N = B — L — /Ty and X = Q — T3 — iT. Furthermore, with the fermion content as given, the anomalies
associated with 7';, Q, and B — L always vanish. Therefore, the X and N anomalies are also canceled. To see this explicitly,

let us compute

[SUB) U1y ~ Z (X, —X,,) =3Xo, +2x3Xy, —3X, —3X, —X; —2X,,

quarks

=3(144q)/3+6(=q/3) =3(2/3) =3(=1/3) = (2/3+ q) = 2(=1/3-¢) = 0,

[SUB) UMy~ Y (N, =Ng) =3Ng, +2x3Ng, —3N, —3N, —N; —2N;,

quarks

=324 n)/3 +6(=n/3) = 3(1/3) =3(1/3) = (4/3 + n) —2(=2/3 = n) =0,

[SUB)PU(x~ > Xp, =3X,, +3Xy +2x3Xg,

(anti)triplets

=3(-1+49)/3+3(1+q)/34+6(—q/3) =0,

[SUB)JPU(1)y~ > Np, =3N,, +3Ng, +2x3Ng,

(anti)triplets

=3(-2+n)/3+32+n)/3+6(-n/3)=0,

[Gravity PU(1)x ~ Y (X, = Xp,) =3 x3X,, +3x3Xg, +2x3x3X,,

fermions

—3x3X, —3x3X, —3X; —2x3X, —3X, —3X, —3X,,
=3x3(-14+¢9)/3+3x3(1+¢q)/3+2x3x3(—¢q/3)
—3x3(2/3) =3 x3(=1/3) = 3(2/3 +q) =2 x 3(=1/3 — q) — 3¢ = 3(=1) = 3(0) = 0,

[GravityPU(1)y ~ > (Ny, =Ny,) =3x 3N, +3x3Ng +2x3x3Ng,

fermions

~3x3N, —3x3N, —3N, —2x3N,; —3N, —3N, —3N,
=3x3(-2+n)/3+3x32+n)/3+2x3x3(-n/3)

—3x3(1/3) =3 x3(1/3) =3(4/3+n) —2x3(=2/3 = n) = 3n - 3(=1) = 3(~1) =0,

[U(I)X]2U<1>N = Z (X}LNfL _X%RNfR) =3x 3X5/aNWa +3 % 3X2QsNQ3

fermions

+2x3x3X; No —3x3X; N, —3x3X; Ny —3X; N,
—2x3X}N; —3X; N, —3X; N, —3X N,

=3x3[(=1+¢q)/3(=2 +n)/3+3 x3[(1 +¢)/3*(2+n)/3
+2x3x3(—=q/3)*(-n/3) =3 x3(2/3)*(1/3) = 3 x 3(=1/3)%(1/3)
=3(2/3+q)*(4/3+n) =2x3(=1/3 - ¢)*(=2/3 = n) = 3¢’n
=3(=1)*(-1) = 3(0)*(-1) =0,

055026-13
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UMUMP= D (X;, N3}, =X N3 )=3x3X, Nj +3x3Xy Np +2x3x3Xg Ny —3x3X, N2,

fermions

—3x3X,, N3 —3X; N7 —=2x3X; N7 —=3X, N; —3X, N; —3X, N},
=3x3[(=1+¢)/3][(-=2+n)/3]*+3x3[(1+4)/3][(2+n)/3]* +2x3x3(—q/3)(-n/3)*
—3x3(2/3)(1/3)>=3x3(~1/3)(1/3)>=3(2/3+q)(4/3+n)* =2x3(-1/3—-q)(-2/3—-n)* - 3qn®

=3(=1)(=1)*=3(0)(=1)*=0.

(B8)

[U(1)y]? = Z (X7, = X3,) =3 x3X], +3x3X), +2x3x3X},

fermions

—3x3X3, —3x3X, 3%, —2x3X] —3X] —3X3 —3X],
— 3 3[(=1 + q)/3] +3 x 3[(1 + q)/3] + 2 x 3 x 3(=q/3)* =3 x 3(2/3)* = 3 x 3(=1/3)* =3(2/3 + )}
—2x3(=1/3-¢q)} =3¢ =3(-1)> =3(-0)} =0, (B9)

Uy = > (N} =N} )=3x3N} +3x3N}) +2x3x3N},

fermions

—3 %3N}, =3 x 3N} =3N} —2x3N} 3N} —3N3 -3N;,
=3 x3[(=24n)/3P +3x3[(24n)/3P +2x3x3(=n/3)3 =3 x3(1/3)3 =3 x 3(1/3)> =3(4/3 + n)?

—2x3(=2/3-n)*=3n*-3(-1)3 =3(=1)} =0.

(B10)

It is interesting that the anomalies are always canceled, independent of ¢ and n, the corresponding Q and B — L charges

of the new particles k,.

We see that although the B, L symmetries are separately anomalous, taking B — L into account makes the 3-3-1-1 model

free from all the leptonic and baryonic anomalies [4].
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