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The D4 flavor model based on SU(3)C ⊗SU(3)L⊗U(1)X gauge symmetry that aims at describing
quark mass and mixing is updated. After spontaneous breaking of flavor symmetry, with the
constraint on the Higgs vacuum expectation values (VEVs) in the Yukawa couplings, all of quarks
have consistent masses, and a realistic quark mixing matrix can be realized at the first order of
perturbation theory.
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I. INTRODUCTION

One of the most interesting challenges in particle
physics is to determine the origin of quark mixing,
described by the unitary Cabibbo-Kobayashi-Maskawa
(CKM) matrix [1, 2], which is approximately propor-
tional to the identity. The CKM matrix elements are
fundamental parameters of the Standard Model (SM),
so their precise determination is important. The CKM
matrix has many parametrizations [3–9]; however, the
CKM parametrization [1,2] and the Wolfenstein one [10]
are widely used. Recently, the discrete symmetries have
been a useful tool for understanding quark and lepton
mixing [11–15]. The elements in the CKM matrix have
now been determined with high accuracy. The fit results
for the magnitudes of all CKM elements in Ref. 16 imply

|UCKM| =(
0.97425 ± 0.00022 0.2253 ± 0.0008 (4.13 ± 0.49) × 10−3

0.225 ± 0.008 0.986 ± 0.016 (41.1 ± 1.3) × 10−3

(8.4 ± 0.6) × 10−3 (40.0 ± 2.7) × 10−3 1.021 ± 0.032

)
.

(1)

From Eq. (1), it follows that the quark mixing angles are
small and completely different from the lepton mixing
ones that have been studied widely by many authors in
recent years [17-31 and references therein].

In our previous works [21–23,25–31], the lepton mass
and mixing were studied in detail; however, the realistic
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quark mixing has not been considered. In Ref. 24, we
studied the 3-3-1 model with neutral fermions based on
the D4 group in which the quark mixing matrix is unity
at the tree-level and the 1 − 2 mixing of the ordinary
quarks is obtained if the D4 symmetry is violated with
1′; i.e., the 12 and 21 entries of the quark mixing matrix
UCKM are non-zero if under [SU(3)L, U(1)X ,U(1)L, D4]
symmetries, the tensor products of fields in the quark
Yukawa interactions are [1, 0, 0, 1′] instead of [1, 0, 0, 1]
as usual. Our aim in this paper is to construct the 3-3-1
model with neutral leptons based on D4 flavor symmetry
having a quark mixing pattern in agreement with the
most recent data.

The basic feature of the model is that all the quark
fields act as different singlets under D4, and a new
parametrization of quark mixing is proposed at the tree-
level. The realistic quark mixing is obtained at the first
order of perturbation theory when D4 symmetry is vi-
olated with 1′. The rest of this work is organized as
follows: In Section II, we introduce the necessary Higgs
fields responsible for the charged lepton as well as the
neutrino mass and mixing. Section III is devoted to
quark mixing. We summarize our results and draw con-
clusions in Section IV. Appendix A presents a brief de-
scription of the D4 theory.

II. THE MODEL

The lepton content of the model is the same as that in
Ref. [28]. In this work, we will concentrate on the quark
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sector, where under the [SU(3)L,U(1)X ,U(1)L, D4] sym-
metries, the left- and the right-handed quark fields trans-
form as follows:

Q3L = (u3L d3L UL)T ∼ [3, 1/3,−1/3, 1],
u3R = [1, 2/3, 0, 1], d3R = [1,−1/3, 0, 1],

Q1L ≡ (d1L − u1L D1L)T ∼ [3∗, 0, 1/3, 1′],
u1R = [1, 2/3, 0, 1′], d1R = [1,−1/3, 0, 1′],

Q2L ≡ (d2L − u2L D2L)T ∼ [3∗, 0, 1/3, 1′′],
u2R = [1, 2/3, 0, 1′′], d2R = [1,−1/3, 0, 1′′],
UR ∼ [1, 2/3,−1, 1], D1R ∼ [1,−1/3, 1, 1′],

D2R ∼ [1,−1/3, 1, 1′′]. (2)

Note that the 1, 1′ and 1′′ for quarks meets the require-
ment of the anomaly cancellation condition in the 3-3-1
models because one family of quarks transforms differ-
ently from the others. In what follows, we consider the
possibilities for generating the quark masses. The scalar
multiplets needed for this purpose will be introduced ac-
cordingly.

To generate masses for the charged leptons, we in-
troduce two SU(3)L scalar triplets φ and φ′, respec-
tively, lying in 1 and 1′′′ under D4, with the VEVs
〈φ〉 = (0 v 0)T and 〈φ′〉 = (0 v′ 0)T [23]. From
the Yukawa interactions for the charged leptons, we get
me = h1v, mμ = hv − h′v′ and mτ = hv + h′v′, and
the left- and the right-handed charged leptons mixing
matrices are obtained [28]

Ul = UR �
⎛⎝ 1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

⎞⎠ . (3)

In similarity to the charged lepton sector, to generate
the neutrino masses, we have additionally introduced the
two scalar Higgs anti-sextets s, σ, respectively, lying in
1, 1 and 1′ under D4, and one SU(3)L triplet lying in
1′′′ under D4, whose contribution is regarded as a small
perturbation. The neutrino mass and mixing are then
consistent with the experimental data given in Ref. 16
in both normal and inverted hierarchical patterns. For
a detailed study on the charged-lepton and neutrino sec-
tors, the reader is referred to Ref. 28.

III. QUARK MASS AND MIXING

1. The Tree Level

Let’s us recall the two SU(3)L Higgs scalars responsi-
ble for charged lepton masses [28]:

φ =
(
φ+

1 φ0
2 φ+

3

)T ∼ [3, 2/3,−1/3, 1],

φ′ =
(
φ′+

1 φ′0
2 φ′+

3

)T ∼ [3, 2/3,−1/3, 1′′′]. (4)

To generate the mass for quarks with a minimal Higgs
content, we introduce following SU(3)L Higgs triplets:

χ =
(
χ0

1 χ−
2 χ0

3

)T ∼ [3,−1/3, 2/3, 1] ,

η =
(
η0
1 η−

2 η0
3

)T ∼ [3,−1/3,−1/3, 1] ,

η′ =
(
η′0
1 η′−

2 η′0
3

)T ∼ [3,−1/3,−1/3, 1′′′] . (5)

The Yukawa interactions are

−Lq = hd
3Q̄3Lφd3R + hu

1 Q̄1Lφ∗u1R + hu
2 Q̄2Lφ∗u2R

+h′u(Q̄1Lu2R + Q̄2Lu1R)φ′∗ + hu
3 Q̄3Lηu3R

+hd
1Q̄1Lη∗d1R + hd

2Q̄2Lη∗d2R

+h′d(Q̄1Ld2R + Q̄2Ld1R)η′∗ + f1Q̄1Lχ∗D1R

+f2Q̄2Lχ∗D2R + f3Q̄3LχUR + H.C. (6)

We should mention that the VEVs of χ, φ, η conserve
D4 while those of φ′, η′ break this symmetry into Z2⊗Z2

[28]. Therefore, in the quark sector, D4 group is broken
into Z2 ⊗Z2. We assume that the VEVs of χ, φ, φ′, η, η′,
respectively, are given as

〈χ〉 = (0 0 vχ)T
, (7)

〈φ〉 = (0 v 0)T
, 〈φ′〉 = (0 v′ 0)T

, (8)

〈η〉 = (u 0 0)T
, 〈η′〉 = (u′ 0 0)T

. (9)

The mass Lagrangian for quarks is then given by

−Lmass
q = hd

3vd̄3Ld3R − hu
1v∗ū1Lu1R

−hu
2v∗ū2Lu2R − h′uv′∗(ū1Lu2R + ū2Lu1R)

+hu
3uū3Lu3R + hd

1u
∗d̄1Ld1R + hd

2u
∗d̄2Ld2R

+h′du′∗(d̄1Ld2R + d̄2Ld1R) + f3vχŪLUR

+f1v
∗
χD̄1LD1R + f2v

∗
χD̄2LD2R + H.C. (10)

The exotic quarks get masses

mU = f3vχ, mD1,2 = f1,2vχ. (11)

The mass matrices for ordinary up- and down-quarks are,
respectively, obtained as follows:

Mu =

⎛⎜⎝ −hu
1v −h′uv′ 0

−h′uv′ −hu
2v 0

0 0 hu
3u

⎞⎟⎠ ,

Md =

⎛⎜⎝ hd
1u h′du′ 0

h′du′ hd
2u 0

0 0 hd
3v

⎞⎟⎠ . (12)

The matrices Mu,Md in (12) are diagonalized as

V u+
L MuV u

R = diag(mu, mc, mt), (13)

V d+
L MdV

d
R = diag(md, ms, mb), (14)
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Table 1. Model parameters derived from the fit with the data in Ref. [16] at the tree - level.

A, K
hu

1 , hu
2 , hu

3 , h′u,

hd
1, h

d
2, h

d
3, h

′d UCKM

0.65558, 1.04565
−0.00610,−0.00667, 1.73500, 0.00636,

0.000319, 0.00068, 0.04180, 0.00041

⎛⎜⎝ 0.97425 0.22547 0

−0.22547 0.97425 0

0 0 1

⎞⎟⎠

where

mu = −1
2

[
(hu

1 + hu
2 )v +

√
(hu

1 − hu
2 )2v2 + (2h′uv′)2

]
,

mc = −1
2

[
(hu

1 + hu
2 )v −

√
(hu

1 − hu
2 )2v2 + (2h′uv′)2

]
,

mt = hu
3u, (15)

md =
1
2

[
(hd

1 + hd
2)u −

√
(hd

1 − hd
2)2u2 + (2h′du′)2

]
,

ms =
1
2

[
(hd

1 + hd
2)u +

√
(hd

1 − hd
2)2u2 + (2h′du′)2

]
,

mb = hd
3v. (16)

and

Uu
L = Uu

R =

⎛⎜⎝
K√

K2+1
− 1√

K2+1
0

1√
K2+1

K√
K2+1

0

0 0 1

⎞⎟⎠ ,

Ud
L = Ud

R =

⎛⎜⎝
A√

A2+1
− 1√

A2+1
0

1√
A2+1

A√
A2+1

0

0 0 1

⎞⎟⎠ , (17)

with

K =
(hu

1 − hu
2 )v +

√
(hu

1 − hu
2 )2v2 + (2h′uv′)2

2h′uv′
, (18)

A =
(hd

1 − hd
2)u −

√
(hd

1 − hd
2)2u2 + (2h′du′)2

2h′du′ . (19)

The CKM matrix is defined as

UCKM = Uu
LUd+

L

=

⎛⎜⎝
1+AK√

A2+1
√

K2+1
K−A√

A2+1
√

K2+1
0

A−K√
A2+1

√
K2+1

1+AK√
A2+1

√
K2+1

0

0 0 1

⎞⎟⎠ , (20)

where K and A are defined in Eqs. (18) and (19). In the
special case K = A, i.e.,

u

u′ =
hu

1 − hu
2

hd
1 − hd

2

h′d

h′u
v

v′
,

the UCKM in Eq. (20) reduces to the identity.
In the model under consideration, the following limit

is often taken into account [21–23,32,33]:

u ∼ u′ ∼ v′ ∼ v. (21)

On the other hand, taking into account the discovery
of the long-awaited Higgs boson at around 125 GeV by
ATLAS [34] and CMS [35], we can estimate the VEVs
as follows:

u ∼ u′ ∼ v′ ∼ v = 100 GeV. (22)

The matrix UCKM in Eq. (20) is closer to the realis-
tic quark mixing matrix than those derived at the tree
level from other discrete symmetry groups [21–23, 25–
29]. Indeed, with the help of Eq. (22) and by taking the
experimental data on quark mass [16]

mu = 2.3 MeV, mc = 1.275 GeV,

mt = 173.21 GeV, md = 4.8 MeV,

ms = 95MeV, mb = 4.18 GeV, (23)

as well as the average values of the CKM matrix ele-
ments in Ref. [16] given in Eq. (1). With |Uud| =
0.97425 ± 0.00022, we get solutions for A,K and the
Yukawa quark couplings hu

1,2,3, h
′u, hd

1,2,3, h
′d which are

listed in table 1. We see that the matrix in table 1 is
close to the realistic quark mixing matrix; i.e., the devi-
ations of the matrix UCKM in Eq. (1) from the matrix in
table 1 are very small, so this is a good approximation for
the realistic quark mixing matrix, which implies that the
mixings among the quarks are dynamically small. This
is one of the most striking predictions of the model under
consideration. As we will see in section III. 2, a violation
of D4 symmetry due to Yukawa interactions will disturb
the tree-level matrix, resulting in mixing between ordi-
nary quarks and providing the desirable quark mixing
pattern.

2. The First-Order Corrections

All terms of the Yukawa interactions responsible
for the quarks masses in Eq. (6) are invariant un-
der the [SU(3)L,U(1)X ,U(1)L, D4] symmetries. To ob-
tain a realistic quark mixing, here we add some terms
violating D4 symmetry with 1′. These terms are
Q̃1Lφ∗u3R, Q̃1Lη∗d3R, Q̃3Lηu1R and Q̃3Lφd1R. Hence,
the total Yukawa couplings of the ordinary quarks have
two extra terms −ΔLu

q and −ΔLd
q which are given by

−ΔLu
q = ku

1 Q̃1Lφ∗u3R + ku
2 Q̃3Lηu1R + H.C, (24)

−ΔLd
q = kd

1Q̃1Lη∗d3R + kd
2Q̃3Lφd1R + H.C. (25)
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The total mass matrices for the ordinary up-quarks and
down-quarks then take the forms:

M ′
u =

⎛⎜⎝ −hu
1v −h′uv′ −ku

1 v

−h′uv′v −hu
2v 0

ku
2 u 0 hu

3u

⎞⎟⎠ ,

M ′
d =

⎛⎜⎝ hd
1u h′du′ kd

1u

h′du′ hd
2u 0

kd
2v 0 hd

3v

⎞⎟⎠ . (26)

We can separate the quark mass matrices in Eq. (26)
into two parts as follows:

M ′
u = Mu + ΔMu, M ′

d = Md + ΔMd, (27)

where Mu and Md are given by Eq. (12) due to the
contributions of the invariant terms only, and

ΔMu =

⎛⎜⎝ 0 0 −ku
1 v

0 0 0
ku
2 u 0 0

⎞⎟⎠ ,

ΔMd =

⎛⎜⎝ 0 0 kd
1u

0 0 0
kd
2v 0 0

⎞⎟⎠ (28)

are deviations from the contributions of the D4 violation
terms. In the case without D4 violation, the first terms
can approximately fit the data in Ref. 16 with very small
deviations, as was shown in section III. 1. The second
terms belong to the contributions of the D4 violation in
Eqs. (24) and (25). Then, we can consider the contribu-
tions of D4 violation as small perturbations in the quark
sector and terminate the theory at the first order. At
this approximation, the matrices ΔMu and ΔMd in Eq.
(28) do not contribute to the quark eigenvalues. How-
ever, they change the corresponding eigenvectors. The
up- and the down-quark masses are, thus, obtained as

m′
i = mi (i = u, c, t, d, s, b), (29)

where mi (i = u, c, t, d, s, b) are given in Eqs. (15) and
(16).

The unitary matrices that couple the left-handed
quarks uL and dL to those in the mass bases, respec-
tively, are

U ′u
L =

⎛⎜⎜⎝
K√

K2+1
− 1√

K2+1

ku
1 v[K2(mc−mt)+(mu−mt)]
(K2+1)(mu−mt)(mc−mt)

1√
K2+1

K√
K2+1

− Kku
1 v(mu−mc)

(K2+1)(mu−mt)(mc−mt)
Kku

2 u√
K2+1(mu−mt)

− ku
2 u√

K2+1(mc−mt)
1

⎞⎟⎟⎠ , (30)

U ′d
L =

⎛⎜⎜⎝
A√

A2+1
− 1√

A2+1
−kd

1u[A2(ms−mb)+(md−mb)]
(A2+1)(md−mb)(ms−mb)

1√
A2+1

A√
A2+1

Akd
1u(md−ms)

(A2+1)(md−mb)(ms−mb)
Akd

2v√
A2+1(md−mb)

− kd
2v√

A2+1(ms−mb)
1

⎞⎟⎟⎠ , (31)

where A,K are given in Eqs. (19) and (18). The CKM
matrix at the first order of perturbation theory is now
defined as [16]

U ′
CKM = U ′u

L U ′d+
L =

⎛⎜⎝ U11 U12 U13

U21 U22 U23

U31 U32 U33

⎞⎟⎠ , (32)

where Uij (i, j = 1, 2, 3) are given in appendix B.
Our model is easily shown to be consistent be-

cause the experimental constraints on the mixing an-
gles and the masses of quarks can be, respectively,
fitted with the quark Yukawa coupling parameters
hu

1,2,3, hd
1,2,3, h′u, h′d, ku

1,2, k
d
1,2 of all the SU(3)L triplet

scalars, provided that the VEVs u, u′, v, v′ and the quark
masses are given by Eqs. (22) and (23), respectively. In-
deed, by comparing the elements of U ′

CKM in Eq. (32)

with the corresponding best fit values given in Ref. 16,
we get a solution A = −K = 0.114156, a prediction for
quark mixing as presented in table 2,

and

hu
1 = −1.2586 × 10−2, hu

2 = −1.8672 × 10−4,

hu
3 = 1.735, h′u = 1.43417 × 10−3,

hd
1 = 7.37265 × 10−4, hd

2 = 2.60736 × 10−4,

hd
3 = 4.18 × 10−2, h′d = 3.82925 × 10−4. (33)

The results in Eq. (33) and table 2 show that
hu

1 , hu
2 , h′u � hu

3 and hd
1, h

d
2, h

′d � hd
3. There is a conse-

quence of the fact that the top- and the bottom-quark
masses are much larger than those of the others.
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Table 2. Elements of the quark mixing matrix from the
model at the first order.

Elements The prediction The best fit fom Ref. 16

Uud 0.94347 0.97425

Uus 0.2253 0.2253

Uub 0.00413 0.00413

Ucd 0.2254 0.225

Ucs 0.9743 0.986

Ucb 0.0411 0.0411

Utd 0.0084 0.0084

Uts 0.04001 0.040

Utb 0.96753 1.021

Table 3. The character table of D4.

Class n h χ1 χ1′ χ1′′ χ1′′′ χ2

C1 1 1 1 1 1 1 2

C2 1 2 1 1 1 1 −2

C3 2 4 1 −1 −1 1 0

C4 2 2 1 1 −1 −1 0

C5 2 2 1 −1 1 −1 0

IV. CONCLUSION

In this paper, we have proposed a new D4 flavor model
based on SU(3)C ⊗ SU(3)L ⊗ U(1)X gauge symmetry in
which the quark mixing matrix is concentrated. After
spontaneous breaking of flavor symmetry, with a con-
straint on Higgs VEVs in the Yukawa couplings, all
of quarks have consistent masses and a realistic quark
mixing matrix can be realized at the first order of per-
turbation theory. Numerical estimation shows that the
Yukawa couplings in the model under consideration are
consistent with those in the SM.

APPENDIX A: D4 GROUP AND
CLEBSCH-GORDAN COEFFICIENTS

D4 is the symmetry group of a square. It has
eight elements divided into five conjugacy classes, with

1, 1′, 1′′, 1′′′ and 2 as its five irreducible representations.
Any element of D4 can be formed by multiplication of
the generators a (the π/2 rotation) and b (the reflection)
obeying the relations a4 = e, b2 = e, and bab = a−1. D4

has the following five conjugacy classes,

C1 : {a1 ≡ e},
C2 : {a2 ≡ a2},
C3 : {a3 ≡ a, a4 ≡ a3},
C4 : {a5 ≡ b, a6 ≡ a2b},
C5 : {a7 ≡ ab, a8 ≡ a3b}. (A1)

The character table of D4 is given in table 3, where n is
the order of class and h is the order of elements within
each class.

We have worked in a real basis, in which the two-
dimensional representation 2 of D4 is real, 2∗(1∗, 2∗) =
2(1∗, 2∗). One possible choice of generators is given as

1 : a = 1, b = 1,

1′ : a = 1, b = −1,

1′′ : a = −1, b = 1,

1′′′ : a = −1, b = −1,

2 : a =

(
0 1
−1 0

)
, b =

(
1 0
0 −1

)
. (A2)

Using them, we calculate the Clebsch-Gordan coefficients
for all the tensor products as given below.

First, let us put 2(1, 2), which means some 2 doublet
such as x = (x1, x2) ∼ 2 or y = (y1, y2) ∼ 2 and so
on, and similarly for the other representations. More-
over, the numbered multiplets such as (..., ij, ...) mean
(..., xiyj , ...), where xi and yj are the multiplet compo-
nents of different representations x and y, respectively.
In the following, the components of the representations
on the left-hand sides will be omitted and should be un-
derstood, but they always exist in order in the compo-
nents of the decompositions on the right-hand sides:

1(1) ⊗ 1(1) = 1(11), 1′(1) ⊗ 1′(1) = 1(11),
1′′(1) ⊗ 1′′(1) = 1(11), 1′′′(1) ⊗ 1′′′(1) = 1(11),
1(1) ⊗ 1′(1) = 1′(11), 1(1) ⊗ 1′′(1) = 1′′(11),
1(1) ⊗ 1′′′(1) = 1′′′(11), 1′(1) ⊗ 1′′(1) = 1′′′(11),
1′′(1) ⊗ 1′′′(1) = 1′(11), 1′′′(1) ⊗ 1′(1) = 1′′(11),

(A3)

1(1) ⊗ 2(1, 2) = 2(11, 12), 1′(1) ⊗ 2(1, 2) = 2(11,−12),
1′′(1) ⊗ 2(1, 2) = 2(12, 11), 1′′′(1) ⊗ 2(1, 2) = 2(−12, 11), (A4)

2(1, 2) ⊗ 2(1, 2) = 1(11 + 22) ⊕ 1′(11 − 22) ⊕ 1′′(12 + 21) ⊕ 1′′′(12 − 21). (A5)
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In the text, we usually use the following notations,
for example, (xy)1 ≡ (x1y1 + x2y2), which is the
Clebsch-Gordan coefficients of 1 in the decomposition
of 2 ⊗ 2, where as mentioned x = (x1, x2) ∼ 2 and
y = (y1, y2) ∼ 2. The rules to conjugate the representa-
tions 1, 1′, 1′′, 1′′′ and 2 are given by

2∗(1∗, 2∗) = 2(1∗, 2∗),
1∗(1∗) = 1(1∗), 1′∗(1∗) = 1′(1∗),

1′′∗(1∗) = 1′′(1∗), 1′′′∗(1∗) = 1′′′(1∗), (A6)

where, for example, 2∗(1∗, 2∗) denotes some 2∗ multiplet
of the form (x∗

1, x
∗
2) ∼ 2∗.

APPENDIX B: ELEMENTS OF THE MATRIX U ′
CKM

U11 =
AK + 1√

A2 + 1
√

K2 + 1
− [K2(mc − mt) + (mu − mt)][A2(ms − mb) + (md − mb)]ku

1 kd
1uv

(A2 + 1)(K2 + 1)(mu − mt)(mc − mt)(ms − mb)(md − mb)
,

U12 =
K − A√

A2 + 1
√

K2 + 1
+

A[K2(mc − mt) + (mu − mt)](md − ms)ku
1 kd

1uv

(A2 + 1)(K2 + 1)(mu − mt)(mc − mt)(ms − mb)(md − mb)
,

U13 =
[K2(mc − mt) + (mu − mt)]ku

1 v

(K2 + 1)(mu − mt)(mc − mt)
+

kd
2v√

A2 + 1
√

K2 + 1

(
AK

md − mb
+

1
ms − mb

)
,

U21 =
A − K√

A2 + 1
√

K2 + 1
+

K(mu − mc)[A2(ms − mb) + (md − mb)]ku
1 kd

1uv

(A2 + 1)(K2 + 1)(mu − mt)(mc − mt)(ms − mb)(md − mb)
,

U22 =
AK + 1√

A2 + 1
√

K2 + 1
− AK(mu − mc)(md − ms)ku

1 kd
1uv

(A2 + 1)(K2 + 1)(mu − mt)(mc − mt)(ms − mb)(md − mb)
,

U23 = − Kku
1 v(mu − mc)

(K2 + 1)(mu − mt)(mc − mt)
+

kd
2v√

K2 + 1
√

A2 + 1

(
A

md − mb
− K

ms − mb

)
,

U31 = −kd
1u[A2(ms − mb) + (md − mb)]
(A2 + 1)(ms − mb)(md − mb)

+
ku
2 u√

K2 + 1
√

A2 + 1

(
AK

mu − mt
+

1
mc − mt

)
,

U32 =
Akd

1u(md − ms)
(A2 + 1)(ms − mb)(md − mb)

+
ku
2 u√

K2 + 1
√

A2 + 1

(
K

mu − mt
− A

mc − mt

)
,

U33 = 1 +
ku
2 kd

2uv√
K2 + 1

√
A2 + 1

[
AK

(mu − mt)(md − mb)
+

1
(mc − mt)(ms − mb)

]
. (B1)
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