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Abstract We consider the EWPT in the economical 3-3-1
(E331) model. Our analysis shows that the EWPT in the
model is a sequence of two first-order phase transitions,
SU (3) → SU (2) at the TeV scale and SU (2) → U (1)

at the 100 GeV scale. The EWPT SU (3) → SU (2) is trig-
gered by the new bosons and the exotic quarks; its strength
is about 1–13 if the mass ranges of these new particles are
102–103 GeV. The EWPT SU (2) → U (1) is strengthened by
only the new bosons; its strength is about 1–1.15 if the mass
parts of H0

1 , H±
2 and Y± are in the ranges 10–102 GeV. The

contributions of H0
1 and H±

2 to the strengths of both EWPTs
may make them sufficiently strong to provide large devia-
tions from thermal equilibrium and B violation necessary for
baryogenesis.

1 Introduction

In the context of electroweak baryogenesis (EWBG), the
EWPT plays an important role in explaining the Baryon
Asymmetry of Universe (BAU) by electroweak physics.
From the three Sakharov conditions, which are B violation,
C and CP violations, and deviation from thermal equilib-
rium [1], the EWPT should be a strongly first-order phase
transition. That not only leads to thermal imbalance [2], but
it also makes a connection between B violation and CP vio-
lation via nonequilibrium physics [3,4].

The EWPT has been investigated in the Standard Model
(SM) [2,5–8] as well as various extension models [9–23].
For the SM, although the EWPT strength is larger than unity
at the electroweak scale, it is still too weak for the mass of the
Higgs boson to be compatible with current experimental lim-
its [2,5–8]; this suggests that EWBG requires new physics
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beyond the SM at the weak scale [9–11]. Many extensions
such as the Two-Higgs-Doublet model or Minimal Super-
symmetric Standard Model have a more strongly first-order
phase transition and the new sources of CP violation, which
are necessary to account for the BAU; triggers for the first-
order phase transition in these models are heavy bosons or
dark matter candidates [15–17,19–23].

Among the extensions beyond the SM, the models based
on SU (3)C ⊗ SU (3)L ⊗ U (1)X gauge group (called 3-3-1
for short) [24–32] have some interesting features including
the ability to explain the generation problem [24–32] and the
electric charge quantization [33–36]. The structure of such a
gauge group requires the 3-3-1 models to have at least two
Higgs triplets. Thus the structure of symmetry breaking and
the number of bosons are different from those in the SM.

In a previous work [37], we have considered the EWPT in
the reduced minimal 3-3-1 (RM331) model due to its simplic-
ity, and found that our approach can be applied to the more
complicated 3-3-1 models. In the present work, we follow
the same approach for the economical 3-3-1 (E331) model
[38–44], whose lepton sector is more complicated than that
of the RM331 model. The E331 model has the right-handed
neutrino in the leptonic content, the bileptons (two singly
charged gauge bosons W±, Y±, and a neutral gauge bosons
X0), the heavy neutral boson Z2, and the exotic quarks. The
model has two Higgs triplets, and the physical scalar spec-
trum is composed of a singly charged scalar H±

2 and a neutral
scalars H0

1 [38–44]. We will show in this paper that the new
bosons and the exotic quarks can be triggers for the first-order
phase transition in the model.

This paper is organized as follows. In Sect. 2 we give a
review of the E331 model on the Higgs, gauge boson, and
lepton sectors. In Sect. 3, we find the effective potential in
the model, which has a contribution from heavy bosons and
exotic quarks as well as a contribution similar to that in the
SM. In Sect. 4, we investigate the structure of the EWPT
sequence in the E331 model, we find the parameter ranges
where the EWPTs are strongly first-order to provide B viola-
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tion necessary for baryogenesis, and we show the constraints
on the mass of the charged Higgs boson. Finally, we summa-
rize and describe outlooks in Sect. 5.

2 A review of the economical 331 model

2.1 Higgs potential

In the E331 model, the 3-3-1 gauge group is spontaneously
broken via two stages. In the first stage, the group SU (3)L ⊗
U (1)X breaks down to the SU (2)L ⊗U (1)Y of the SM; and
the second stage takes place as that we have known in the SM.
This sequence of spontaneous symmetry breaking (SSB) is
described by the Higgs potential [38–44]:

V (χ, φ) = μ2
1χ

†χ + μ2
2φ

†φ + λ1(χ
†χ)2 + λ2(φ

†φ)2

+ λ3(χ
†χ)(φ†φ) + λ4(χ

†φ)(φ†χ), (1)

in which χ and φ are the Higgs scalar triplets:

χ =
⎛
⎝

χ0
1

χ−
2

χ0
3

⎞
⎠ ∼

(
1, 3, −1

3

)
, φ =

⎛
⎝

φ+
1

φ0
2

φ+
3

⎞
⎠ ∼

(
1, 3, −1

3

)
, (2)

whose VEVs are, respectively, given by

〈χ〉 = 1√
2

⎛
⎝
u
0
ω

⎞
⎠ , 〈φ〉 = 1√

2

⎛
⎝

0
v

0

⎞
⎠ , (3)

where the VEV ω is responsible for the first stage, and the
VEVs u and v are responsible for the second stage of sym-
metry breaking. These VEVs satisfy the constraint [38–44]:

ω � v � u. (4)

The physical scalar spectrum of the model is composed
of a charged scalar H+

2 , and two neutral scalars H0
1 and H0.

In this spectrum, H0 is both the lightest neutral field and a
SU (2)L component, hence it is identified as the SM Higgs
boson. The Higgs content of the model can be summarized
as follows:

χ =
⎛
⎜⎝

1√
2
u + GX0

GY−
1√
2
(ω + H0

1 + iGZ ′)

⎞
⎟⎠ ,

φ =
⎛
⎜⎝

GW+
1√
2
(v + H0 + iGZ )

H+
2

⎞
⎟⎠ , (5)

where the Higgs masses are given by

m2
H0 = λ2v

2 + λ1(u
2 + ω2)

−
√

[λ2v2 − λ1(u2 + ω2)]2 + λ2
3v

2(u2 + ω2)

≈ 4λ1λ2 − λ2
3

2λ1
v2, (6)

m2
H0

1
= λ2v

2 + λ1(u
2 + ω2)

+
√

[λ2v2 − λ1(u2 + ω2)]2 + λ2
3v

2(u2 + ω2)

≈ 2λ1ω
2 + λ2

3

2λ1
v2, (7)

m2
H+

2
= λ4

2
(u2 + v2 + ω2). (8)

We note that in Ref. [38–44], the mass formula of H0
1

is approximate as m2
H0

1
≈ 2λ1ω

2. In the context of EWPT,

however, we find that the better approximation should be that

in Eq. (7). Although the additional term
λ2

3
2λ1

v2 is very small
as compared to the first term and we may neglect it in some
other considerations, it gives a very important contribution
of H0

1 to the EWPT SU (2) → U (1).

2.2 Gauge boson sector

The masses of the gauge bosons of this model come from the
Lagrangian

LGB
mass = (Dμχ)†(Dμχ) + (Dμφ)†(Dμφ), (9)

where

Dμ = ∂μ − igTiWiμ − igX T9XBμ, (10)

with T9 = 1√
6

diag(1, 1, 1) so that Tr(Ti Tj ) = δi j . The cou-

plings of SU (3)L and U (1)X satisfy the relation

t ≡ gX
g

= 3
√

2sW
3 − 4s2

W

, (11)

where cW = cos θW , sW = sin θW , tW = tan θW , and θW is
the Weinberg angle.

Equations (9) and (3) lead to

W ′±
μ = W1μ ∓ iW2μ√

2
, Y ′∓

μ = W6μ ∓ iW7μ√
2

, (12)

m2
W5

= g2

4
(v2 + ω2). (13)

The combinations W ′ and Y ′ in (12) are mixed via a mass
matrix:

LCG
mass = g2

4
(W ′−

μ ,Y ′−
μ )

(
u2 + v2 uω

uω ω2 + v2

)(
W ′+μ

Y ′−μ

)
.

(14)
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Diagonalizing the mass matrix in Eq. (14), we obtain the
physical charged gauge bosons

Wμ = cos θ W ′
μ − sin θ Y ′

μ, Yμ = sin θ W ′
μ − cos θ Y ′

μ

(15)

and their respective mass eigenvalues

m2
W = g2v2

4
,m2

Y = g2

4
(u2 + v2 + ω2), (16)

where θ is the mixing angle which is defined by

tθ ≡ tan θ = u

ω
. (17)

The mass mW as in (16) suggests that the W bosons of the
model can be identified as those of the SM, and v can be set as
v  vweak = 246 GeV. From the constraints in (4), θ should
be very small, thus Wμ  W ′

μ and Yμ  Y ′
μ. Moreover, the

Michel parameter ρ in the model connects u with v by the
expression ρ ≈ 1 + 3u2

v2 [38–44]; and from the experimental
data, ρ = 0.9987 ± 0.0016 [45], that expression gives us
u
v

≤ 0.01, which leads to u < 2.46 GeV. With ω in the
range 1–5 TeV, we have

tθ = u

ω
≈ 0.001. (18)

For the neutral gauge bosons, the mass matrix in the basis
(W3μ,W8μ, Bμ,W4μ) is given by

M2 = g2

4

×

⎛
⎜⎜⎜⎜⎜⎝

u2 + v2 u2−v2√
3

− 2t
3
√

6
(u2 + 2v2) 2uω

u2−v2√
3

1
3 (4ω2 + u2 + v2)

√
2t
9 (2ω2 − u2 + 2v2) − 2√

3
uω

− 2t
3
√

6
(u2 + 2v2) 2t

9 (2ω2 − u2 + 2v2) − 2t2
27 (ω2 + u2 + 4v2) − 8t

3
√

6
uω

2uω − 2√
3
uω − 8t

3
√

6
uω u2 + ω2

⎞
⎟⎟⎟⎟⎟⎠

. (19)

The diagonalization of the mass matrix in Eq. (19) leads to
the mass eigenstates of four following neutral gauge bosons:

m2
γ = 0, m2

W ′
4

= g2

4
(u2 + ω2), (20)

m2
Z1

=
[

2g−2
√

3 − 4s2
W

]−1 {
[c2

W (u2 + ω2) + v2

−
√

[c2
W (u2 + ω2) + v2]2 + (3 − 4s2

W )(3u2ω2 − u2v2 − v2ω2)

}
,

(21)

m2
Z2

=
[

2g−2
√

3 − 4s2
W

]−1 {
[c2

W (u2 + ω2) + v2

+
√

[c2
W (u2 + ω2) + v2]2 + (3 − 4s2

W )(3u2ω2 − u2v2 − v2ω2)

}
.

(22)

Due to the constraints (4), the physical states Z1 and Z2

get masses

m2
Z1

= g2

4c2
W

(v2 − 3u2), m2
Z2

= g2c2
Wω2

3 − 4s2
W

. (23)

Since the components W ′
4 and W5 have the same mass, we

can identify their combination,

X0
μ = 1√

2
(W ′

4μ − iW5μ), (24)

as a physical neutral non-Hermitian gauge boson which car-
ries the lepton number with two units. The subscript 0 of Xμ

in Eq. (24) denotes the neutrality of the gauge boson X , but
sometimes this subscript may be dropped.

2.3 Fermion sector

The fermion content in this model, which is anomaly free, is
given by

ψi L =
⎛
⎝

νi
ei
χ0
i

⎞
⎠

L

∼
(

1, 3,−1

3

)
,

ei R ∼ (1, 1,−1), i = 1, 2, 3,

Q1L =
⎛
⎝
u1

d1

U

⎞
⎠

L

∼
(

3, 3,
1

3

)
,

QαL =
⎛
⎝
dα

uα

Dα

⎞
⎠

L

∼ (3, 3∗, 0), α = 2, 3,

ui R ∼
(

3, 1,
2

3

)
, di R ∼

(
3, 1,−1

3

)
,

uR ∼
(

3, 1,
2

3

)
, DαR ∼

(
3, 1,−1

3

)
. (25)

The Yukawa interactions which induce masses for the
fermions can be written as

LYuk = LLNC + LLNV (26)
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in which LLNC is the Lagrangian part for lepton-number
conservation and LLNV is that for lepton-number violation.
These Lagrangian parts are given by

LLNC = hU Q̄1LχUR + hD
αβ Q̄αLχ∗DβR

+ hei j ψ̄i Lφe j R + hε
i jεabc(ψ̄

c
i L)a(ψ

c
j L)b(φ)c

+ hdi Q̄1Lφdi R + huαi Q̄αLφ∗ui R + H.c.

LLNV = sui Q̄1Lχui R + sdαi Q̄αLχ∗di R
+ sDα Q̄1LφDαR + sUα Q̄αLφ∗UR + H.c. (27)

where a, b, and c stand for the SU (3)L indices.
During the SSB sequence of this model, the VEV ω gives

the masses for the exotic quarksU and Dα , the VEV u which
is the source of lepton-number violations gives the masses
for the quarks u1 and dα , the VEV v gives the masses for the
quarks uα and d1 as well as all ordinary leptons.

3 Effective potential in the economical 331 model

From the Higgs potential (1), we obtain V0 in a form which
is dependent on the VEVs as follows:

V0(u, ω, v)= μ2
1

2
(u2+ω2)+ μ2

2

2
v2+ λ1

4
(u4+ω4 + 2u2ω2)

+ λ2

4
v4 + λ3

4
(u2v2 + v2ω2). (28)

We see that V0(u, ω, v) has a quartic form like in the SM,
but it depends on three variables, u, ω and v; it also has mix-
ings between these variables. However, we can transform u
into ω by tθ as defined in Eq. (17). We note that if the Uni-
verse’s energies allow for the existence of the gauge sym-
metry SU (3)L ⊗ U (1)X and the SSB sequence in the E331
model, the VEVs u, ω and v must satisfy the constraint (4).
This leads to tθ � 1, and we can neglect the contribution
of u. On the other hand, by developing the Higgs potential
(1), we obtain two minimum equations which permit us to
transform the mixing between ω and v,

μ2
1 + λ1(u

2 + ω2) + λ3
v2

2
= 0,

μ2
2 + λ2v

2 + λ3
(u2 + ω2)

2
= 0. (29)

From Eq. (29) we obtain

λ3(u
2 + ω2)v2 = −2(μ2

2v
2 + λ2v

4), (30)

and

u2ω2 = μ2
2 − 2λ2

λ3
μ2

1
2λ1λ2

λ3
− λ3

2

u2 − u4. (31)

Substituting Eqs. (30) and (31) into Eq. (28) yields

V0(u, ω, v) = μ2
1

2
ω2 + λ1

4
ω4

+
[

μ2
1

2
+ 2

μ2
2 − 2λ2

λ3
μ2

1
2λ1λ2

λ3
− λ3

2

]
u2 − λ1

4
u4 − λ2v

4

4
. (32)

Neglecting u and from those relations, we can write V0 in
Eq. (32) as a sum of two parts corresponding to two stages
of SSB:

V0(ω, v) = V0(ω) + V0(v), (33)

where V0(ω) = μ2
1

2 ω2 + λ1
4 ω4 and V0(v) = −λ2v

4

4 are in the
quartic form. In addition, we have alternative ways to arrive
Eq. (33) which has other forms but V0(ω) and V0(v) are still
in the quartic form.

In order to derive the effective potential, we start from the
full Higgs Lagrangian:

L = LGB
mass + V (χ, φ), (34)

where LGB
mass and V (χ, φ) are respectively given by Eq. (9)

and Eq. (1).
In order to see the effective potential of this model can

be split into two separated parts, we analyze the processes
which generate the masses for all particles. The first, we want
to mention the masses of the gauge fields which come from
Eq. (9), we can rewrite this equation as form:

LGB
mass = (Dμ〈χ〉)† (Dμ〈χ〉)+(Dμ〈φ〉)† (Dμ〈φ〉) = A+B,

(35)

where

A ≡ (Dμ〈χ〉)† (Dμ〈χ〉) ,
B ≡ (Dμ〈φ〉)† (Dμ〈φ〉) .

Note that the gauge fields (Wμ
i , Bμ) inside the covariant

derivatives of the A and B are the same. So after diago-
nalizing, the gauge fields in the A and B are the same, and
we obtain gauge bosons: γ , Z1, Z2, X0, W±, Y±.

Neglecting u and from the term A, one obtains the mass
components of the physical gauge bosons only depend on ω

and u (for details see, the second paper in [38–44]):

MA
bosons = m2

W±(ω, u)W+
μ W−μ + m2

Y±(ω, u)Y+
μ Y−μ

+ m2
X0(ω, u)X0

μZ
0μ

+ m2
Z1(ω, u)Z1

μZ
1μ + m2

Z2(ω, u)Z2
μZ

2μ. (36)
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From the term B, one obtains the mass components of the
physical gauge bosons only depend on v:

MB
bosons = m2

W±(v)W+
μ W−μ + m2

Y±(v)Y+
μ Y−μ

+ m2
X0(v)X0

μZ
0μ + m2

Z1(v)Z1
μZ

1μ

+ m2
Z2(v)Z2

μZ
2μ. (37)

Looking carefully at Eq. (14) and (19), this is eas-
ily checked. So we obtain m2

W±(ω, u) = m2
X0(v) = 0,

m2
Z1

(ω, u) = m2
Z2

(v) ≈ 0.
Through this analysis we see that when we combine A

with B to make the diagonalization of the matrix in the above
section, this leads to a mixing between the gauge bosons in
the A and B. However, we note that although the fields of
the A and B are the same, the fields in the A or Eq. (36) only
go with ω and u, the fields in the B or Eq. (37) only go with
v. Because the A and B are not mix together. Therefore we
found that the physical gauge bosons are like “break”, this
problem is due to the initial assumptions of the model about
the covariant derivative.

The second, we want to mention the masses of the Higgs
fields. The Higgs potential, Eq. (1), has two last components,
λ3(χ

†χ)(φ†φ) and λ4(χ
†φ)(φ†χ), so we have a mixing

among VEVs. In the calculation in the above section, we
perform an approximation in Eqs. (6)–(8). These approxi-
mations did lose the mixing between VEVs, so they did lose
λ3(χ

†χ)(φ†φ) and λ4(χ
†φ)(φ†χ) or these two last compo-

nents are absorbed into the other components of the Higgs
potential.

Therefore the masses of the gauge bosons and the Higgses
presented in Table 1, from which we can split the boson
masses into two parts for two SSB stages:

m2
boson(ω, v) = m2

boson(ω) + m2
boson(v). (38)

However, note that the Higgs fields are like the gauge
bosons. A field function multiplies by the square of the mass
that contains a VEV, so that the field only effects on the VEV,
but it does not effect on all of VEVs.

The last, expanding the Higgs fields χ and φ around their
VEVs which are u, ω and v, we obtain

L = 1

2
∂μω∂μω+ 1

2
∂μv∂μv+V0(ω, v)+MA

bosons+MB
bosons

+
∑

mexotic quarks(ω)QQ̄ + mtop quark(v)t t̄, (39)

In the E331 model, we have two massive bosons like the
SM bosons Z1 and W±, two new heavy neutral bosons X0

and Z2, the singly charged gauge bosons Y±, one singly
charged Higgs H±

2 , one heavy neutral Higgs H0
1 and one

SM-like Higgs H0. We must consider contributions from all
fermions and bosons. But for fermions, we retain only the

top and exotic quarks because their contributions dominate
over those from the other fermions [2]. Therefore, from the
Lagrangain (39) we obtain two motion equations according
to ω and v,

∂μω∂μω + ∂V0(ω)

∂ω
+
∑ ∂m2

bosons(ω)

∂ω
WμWμ

+
∑ ∂mexotic quarks(ω)

∂ω
QQ̄ = 0, (40)

∂μv∂μv + ∂V0(v)

∂v
+
∑ ∂m2

bosons(v)

∂v
WμWμ

+ ∂mtop quark(v)

∂v
t t̄ = 0, (41)

where W runs over all gauge fields and Higgs bosons. From
Eq. (42), averaging over space we obtain

∂μω∂μω + ∂V0(ω)

∂ω
+
∑ ∂m2

bosons(ω)

∂ω
〈WμWμ〉

+
∑ ∂mexotic quarks(ω)

∂ω
〈QQ̄〉 = 0, (42)

∂μv∂μv + ∂V0(v)

∂v
+
∑ ∂m2

bosons(v)

∂v
〈WμWμ〉

+ ∂mtop quark(v)

∂v
〈t t̄〉 = 0. (43)

Note that 〈WμWμ〉 in Eq. (42) only effect on ω, so it only
depends on mbosons(ω). Similarly, 〈WμWμ〉 in Eq. (43) only
effect on v, so it only depends on mbosons(v).

Using Bose–Einstein and Fermi–Dirac distributions
respectively for bosons and fermions to average over space,
we obtain the one-loop effective potential Veff(ω) for the
electroweak phase transition SU (3) − SU (2) at high tem-
peratures:

Veff(ω) = V0(ω)

+ 1

64π2

[
6m4

Y (ω) ln
m2

Y (ω)

Q′2 + 6m4
X (ω) ln

m2
X (ω)

Q′2

+ 3m4
Z2

(ω) ln
m2

Z2
(ω)

Q′2 + m4
H0

1
(ω) ln

m2
H0

1
(ω)

Q′2

+2m4
H+

2
(ω) ln

m2
H+

2
(ω)

Q′2 − 36m4
Q(ω) ln

m2
Q(ω)

Q′2

⎤
⎦

+ T 4

4π2

[
6F−

(
mY (ω)

T

)
+ 6F−

(
mX (ω)

T

)

+3F−
(
mZ2(ω)

T

)
+ F−

(
mH0

1
(ω)

T

)

+2F−

(
mH+

2
(ω)

T

)
+ 36F+

(
mQ(ω)

T

)]
, (44)
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Table 1 Mass formulations of bosons in the E331 model

Bosons m2(ω, v) m2(ω) m2(v) m2(v0 = 246 GeV)

m2
W±

g2

4 v2 0 g2

4 v2 80.392 (GeV)2

m2
Y±

g2

4 (ω2 + v2)
g2

4 ω2 g2

4 v2 80.392 (GeV)2

m2
X0

g2

4 ω2 g2

4 ω2 0 0

m2
Z1

∼ m2
Z

g2

4c2
W

v2 0 g2

4c2
W

v2 91.682 (GeV)2

m2
Z2

∼ m2
Z ′

g2c2
W

3−4s2
W

ω2 g2c2
W

3−4s2
W

ω2 0 0

m2
H0

(
2λ2 − λ2

3
2λ1

)
v2 0

(
2λ2 − λ2

3
2λ1

)
v2 1252 (GeV)2

m2
H0

1
2λ1ω

2 + λ2
3

2λ1
v2 2λ1ω

2 λ2
3

2λ1
v2 λ2

3
2λ1

v2
0

m2
H±

2

λ4
2 (ω2 + v2) λ4

2 ω2 λ4
2 v2 λ4

2 v2
0

in whichmQ indicates the masses of three exotic quarks. Sim-
ilarly, from Eq. (43), we obtain the high-temperature effective
potential Veff (v) for the electroweak phase transition SU (2)–
U (1):

Veff(v) = V0(v)

+ 1

64π2

[
6m4

W (v) ln
m2

W (v)

Q2 + 6m4
Y (v) ln

m2
Y (v)

Q2

+ 3m4
Z1

(v) ln
m2

Z1
(v)

Q2 + m4
H0(v) ln

m2
H0(v)

Q2

+ m4
H0

1
(v) ln

m2
H0

1
(v)

Q2

+2m4
H+

2
(v) ln

m2
H+

2
(v)

Q2 − 12m4
t (v) ln

m2
t (v)

Q2

⎤
⎦

+ T 4

4π2

[
6F−

(
mW (v)

T

)
+ 6F−

(
mY (v)

T

)

+3F−
(
mZ1(v)

T

)
+ F−

(
mH0(v)

T

)
+ F−

(
mH0

1
(v)

T

)

+2F−

(
mH+

2
(v)

T

)
+ 12F+

(
mt (v)

T

)]
, (45)

in which mt indicates the mass of the top quark. F∓
(m
T

)
come from 〈WμWμ〉 and describe the thermal contributions
of particles with masses m. These terms are given by

F∓
(m
T

)
=
∫ m

T

0
α J (1)

∓ (α, 0)dα, (46)

where

J (1)
∓ (α, 0) = 2

∫ ∞

α

(x2 − α2)1/2

ex ∓ 1
dx . (47)

As the above analyze, F∓
(m
T

)
in Eq. (44) only depend on

ω and F∓
(m
T

)
in Eq. (45) only depend on v.

Equations (39)–(44) and (45) do not consist of any mixing
between ω and v. Therefore, we can write the total effective
potential in the E331 model as

V E331
eff = Veff(ω) + Veff(v). (48)

The effective potentials Veff(ω) and Veff(v) seem to
depend on the arbitrary scales Q′ and Q respectively. How-
ever, by the same reasoning as in [2], we can show that
the structure of these potentials remain unchanged for the
changes in scales. At zero temperature, all thermal contribu-
tions vanish, and due to the quartic form of V0(ω) and V0(v),
we can rewrite Eqs. (44) and (45) as

V 0oK
eff (ω) = λ′

Rω4 + M ′2
R ω2 + Λ′

R + 1

64π2

×
[

6m4
Y (ω) ln

m2
Y (ω)

Q′2 + 6m4
X (ω) ln

m2
X (ω)

Q′2

+ 3m4
Z2

(ω) ln
m2

Z2
(ω)

Q′2 + m4
H0

1
(ω) ln

m2
H0

1
(ω)

Q′2

+2m4
H+

2
(ω) ln

m2
H+

2
(ω)

Q′2 − 36m4
Q(ω) ln

m2
Q(ω)

Q′2

⎤
⎦ (49)

and

V 0oK
eff (v) = λRv4 + M2

Rv2 + ΛR + 1

64π2

×
[

6m4
W (v) ln

m2
W (v)

Q2 + 6m4
Y (v) ln

m2
Y (v)

Q2

+ 3m4
Z1

(v) ln
m2

Z1
(v)

Q2 + m4
H0(v) ln

m2
H0(v)

Q2
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+ m4
H0

1
(v) ln

m2
H0

1
(v)

Q2

+2m4
H+

2
(v) ln

m2
H+

2
(v)

Q2 − 12m4
t (v) ln

m2
t (v)

Q2

⎤
⎦ , (50)

where λ′
R , M ′

R , Λ′
R , λR , MR , and ΛR are the renormalized

constants. The changes such as Q′ → κ ′Q′ (or Q → κQ)
induce the terms which contain κ ′ (or κ) and are proportional
to m4

boson(ω) ∼ ω4 (or m4
boson(v) ∼ v4). Those terms can be

absorbed by λ′
R (or λR). This makes the physics remain the

same.
For this reason, we can put Q′ = ε′ω0 and Q = εv0 into

Eqs. (49) and (50), respectively. Combining the terms which
contain ε′ and ε with the renormalized constants, we have

V 0oK
eff (ω) = λ′

0

4
ω4 + M ′2

0 ω2 + Λ′
0 + 1

64π2

×
[

6m4
Y (ω) ln

ω2

ω2
0

+ 6m4
X (ω) ln

ω2

ω2
0

+ 3m4
Z2

(ω) ln
ω2

ω2
0

+ m4
H0

1
(ω) ln

ω2

ω2
0

+2m4
H+

2
(ω) ln

ω2

ω2
0

− 36m4
Q(ω) ln

ω2

ω2
0

]
(51)

and

V 0oK
eff (v) = λ0

4
v4 + M2

0 v2 + Λ0 + 1

64π2

×
[

6m4
W (v) ln

v2

v2
0

+ 6m4
Y (v) ln

v2

v2
0

+ 3m4
Z1

(v) ln
v2

v2
0

+ m4
H0(v) ln

v2

(v0)2

+ m4
H0

1
(v) ln

v2

v2
0

+2m4
H+

2
(v) ln

v2

v2
0

− 12m4
t (v) ln

v2

v2
0

]
, (52)

where λ′
0, M ′2

0 , Λ′
0, λ0, M2

0 , Λ0 are the parameters those can
be specified from the conditions (61) and (67). We obtain

λ′
0 =

⎧⎨
⎩
m2

H0
1
(ω0)

2ω2
0

− 3

32π2

(
6m4

Y (ω0) + 6m4
X (ω0)

+ 3m4
Z2

(ω0)+m4
H0

1
(ω0) + 2m4

H+
2

(ω0)−36m4
Q(ω0)

)⎫⎬
⎭ ,

(53)

M ′2
0 =

{
−1

4
m2

H0
1
(ω0) + 1

32π2ω2
0

(
6m4

Y (ω0) + 6m4
X (ω0)

+ 3m4
Z2

(ω0)+m4
H0

1
(ω0)+2m4

H+
2

(ω0)−36m4
Q(ω0)

)}
,

(54)

Λ′
0 = ω2

0
4

⎧⎨
⎩
m2

H0
1
(ω0)

2
− 1

32π2ω2
0

(
6m4

Y (ω0) + 6m4
X (ω0)

+ 3m4
Z2

(ω0) + m4
H0

1
(ω0) + 2m4

H+
2

(ω0) − 36m4
Q(ω0)

)}
;

(55)

λ0 =
⎧⎨
⎩
m2

H0(v0) + m2
H0

1
(v0)

2v2
0

− 3

32π2

×
(

6m4
W (v0) + 6m4

Y (v0) + 3m4
Z1

(v0)

+m4
H0(v0) + m4

H0
1
(v0) + 2m4

H+
2

(v0) − 12m4
t (v0)

)
⎫⎬
⎭ ,

(56)

M2
0 =

{
−
m2

H (v0) + mH0
1
(v0)

4
+ 1

32π2v2
0

×
(

6m4
W (v0) + 6m4

Y (v0) + 3m4
Z1

(v0)

+m4
H0(v0) + m4

H0
1
(v0) + 2m4

H+
2

(v0) − 12m4
t (v0)

)}
,

(57)

Λ0 = v2
0

4

⎧⎨
⎩
m2

H0(v0) + m2
H0

1
(v0)

2
− 1

32π2v2
0

×
(

6m4
W (v0) + 6m4

Y (v0) + 3m4
Z1

(v0)

+ m4
H0(v0) + m4

H0
1
(v0) + 2m4

H+
2
(v0) − 12m4

t (v0)
)
⎫⎬
⎭ .

(58)

In the special case, when M2
0 = 0, the potential (52) reduces

to the Coleman–Weinberg potential.

4 Electroweak phase transition

In sequence of SSB of the E331 model, the SSB which breaks
the gauge symmetry SU (3)L⊗U (1)X down to the SU (2)L⊗
U (1)Y through χ0

3 generates the masses for the exotic quarks,
the heavy gauge bosons X0 and Z2, and gives the first part of
mass forY±. The SSB which breaks the symmetry SU (2)L⊗
U (1)Y down to the U (1)Q through χ0

1 and φ0
2 generates the

123



 342 Page 8 of 13 Eur. Phys. J. C   (2015) 75:342 

masses for the SM particles and gives the last part of mass
for Y±. Because ω0 ∼ O(1) TeV, u0 ∼ O(1) GeV, and
v0 = 246 GeV [38–44,46], the breaking SU (3) → SU (2)

occurs before the breaking SU (2) → U (1).
Associated with this sequence of SSB, a sequence of

EWPT takes place with the transition SU (3) → SU (2) at
the scale of ω0 and the transition SU (2) → U (1) at the scale
of v0 as the Universe cools down from the hot big bang.
Our analysis so far shows that the former is the first transi-
tion which depends only on ω, while the latter is the second
transition which depends only on v.

From Table 1, the gauge bosons X0 and Z2 are only
involved in the first transition, the gauge bosons W±, Z1

and H0 are only involved in the second transition, but the
bosons Y±, H0

1 , and H+
2 are involved in both transitions.

The total mass of Y± – i.e. mY±(ω, v), whose formula is
given by (38) – is generated as follows. As the Universe is
at the ω0 scale and the EWPT SU (3) → SU (2) happens,
Y± eats the Goldstone boson χ±

2 of the triplet χ to obtain
the first part of mass, mY±(ω). When the Universe cools to
the v0 scale and the EWPT SU (2) → U (1) is turned on, Y±
eats the Goldstone boson ρ±

1 of triplet φ and get the last part
of mass, mY±(v).

4.1 Phase transition SU (3) → SU (2)

Taking place at the scale of ω0, which is chosen to be in the
range 1–5 TeV, the EWPT SU (3) → SU (2) involves exotic
quarks and heavy bosons, without the involvement of the
SM particles. From Eq. (44), the high-temperature effective
potential of the EWPT can be rewritten as

Veff(ω) = D′(T 2 − T ′2
0)ω

2 − E ′Tω3 + λ′
T

4
ω4, (59)

in which

D′ = 1

24ω2
0

{
6m2

Y (ω0) + 6m2
X (ω0) + 3m2

Z2
(ω0)

+m2
H0

1
(ω0) + 2m2

H+
2

(ω0) + 18m2
Q(ω0)

}
,

T ′2
0 = 1

D′

{
1

4
m2

H0
1
(ω0) − 1

32π2ω2
0

(
6m4

Y (ω0) + 6m4
X (ω0)

+ 3m4
Z2

(ω0) + m4
H0

1
(ω0) + 2m4

H+
2

(ω0) − 36m4
Q(ω0)

)}
,

E ′ = 1

12πω3
0

(6m3
Y (ω0) + 6m3

X (ω0) + 3m3
Z2

(ω0)

+ m3
H0

1
(ω0) + 2m3

H+
2

(ω0)),

λ′
T =

m2
H0

1
(ω0)

2ω2
0

{
1 − 1

8π2ω2
0m

2
H1

(ω0)

[
6m4

Y (ω0) ln
m2
Y (ω0)

bT 2

+ 6m4
X (ω0) ln

m2
X (ω0)

bT 2 + 3m4
Z2

(ω0) ln
m2
Z2

(ω0)

bT 2

+ m4
H0

1
(ω0) ln

m2
H1

(ω0)

bT 2 + 2m4
H+

2
(ω0) ln

m2
H+

2
(ω0)

bT 2

−36m4
Q(ω0) ln

m2
Q(ω0)

bFT 2

]}
, (60)

where ω0 is the value at which the zero-temperature effective
potential V 0oK

eff (ω) gets the minimum. To obtain V 0oK
eff (ω),

from Veff(ω) in Eq. (44) we neglect all terms in the form
F∓
(m
T

)
. The minimum conditions for V 0oK

eff (ω) are:

V 0oK
eff (ω0) = 0; ∂V 0oK

eff (ω)

∂ω

∣∣∣
ω=ω0

= 0;
∂2V 0oK

eff (ω)

∂ω2

∣∣∣
ω=ω0

= m2
H0

1
(ω)

∣∣∣
ω=ω0

. (61)

From the conditions (61), we have the minima of the effec-
tive potential (59):

ω = 0, ω ≡ ωc = 2E ′T ′
c

λ′
T ′
c

, (62)

where ωc is a critical VEV of χ at the broken state, and T ′
c

is the critical temperature of the phase transition, which is
given by

T ′
c = T ′

0√
1 − E ′2/D′λ′

T ′
c

. (63)

Now, we consider the phase-transition strength:

S′ = ωc

T ′
c

= 2E ′

λ′
T ′
c

, (64)

which is a function of three unknown masses,mH0
1

,mH±
2

and
mQ . For simplicity, we follow the ansatz in [17] and assume
mH±

2
= mQ . Then we plot the transition strength S′ as the

function of mH0
1
(ωc) and mH±

2
(ωc) with ωc is in the range

from 1 to 5 TeV. In Figs. 1, 2, 3, 4, and 5, we present the
contours of S′ in the (mH±

2
,mH0

1
)-plane; each figure corre-

sponds with a case of ω. The smooth contours are the sets
of the (mH±

2
,mH0

1
)-pairs which make S′ > 1 and then the

EWPT SU (3) → SU (2) to be the first-order phase transi-
tion. The uneven contours are the sets of the (mH±

2
,mH0

1
)-

pairs which are unusable because they make S′ → ∞. Our
results show that the heavy particle masses must be in the
range of a few TeV, and the strength of the first-order phase
transition SU (3) → SU (2) is in the range 1 < S′ < 13.

According to Ref. [47], the accuracy of a high-temperature
expansion for the effective potential such as that in Eq. (59)
will be better than 5 % if mboson

T < 2.2, where mboson is
the relevant boson mass. This requirement sets the “upper
bounds” of the mass ranges of H0

1 (ω) and H±
2 (ω). From
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Fig. 1 The contours of S′ = ωc
T ′
c

in the case ω0 = 1 TeV. Solid (and

smooth) contour: S′ = 1; dashed contour: S′ = 2; dotted contour:
S′ = 3; dotted-dashed contour: S′ = 4; uneven contour: S′ → ∞. In
this case, the mass ranges of mH0

1
and mH±

2
for the first-order phase

transition are 0 < mH0
1

< 300 GeV and 0 < mH±
2

< 720 GeV,
respectively
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Fig. 2 The contours of S′ = ωc
T ′
c

in the case ω0 = 2 TeV. Solid (and

smooth) contour: S′ = 1; dashed contour: S′ = 2; dotted contour:
S′ = 3; dotted-dashed contour: S′ = 4; uneven contour: S′ → ∞. The
mass ranges of mH0

1
and mH±

2
for the first-order phase transition are

0 < mH0
1

< 600 GeV and 0 < mH±
2

< 1440 GeV, respectively

Table 2, this requirement is satisfied by all mass ranges of
H0

1 , while it narrows slightly most of the mass ranges of H±
2 .

From Eq. (64), the phase-transition strength S′ depends on
the parameters E ′ and λ′

T ′
c
. From Eq. (60), E ′ expresses the

contributions of the new bosons while λ′
T ′
c

includes the contri-
butions of the exotic quarks to the phase-transition strength.
Therefore, the new bosons and exotic quarks can be triggers
for the EWPT SU (3) → SU (2) to be the first-order.

4.2 Phase transition SU (2) → U (1)

Occurring at the scale v0 = 246 GeV, the phase transition
SU (2) → U (1) does not involve the exotic quarks or the
boson X0. In this stage, the contribution from Y± is equal to
that from W±. The effective potential is given by Eq. (45).
We write the high-temperature expansion of this potential as
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Fig. 3 The contours of S′ = ωc
T ′
c

in the case ω0 = 3 TeV. Solid (and

smooth) contour: S′ = 1; dashed contour: S′ = 2; dotted contour:
S′ = 3; dotted-dashed contour: S′ = 4; uneven contour: S′ → ∞. The
mass ranges of mH0

1
and mH±

2
for the first-order phase transition are

0 < mH0
1

< 900 GeV and 0 < mH±
2

< 2150 GeV, respectively
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Fig. 4 The contours of S′ = ωc
T ′
c

in the case ω0 = 4 TeV. Solid (and

smooth) contour: S′ = 1; dashed contour: S′ = 2; dotted contour:
S′ = 3; dotted-dashed contour: S′ = 4; uneven contour: S′ → ∞. The
mass ranges of mH0

1
and mH±

2
for the first-order phase transition are

0 < mH0
1

< 1200 GeV and 0 < mH±
2

< 2870 GeV, respectively
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Fig. 5 The contours of S′ = ωc
T ′
c

in the case ω0 = 5 TeV. Solid (and

smooth) contour: S′ = 1; dashed contour: S′ = 2; dotted contour:
S′ = 3; dotted-dashed contour: S′ = 4; uneven contour: S′ → ∞. The
mass ranges of mH0

1
and mH±

2
for the first-order phase transition are

0 < mH0
1

< 1500 GeV and 0 < mH±
2

< 3590 GeV, respectively
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Table 2 The mass ranges of H0
1 and H±

2 for the EWPT SU (3) → SU (2) to be the first-order phase transition, and their upper bounds as required
by the condition mboson < 2.2 × T ′

c

ω (TeV) T ′
c (GeV) mH0

1
(GeV) mH±

2
(GeV) Upper bound (GeV)

1 350 0 < mH0
1

< 300 0 < mH±
2

< 720 770

2 650 0 < mH0
1

< 600 0 < mH±
2

< 1440 1430

3 950 0 < mH0
1

< 900 0 < mH±
2

< 2150 2090

4 1300 0 < mH0
1

< 1200 0 < mH±
2

< 2870 2860

5 1600 0 < mH0
1

< 1500 0 < mH±
2

< 3590 3520

Veff(v) = D(T 2 − T 2
0 )v2 − ET |v|3 + λT

4
v4, (65)

in which

D = 1

24v0
2

[
6m2

W (v0) + 6m2
Y (v0) + 3m2

Z1
(v0) + mH0(v0)

+ mH0
1
(v0) + 2m2

H+
2

(v0) + 6m2
t (v0)

]
,

T 2
0 = 1

D

{
m2

H (v0) + mH0
1
(v0)

4
− 1

32π2v2
0

×
(

6m4
W (v0) + 6m4

Y (v0) + 3m4
Z1

(v0)

+ m4
H0(v0) + m4

H0
1
(v0) + 2m4

H+
2
(v0) − 12m4

t (v0)
)}

,

E = 1

12πv3
0

(
6m2

W (v0) + 6m3
Y (v0) + 3m3

Z1
(v0)

+ m3
H0(v0) + m3

H0
1
(v0) + 2m3

H+
2
(v0)

)
,

λT =
m2

H0(v0)+m2
H0

1
(v0)

2v2
0

⎧⎨
⎩1− 1

8π2v2
0(m2

H0(v0)+m2
H0

1
(v0))

×
[

6m4
W (v0) ln

m2
W (v0)

bT 2 + 6m4
Y (v0) ln

m2
Y (v0)

bT 2

+ 3m4
Z1

(v0) ln
m2

Z1
(v0)

bT 2 + m4
H0(v0) ln

m2
H0(v0)

bT 2

+ 2m4
H+

2
(v0) ln

m2
H+

2
(v0)

bT 2 − 12m4
t (v0) ln

m2
t (v0)

bFT 2

⎤
⎦
⎫⎬
⎭ ,

(66)

where v0 is the value at which the zero-temperature effec-
tive potential V 0oK

eff (v) gets the minimum. Here, we obtain
V 0oK

eff (v) from Veff(v) in Eq. (45) by neglecting all terms in
the form F∓

(m
T

)
.

From the minimum conditions for V 0oK
eff (v)

V 0oK
eff (v0) = 0,

∂V 0oK
eff (v)

∂v

∣∣∣
v=v0

= 0,

∂2V 0oK
eff (v)

∂v2

∣∣∣
v=v0

=
[
m2

H0(v) + m2
H0

1
(v)
] ∣∣∣

v=v0
, (67)

we can see that in this EWPT, m2
H0(v) and m2

H0
1
(v) generate

the masses of the SM particles and the last mass part of Y±.
We also have the minima of the effective potential (65):

v = 0, v ≡ vc = 2ETc
λTc

, (68)

where vc is the critical VEV of φ at the broken state, and Tc
is the critical temperature of the phase transition, which is
given by

Tc = T0√
1 − E2/DλTc

. (69)

We investigate the phase-transition strength

S = vc

Tc
= 2E

λTc
(70)

of this EWPT. In the limit E → 0, the transition strength
S → 0 and the phase transition is a second-order. To have
a first-order phase transition, we requires S ≥ 1. We plot S
as a function of mH0

1
(v0) and mH±

2
(v0). As shown in Fig. 6,

for the masses of H±
2 and H0

1 , which are, respectively, in
the ranges 250 GeV < mH±

2 (v) < 1200 GeV and 0 GeV <

mH0
1 (v) < 620 GeV, the transition strength is in the range

1 ≤ S < 3.
Considering the requirement for the high-temperature

expansion to be applicable on the effective potential (45),
mboson

T < 2.2 [47], we show in Fig. 7 that with T = Tc ∼
130 GeV, the mass ranges of H±

2 and H0
1 are, respectively,

narrowed to

255 GeV < mH±
2

< 280 GeV, (71)

and

0 GeV < mH0
1

< 58 GeV. (72)

Corresponding with these ranges of mass, the range of
phase-transition strength is narrowed to 1 ≤ S < 1.15. Thus
the EWPT SU (2) → U (1) is the first-order phase transition,
but it seems quite weak.
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Fig. 6 The contours of transition strength S = 2E
λTc

. Solid smooth con-
tour: S = 1; dashed smooth contour: S = 1.1; dotted smooth con-
tour: S = 1.15; dash–dotted smooth contour: S = 1.5; even con-
tours: S → ∞. The mass ranges of mH0

1
and mH±

2
for the EWPT

SU (2) → U (1) to be the first-order are 0 GeV < mH0
1 (v) < 620 GeV

and 250 GeV < mH±
2 (v) < 1200 GeV, respectively
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Fig. 7 The condition mboson
T < 2.2 narrows the mass ranges of H±

2 and
H0

1 as well as the range of transition strength

As we can see in Eqs. (70) and (66), the new bosons con-
tribute to the phase-transition strength S via the parameters
E and λTc . Hence these new bosons can be triggers for the
EWPT SU (2) → U (1) to be the first-order.

In Fig. 8, we illustrate the dependence of the effective
potential Veff(v) on the temperature. When the Universe
cools through the phase-transition critical temperature Tc,
the Higgs field v tends to get a non-zero VEV v0 which is
in the range 0 < v0 < 246 GeV, and the second minimum
of Veff(v) gradually appears at v0. As the temperature drops
from Tc, the second minimum becomes lower and the first
minimum gradually disappears, while the VEV v0 tends to
246 GeV. The tendency of v0 can be seen in Fig. 9 where we
show that v0 reaches 246 GeV for the temperatures which are

T TC

v

1.5 107

1.0 107

5.0 106

5.0 106

1.0 107

1.5 107

2.0 107
Veff v

50 100 150 200 250

Fig. 8 The dependence of the effective potential Veff (v) on the tem-
perature. With mH0

1
(v) = 50 GeV and mH±

2
(v) = 280 GeV, we have

the critical temperature Tc = 127.974 GeV and the phase-transition
strength S = 1.03. Solid line: Tc; lines above the solid line: T > Tc;
lines under the solid line: T < Tc

far below Tc. At 0oK , the non-zero minimum locates exactly
at v0 = 246 GeV. This result is consistent with the SM.

4.3 Constraint on the mass of the charged Higgs boson

From the EWPT SU (2) → U (1), we have derived the mass
ranges of H+

2 (v) and H0
1 (v) in Eqs. (71) and (72). So we

have

0 GeV < mH0
1

=
√
m2

H0
1
(v) + m2

H0
1
(ω) < 1501.12 GeV,

(73)

and we obtain

2.149 < λ4 < 2.591 (74)

and

0 <
λ2

3

2λ1
< 0.0556, (75)

From the phase transition SU (3) → SU (2), we have also
derived

0 < λ4 < 10.3 (76)
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v

Veff v

1.0 108
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246GeV

Fig. 9 The tendency of non-zero minimum for lower temperatures. We
choose mH0

1
(v) = 50 GeV, mH±

2
(v) = 280 GeV. Dotted-dashed line:

T = 50 GeV. Dotted line: T = 10 GeV. Solid line: T = 1 GeV. v0
reaches 246 GeV as the temperature decreases

and

0 < λ1 < 0.45, (77)

for any ω. Eqs. (74)–(77) lead to 2.149 < λ4 < 2.591;

0 < λ1 < 0.45 and 0 <
λ2

3
2λ1

< 0.0556.

5 Conclusion and outlooks

We have investigated the EWPT in the E331 model using the
high-temperature effective potential. Although the effective
potential in the model depends complicatedly on three VEVs,
u, ω, and v, it can be transformed to a sum of two parts so that
each part depends only on ω or v, which corresponds a stage
of SSB. Therefore, the EWPT can be seen as a sequence of
two EWPTs. The first, SU (3) → SU (2), takes place at the
energy scale ω0 to generate the masses for the exotic quarks,
the heavy gauge bosons X0 and Z2, as well as a mass part of
Y±. The second, SU (2) → U (1), occurs at the scale v0 to
give the masses for the SM particles and the remaining mass
part of Y±.

At the TeV scale, the EWPT SU (3) → SU (2) is strength-
ened by the new bosons and the exotic quarks to be the
strongly first-order; if the masses of these new particles are
about 102–103 GeV, the phase-transition strength is in the
range 1–13. As the energy is lowered to the scale of 102 GeV,
the EWPT SU (2) → SU (1) is strengthened by only the
new bosons; with the contributions of the mass parts from
H0

1 , H±
2 , and Y±, which are in the ranges 10–102 GeV, the

strength of this transition is about 1–1.15. Therefore, both
EWPTs can be the first-order; the SU (3) → SU (2) appears
very strong, while the SU (2) → SU (1) seems quite weak.

However, both of these first-order EWPTs can be suffi-
ciently strong to provide B violation necessary for baryoge-
nesis, as shown via the parameter ranges which we have spec-
ified. If H0

1 and H±
2 exist, their contributions to the strengths

of each EWPT are meaningly large. In this case, the sequence
of strongly first-order EWPTs in the model may provide a
source of large deviations from thermal equilibrium. The
model may fully describe the continual existence of BAU
since it was generated in the early Universe.

In subsequent work, we will investigate the electroweak
sphalerons as well as the C- and CP- violating interactions
to know if the model possesses all necessary components for
EWBG.
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