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We propose a 3-3-1 model with neutral fermions based on A4 flavor symmetry responsible
for fermion masses and mixings with nonzero θ13. To get realistic neutrino mixing, we
just add a new SU(3)L triplet being in 3 under A4. The neutrinos get small masses from
two SU(3)L antisextets and one SU(3)L triplet. The model can fit the present data on
neutrino masses and mixing as well as the effective mass governing neutrinoless double
beta decay. Our results show that the neutrino masses are naturally small and a little
deviation from the tri-bimaximal neutrino mixing form can be realized. The Dirac CP
violation phase δ is predicted to either 5.41◦ or 354.59◦ with θ23 6= π

4
.

Keywords: Neutrino mass and mixing; nonstandard model neutrinos; right-handed neu-
trinos; charge conjugation; discrete symmetries.

PACS numbers: 14.60.Pq, 14.60.St, 12.60.Fr, 11.30.Er

1. Introduction

Despite the great success of the Standard Model (SM) of the elementary particle

physics, the origin of flavor structure, masses and mixings between generations of

matter particles are still open questions. The neutrino mass and mixing are one

of the most important evidence of beyond SM physics. Many experiments show

that neutrinos have tiny masses and their mixing is still mysterious.1,2 The tri-

bimaximal form for explaining the lepton mixing scheme was first proposed by
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Harrison–Perkins–Scott (HPS), which apart from the phase redefinitions, is

given by3–6

UHPS =
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− 1√
6

1√
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− 1√
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, (1)

can be considered as a good approximation for the recent neutrino experimental

data. In fact, the absolute values of the entries of the lepton mixing matrix UPMNS

approximately are given by7–10

|UPMNS| =









0.795–0.846 0.513–0.585 0.126–0.178

0.205–0.543 0.416–0.730 0.579–0.808

0.215–0.548 0.409–0.725 0.567–0.800









. (2)

The data in Refs. 11–15 imply

sin2(2θ12) = 0.857± 0.024 ,

sin2(2θ23) > 0.95 , sin2(2θ13) = 0.098± 0.013 ,

∆m2
21 = (7.50± 0.20)× 10−5 eV2 ,

∆m2
32 = (2.32+0.12

−0.08)× 10−3 eV2 ,

(3)

whereas, the best fit values of neutrino mass squared differences and the leptonic

mixing angles in Refs. 16 and 17 have been given to be slightly modified from (3), as

shown in Tables 1 and 2. These large neutrino mixing angles are completely different

from the quark mixing ones defined by the Cabibbo–Kobayashi–Maskawa (CKM)

matrix.18,19 This has stimulated works on flavor symmetries and non-Abelian dis-

crete symmetries, which are considered to be the most attractive candidate to for-

mulate dynamical principles that can lead to the flavor mixing patterns for quarks

and leptons. There are many recent models based on the non-Abelian discrete sym-

metries, see for example Refs. 34–41 and the references therein.

Table 1. The experimental values of neutrino mass squared
splittings and leptonic mixing parameters, taken from Refs. 16
and 17 for normal hierarchy.

Parameter Best fit 1σ range 2σ range

∆m2
21 (10−5 eV2) 7.62 7.43–7.81 7.27–8.01

∆m2
31 (10−3 eV2) 2.55 2.64–2.61 2.38–2.68

sin2 θ12 0.320 0.303–0.336 0.29–0.35

sin2 θ23 0.613 0.573–0.635 0.38–0.66

sin2 θ13 0.0246 0.0218–0.0275 0.019–0.03
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Table 2. The experimental values of neutrino mass squared
splittings and leptonic mixing parameters, taken from Refs. 16
and 17 for inverted hierarchy.

Parameter Best fit 1σ range 2σ range

∆m2
21 (10−5 eV2) 7.62 7.43–7.81 7.27–8.01

∆m2
13 (10−3 eV2) 2.43 2.37–2.50 2.29–2.58

sin2 θ12 0.32 0.303–0.336 0.29–0.35

sin2 θ23 0.60 0.569–0.626 0.39–0.65

sin2 θ13 0.025 0.0223–0.0276 0.02–0.03

An alternative extension of the SM is the 3-3-1 models, in which the SM gauge

group SU(2)L ⊗U(1)Y is extended to SU(3)L ⊗U(1)X , whose phenomenology has

been studied in great detail from various particle physics standpoints.20–33 The

anomaly cancellation and the QCD asymptotic freedom in the models require that

the number of families is equal to the number of quark colors, and one family of

quarks has to transform under SU(3)L differently from the two others. In our pre-

vious works,34–41 the discrete symmetries have been explored to the 3-3-1 models.

The simplest explanation is probably due to a S3 flavor symmetry which is the

smallest non-Abelian discrete group, has been explored in our previous work.36 In

Refs. 34 and 35, we have studied the 3-3-1 model with neutral leptons based on A4

and S4 groups, in which the exact tri-bimaximal form is obtained, where θ13 = 0.

As we know, the recent considerations have implied θ13 6= 0, but relatively small

as given in (3) or Tables 1 and 2. This problem has been improved in Ref. 36 by

adding a new triplet ρ and another antisextet s′, in which s′ is regarded as a small

perturbation. Therefore, the model contains up to eight Higgs multiplets, and the

scalar potential of the model is quite complicated. In Ref. 37 we have studied the

3-3-1 model with neutral fermions based on D4 group, in which the fermion fields

are in singlets and doublets under D4. Our aim in this paper is to construct the

3-3-1 model combined with A4 to adapt nonzero θ13. For this purpose a SU(3)L
triplet is added and the result follows without perturbation. We will work on a basis

where 3 is a real representation.

There are two typical variants of the 3-3-1 models as far as lepton sectors are

concerned. In the minimal version, three SU(3)L lepton triplets are (νL, lL, l
c
R),

where lR are ordinary right-handed charged leptons.20 In the second version, the

third components of lepton triplets are the right-handed neutrinos,25 (νL, lL, ν
c
R).

To have a model with the realistic neutrino mixing matrix, we should consider

another variant of the form (νL, lL, N
c
R) where NR are three new fermion singlets

under SM symmetry with vanishing lepton-numbers.34,35

The contents of the paper are as follows. In Secs. 2 and 3, we present the neces-

sary elements of the 3-3-1 model with A4 flavor symmetry as in the above choice

and introduce necessary Higgs fields responsible for the charged-lepton masses.

Section 4 is devoted for the neutrino masses and mixings. In Sec. 5, we discuss the
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quark sector. We summarize our results and make conclusions in Sec. 6. Appendix A

presents a brief summary of the A4 group. Appendix B provides the lepton number

(L) and lepton parity (Pl) of the particles in the model. Appendices C to J give

the detailed solutions corresponding to special cases in the normal and inverted

spectrum.

2. Fermion Content

The gauge symmetry is based on SU(3)C ⊗SU(3)L⊗U(1)X , where the electroweak

factor SU(3)L⊗U(1)X is extended from those of the SM while the strong interaction

sector is retained. Each lepton family includes a new electrically- and leptonically-

neutral fermion (NR) and is arranged under the SU(3)L symmetry as a triplet

(νL, lL, N
c
R) and a singlet lR. The residual electric charge operator Q is related to

the generators of the gauge symmetry by

Q = T3 −
1√
3
T8 +X , (4)

where Ta (a = 1, 2, . . . , 8) are SU(3)L charges with Tr TaTb = 1
2δab and X

is the U(1)X charge. The model under consideration does not contain exotic

electric charges in the fundamental fermion, scalar and adjoint gauge boson

representations.

Since the particles in the lepton triplet have different lepton number (1 and 0), so

the lepton number in the model does not commute with the gauge symmetry unlike

the SM. Therefore, it is better to work with a new conserved charge L (Refs. 42–45)

commuting with the gauge symmetry and related to the ordinary lepton number

by diagonal matrices34,35

L =
2√
3
T8 + L . (5)

The lepton charge arranged in this way (i.e. L(NR) = 0 as assumed) is in order

to prevent unwanted interactions due to U(1)L symmetry and breaking to obtain

the consistent lepton and quark spectra. By this embedding, exotic quarks U,D as

well as new non-Hermitian gauge bosons X0, Y ± possess lepton charges as of the

ordinary leptons: L(D) = −L(U) = L(X0) = L(Y −) = 1.

In the model under consideration, the fermion contents is same as in Ref. 34.

However, this work is distinguished by a new SU(3)L triplet (ρ) which is put in 3

under A4. Under the [SU(3)L,U(1)X ,U(1)L, A 4] symmetries, the fermions of the

model transform as follows34

ψL ≡ ψ1,2,3L = (νL lL N c
R)

T ∼ [3,−1/3, 2/3, 3 ] ,

l1R ∼ [1,−1, 1, 1 ] , l2R ∼ [1,−1, 1, 1 ′] , l3R ∼ [1,−1, 1, 1 ′′] ,
(6)
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Q3L =





u3L
d3L
UL



 ∼ [3, 1/3,−1/3, 1 ] , UR ∼ [1, 2/3,−1, 1 ] ,

Q1L =





d1L
−u1L
D1L



 ∼ [3∗, 0, 1/3, 1 ′] , D1R ∼ [1,−1/3, 1, 1 ′′] ,

Q2L =





d2L
−u2L
D2L



 ∼ [3∗, 0, 1/3, 1 ′′] , D2R ∼ [1,−1/3, 1, 1 ′] ,

uR ∼ [1, 2/3, 0, 3 ] , dR ∼ [1,−1/3, 0, 3 ] ,

(7)

where the subscript numbers on field indicate to respective families which also

define components of their A4 multiplets. In what follows, we consider possibilities

of generating the masses for the fermions. The scalar multiplets needed for the

purpose are also introduced.

3. Charged Lepton Mass

The fermion content of the model is the same as that in Ref. 34 under all symmetries.

However, in this work, the breaking of A4 in charged lepton sector is different from

that in Ref. 34. Namely, to generate masses for the charged leptons, we need only

one scalar multiplet:

φ =
(

φ+1 , φ
0
2, φ

+
3

)T ∼ [3, 2/3,−1/3, 3 ] . (8)

The Yukawa terms are

−Ll = h1(ψ̄Lφ)1 l1R + h2(ψ̄Lφ)1 ′′ l2R + h3(ψ̄Lφ)1 ′ l3R +H.c. (9)

From the potential minimization conditions, we have the followings alignments:

(1) The first alignment: 〈φ1〉 = 〈φ2〉 = 〈φ3〉 then A4 is broken into Z3 consisting of

the elements {e, T, T 2}.
(2) The second alignment: 〈φ1〉 6= 〈φ2〉 6= 〈φ3〉 or 〈φ1〉 6= 〈φ2〉 = 〈φ3〉 or 〈φ2〉 6=

〈φ1〉 = 〈φ3〉 or 〈φ3〉 6= 〈φ1〉 = 〈φ2〉 then A4 is broken into {Identity}.a
(3) The third alignment: 0 = 〈φ1〉 6= 〈φ2〉 = 〈φ3〉 6= 0 or 0 = 〈φ2〉 6= 〈φ3〉 = 〈φ1〉 6= 0

or 0 = 〈φ3〉 6= 〈φ1〉 = 〈φ2〉 6= 0 then A4 is broken into {Identity}.
(4) The fourth alignment: 0 = 〈φ1〉 6= 〈φ2〉 6= 〈φ3〉 6= 0 or 0 = 〈φ2〉 6= 〈φ1〉 6= 〈φ3〉 6=

0 or 0 = 〈φ3〉 6= 〈φ1〉 6= 〈φ2〉 6= 0 then A4 is broken into {Identity}.
(5) The fifth alignment: 0 = 〈φ2〉 = 〈φ3〉 6= 〈φ1〉 6= 0 then A4 is broken into Z2

consisting of the elements {e, S}.

aThis means A4 is completely broken.
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(6) The sixth alignment: 0 = 〈φ1〉 = 〈φ3〉 6= 〈φ2〉 6= 0 then A4 is broken into Z2

consisting of the elements {e, T 2ST }.
(7) The seventh alignment: 0 = 〈φ1〉 = 〈φ2〉 6= 〈φ3〉 6= 0 then A4 is broken into Z2

consisting of the elements {e, TST 2}.

To obtain a realistic lepton spectrum, we suppose that in charged lepton sector,A4 is

broken down to {Identity}. This breaking is different from Ref. 34 in charged lepton

sector, and it can be achieved with the VEV alignment 〈φ〉 = (〈φ1〉, 〈φ2〉, 〈φ3〉) under
A4 where 〈φ1〉 6= 〈φ2〉 6= 〈φ3〉, and

〈φi〉 = (0 vi 0)T (i = 1, 2, 3) .

The mass Lagrangian for the charged leptons reads

Lmass
l = −(l̄1L, l̄2L, l̄3L)Ml(l1R, l2R, l3R)

T +H.c. ,

where

Ml =







h1v1 h2v1 h3v1

h1v2 h2ωv2 h3ω
2v2

h1v3 h2ω
2v3 h3ωv3






. (10)

As we will see in Sec. 4, in the case A4 → Z3 consisting of the elements {e, T, T 2},
i.e, 〈φ1〉 = 〈φ2〉 = 〈φ3〉 or v1 = v2 = v3 = v, the charged lepton matrix Ml in

Eq. (10) is diagonalized by the matrix

U0L =
1√
3





1 1 1

1 ω ω2

1 ω2 ω



 , (11)

and the exact tri-bimaximal mixing form is obtained if A4 → Z3 in both charged

lepton and neutrino sectors. A detailed study on this problem, the reader can see

in Ref. 34.

As we know, the realistic lepton mixing form is a small deviation from tri-

bimaximal form.11 The realistic lepton mixing can be achieved with a small value.

Hence, we can separate v2, v3 into two parts, the first is equal to v1 ≡ v, the second

is responsible for that deviation,

v1 = v , v2 = v(1 + ε2) , v3 = v(1 + ε3) , ε2,3 ≪ 1 (12)

and the matrix Ml in (10) becomes

Ml =









h1v h2v h3v

h1v(1 + ε2) h2ωv(1 + ε2) h3ω
2v(1 + ε2)

h1v(1 + ε3) h2ω
2v(1 + ε3) h3ωv(1 + ε3)









≡ v





1 0 0

0 1 + ε2 0

0 0 1 + ε3









1 1 1

1 ω ω2

1 ω2 ω









h1 0 0

0 h2 0

0 0 h3



 . (13)
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The matrix Ml in Eq. (13) can be diagonalized as follows with the help of notation

M ′
l = U+

0LMl =
v√
3









(3 + ε1 + ε2)h1 (ωε1 + ω2ε2)h2 (ω2ε1 + ωε2)h3

(ω2ε1 + ωε2)h1 (3 + ε1 + ε2)h2 (ωε1 + ω2ε2)h3

(ωε1 + ω2ε2)h1 (ω2ε1 + ωε2)h2 (3 + ε1 + ε2)h3









, (14)

then the matrix M ′
l in (14) is diagonalized by

U+
LM

′
l ≡ U+

L U
+
0LMl = diag(me,mµ,mτ ) , (15)

where

me = Ylh1v , mµ = Ylh2v , mτ = Ylh3v , (16)

with

Yl =
3
√
3(1 + ε3)

[

−4 + ε3(−4 + ε3 +
√

(ε3 − 12)ε3 − 12)
]

(2 + ε3)
[

−6 + ε3(−6 + ε3 +
√

(ε3 − 12)ε3 − 12)
] . (17)

The matrix that diagonalize M ′
l in (14) takes the form:

UL =









1 U l
12 U l

13

U l
13 1 U l

12

U l
12 U l

13 1









, UR = 1 , (18)

where

U l
12 =

ε3
{

6− 2i
√
3− (1 + i

√
3)ε+ ε3[7− i

√
3− (1− i

√
3)ε3 +(1− i

√
3)ε]

}

2(2+ ε3)[−6+ ε23 − ε3(6 + ε)]
,

U l
13 =

ε3
{

6+ 2i
√
3− (1− i

√
3)ε+ ε3[7 + i

√
3− (1 + i

√
3)ε3 +(1+ i

√
3)ε]

}

2(2+ ε3)[−6+ ε23 − ε3(6 + ε)]
,

(19)

with

ε =
√

ε23 − 12(ε3 + 1) . (20)

To get the results in Eqs. (19), we have used the following relations

ε2 =
2ε3 − ε23 − ε3ε

2(ε3 + 2)
, ε∗2 =

ε3(−2− 3ε3 + ε)

2(ε3 + 1)(ε3 + 2)
, ε∗3 = −1 +

1

1 + ε3
, (21)

which are obtained from the unitary condition of UL.

The left- and right-handed mixing matrices in charged lepton sector are given by:

U ′
L = U0L · UL =





α1 α2 α1

α2 ω2α2 ωα2

α3 ωα3 ω2α3



 , U ′
R = 1 , (22)
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where

α1 =

√
3[−4 + ε23 − ε3(4 + ε)]

(2 + ε3)[−6 + ε23 − ε3(6 + ε)]
,

α2 =
2
√
3(1 + ε3)

6− ε23 + ε3(6 + ε)
,

α3 = (1 + ε3)α1 .

(23)

In general, ε2,3 6= 0, so αi (i = 1, 2, 3) in Eq. (23) are different to each other

and different from 1√
3
, and lead to the realistic lepton mixing with nonzero θ13

as represented in Sec. 4. This is one of the striking results of the model under

consideration.

Taking into account of the discovery of the long-awaited Higgs boson at around

125 GeV by ATLAS46 and CMS,47 we can choose the VEVs v = 100 GeV. From

(16), the charged lepton Yukawa couplings h1,2,3 relate to their masses as follows:

h1 =
me

Ylv
, h2 =

mµ

Ylv
, h3 =

mτ

Ylv
. (24)

The experimental mass values for the charged leptons at the weak scale are

given as:11

me ≃ 0.511 MeV , mµ ≃ 105.66 MeV , mτ ≃ 1776.82 GeV . (25)

With the help of (25) we have h1

h2

≃ 0.0048, h1

h3

≃ 0.0003 and h2

h3

= 0.0595, i.e.

h1 ≪ h2 ≪ h3 for any ε3. As will be shown in Sec. 4, from experimental constrains

on lepton mixing, we obtain two solutions in Eqs. (46) and (47). With ε3 given in

Eq. (46), we get

h1 ≃ 3.0045× 10−6 , h2 ≃ 6.2124× 10−4 , h3 ≃ 1.045× 10−2 . (26)

We note that the mass hierarchy of the charged leptons are well separated by

only one Higgs triplet φ, and this is a good feature of the A4 group. To conclude

this section, we remind that the situation here is different from all our previous

version presented in Refs. 34–37 that can lead to nonzero θ13 which is studied in

Sec. 4.

4. Neutrino Mass and Mixing

The neutrino mass arise from the couplings of ψ̄c
LψL to scalars, where ψ̄c

LψL trans-

forms as 3∗ ⊕ 6 under SU(3)L and 1 ⊕ 1 ′ ⊕ 1 ′′ ⊕ 3 s ⊕ 3a under A4. For the

known scalar triplets, there is no interactions invariant under all subgroups of

G = SU(3)C ⊗ SU(3)L ⊗U(1)X ⊗A4. We will therefore propose new SU(3)L anti-

sextets, lying in either 1 , 1 ′, 1 ′′ or 3 under A4 interacting with ψ̄c
LψL to produce
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mass for the neutrinos. Therefore, new SU(3)L antisextets are proposed. The anti-

sextets transform as follows:

σ =











σ0
11 σ+

12 σ0
13

σ+
12 σ++

22 σ+
23

σ0
13 σ+

23 σ0
33











∼
[

6∗,
2

3
,−4

3
, 1

]

,

si =











s011 s+12 s013

s+12 s++
22 s+23

s013 s+23 s033











i

∼
[

6∗,
2

3
,−4

3
, 3

]

(i = 1, 2, 3) .

(27)

Following the potential minimization conditions, we have the followings align-

ments:

(1) The first alignment: 〈s1〉 = 〈s2〉 = 〈s3〉 then A4 is broken into Z3 consisting of

the elements {e, T, T 2}.
(2) The second alignment: 〈s1〉 6= 〈s2〉 6= 〈s3〉 or 〈s1〉 6= 〈s2〉 = 〈s3〉 or 〈s2〉 6= 〈s1〉 =

〈s3〉 or 〈s3〉 6= 〈s1〉 = 〈s2〉 then A4 is broken into {Identity}.
(3) The third alignment: 0 = 〈s1〉 6= 〈s2〉 = 〈s3〉 6= 0 or 0 = 〈s2〉 6= 〈s3〉 = 〈s1〉 6= 0

or 0 = 〈s3〉 6= 〈s1〉 = 〈s2〉 6= 0 then A4 is broken into {Identity}.
(4) The fourth alignment: 0 = 〈s1〉 6= 〈s2〉 6= 〈s3〉 6= 0 or 0 = 〈s2〉 6= 〈s1〉 6= 〈s3〉 6= 0

or 0 = 〈s3〉 6= 〈s1〉 6= 〈s2〉 6= 0 then A4 is broken into {Identity}.
(5) The fifth alignment: 0 = 〈s2〉 = 〈s3〉 6= 〈s1〉 6= 0 then A4 is broken into Z2

consisting of the elements {e, S}.
(6) The sixth alignment: 0 = 〈s1〉 = 〈s3〉 6= 〈s2〉 6= 0 then A4 is broken into Z2

consisting of the elements {e, T 2ST }.
(7) The seventh alignment: 0 = 〈s1〉 = 〈s2〉 6= 〈s3〉 6= 0 then A4 is broken into Z2

consisting of the elements {e, TST 2}.

To obtain a realistic neutrino spectrum, we argue that the breaking A4 → Z2 must

be taken place. This can be achieved within each case below.

• A new SU(3)L anti-sextet s given in (27), with the VEVs chosen by 〈s〉 =

(〈s1〉, 0, 0) under A4, where

〈s1〉 =





λs 0 vs
0 0 0

vs 0 Λs



 . (28)

• Another SU(3)L triplet ρ which is also put in the 3 under A4:

ρi =
(

ρ+1 , ρ
0
2, ρ

+
3

)T

i
∼ [3, 2/3,−4/3, 3 ] (i = 1, 2, 3)

with the VEV chosen by

〈ρ〉 = (〈ρ1〉, 0, 0) , 〈ρ1〉 = (0, vρ, 0)
T . (29)
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In this work, we additionally introduce a new SU(3)L triplet ρ lying in 3 under

A4 to obtain nonzero θ13, which is different from that in Refs. 34 and 35.

The neutrino Yukawa interactions are

−Lν =
x

2

(

ψ̄c
LψL

)

1
σ +

y

2

(

ψ̄c
LψL

)

3
s+

z

2

(

ψ̄c
LψL

)

3
ρ+H.c.

=
x

2

(

ψ̄c
1Lψ1L + ψ̄c

2Lψ2L + ψ̄c
3Lψ3L

)

σ

+ y
(

ψ̄c
2Lψ3Ls1 + ψ̄c

3Lψ1Ls2 + ψ̄c
1Lψ2Ls3

)

+
z

2

[

(

ψ̄c
2Lρ3 − ψ̄c

3Lρ2
)

ψ1L +
(

ψ̄c
3Lρ1 − ψ̄c

1Lρ3
)

ψ2L

+
(

ψ̄c
1Lρ2 − ψ̄c

2Lρ1
)

ψ3L

]

+H.c. (30)

With the VEV of σ is

〈σ〉 =





λσ 0 vσ
0 0 0

vσ 0 Λσ



 , (31)

the mass Lagrangian for the neutrinos can be written in matrix form:

−Lmass
ν =

1

2
χ̄c
LMνχL +H.c. , (32)

where

χL ≡ (νL N c
R)

T , Mν ≡
(

ML MT
D

MD MR

)

,

νL = (ν1L, ν2L, ν3L)
T , NR = (N1R, N2R, N3R)

T ,

(33)

and the mass matrices are then obtained by

ML,R,D =





aL,R,D 0 0

0 aL,R,D bL,R,D + dL,R,D

0 bL,R,D − dL,R,D aL,R,D



 , (34)

with

aL = λσx , aD = vσx , aR = Λσx ,

bL = λsy , bD = vsy , bR = Λsy ,

dL = dR = 0 , dD = vρz .

(35)

Three observed neutrinos gain masses via a combination of type I and type II seesaw

mechanisms derived from (33) and (34) as

Meff =ML −MT
DM

−1
R MD =





A 0 0

0 B1 C

0 C B2



 , (36)
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where

A = aL − a2D
aR

,

B1 = aL − a2DaR + aR(bD − dD)2 − 2aDbR(bD − dD)

a2R − b2R
,

B2 = B1 +
4(aDbR − aRbD)dD

a2R − b2R
,

C = bL +
bR(a

2
D + b2D − d2D)− 2aDaRbD

a2R − b2R
.

(37)

We can diagonalize the mass matrix (36) as follows

UT
ν MeffUν = diag(m1,m2,m3) ,

with

m1 =
1

2

(

B1 +B2 +
√

(B1 −B2)2 + 4C2
)

, m2 = A ,

m3 =
1

2

(

B1 +B2 −
√

(B1 −B2)2 + 4C2
)

(38)

and the corresponding neutrino mixing matrix:

Uν =



















0 1 0

1√
K2 + 1

0
K√

K2 + 1

− K√
K2 + 1

0
1√

K2 + 1



















× P , (39)

where P = diag(1, 1, i), and

K =
B1 −B2 −

√

(B1 −B2)2 + 4C2

2C
. (40)

Note that K in Eq. (40) must be a real number since the unitary condition of Uν .

Combined with (22) and (39), the lepton mixing matrix yields the form:

Ulep = U ′+
L Uν =









U11 U12 U13

U21 U22 U23

U31 U32 U33









× P , (41)
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where

U11 = −
√
3
{

4(1−K) + ε3[6 + (ε− 4)K + ε3(K + 2)]
}

(2 + ε3)[−6 + ε3(−6 + ε3 + ε)]
√
K2 + 1

,

U12 = U22 = U32 =

√
3(1 + ε3)[−4 + ε3(−4 + ε3 + ε)]

(2 + ε3)[−6 + ε3(−6 + ε3 + ε)]
,

U13 = −
√
3
{

4(1 +K) + ε3[4− ε+ 6K + ε3(2K − 1)]
}

(2 + ε3)[−6 + ε3(−6 + ε3 + ε)]
√
K2 + 1

,

U21 =
2(−3i+

√
3)(1 + ε3) +

(3i+
√
3)[−4+ε3(−4+ε3+ε)]K

2+ε3

2[−6 + ε3(−6 + ε3 + ε)]
√
K2 + 1

,

U23 = −
(3i+

√
3)[−4+ε3(−4+ε3+ε)]

2+ε3
− 2(−3i+

√
3)(1 + ε3)K

2[−6 + ε3(−6 + ε3 + ε)]
√
K2 + 1

,

U31 =
2(3i+

√
3)(1 + ε3) +

(−3i+
√
3)[−4+ε3(−4+ε3+ε)]K

2+ε3

2[−6 + ε3(−6 + ε3 + ε)]
√
K2 + 1

,

U33 = −
(−3i+

√
3)[−4+ε3(−4+ε3+ε)]

2+ε3
− 2(3i+

√
3)(1 + ε3)K

2[−6 + ε3(−6 + ε3 + ε)]
√
K2 + 1

,

(42)

with ε is defined in Eq. (20). We see that all the elements of the matrix Ulep in

Eq. (42) depend only on one parameter ε3. From experimental constraints on the

elements of the lepton mixing matrix given in Eq. (2), we can find out the regions of

K and ε3 that satisfy experimental data on lepton mixing matrix. The good value

of K is in one of the following regions:

K ∈ (−1.45,−1.4) , K ∈ (1.4, 1.45) ,

K ∈ (−0.75,−0.65) , K ∈ (0.65, 0.75) .
(43)

At present, the values of the absolute neutrino masses as well as the mass ordering

of neutrinos are still open problems. An upper bound on the absolute value of

neutrino mass was found from the analysis of the latest cosmological data48

mi ≤ 0.6 eV . (44)

The 95% upper limit on the sum of neutrino mass is given in Ref. 49

3
∑

i=1

|mi| ≤ 0.66 eV . (45)

The mass ordering of neutrino depends on the sign of ∆m2
13 which is currently

unknown. In the case of 3-neutrino mixing, the two possible signs of ∆m2
13
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corresponding to two types of neutrino mass spectrum can be provided as follows

(1) Normal hierarchy (NH): |m1| ≃ |m2| < |m3|, ∆m2
31 = m2

3 −m2
1 > 0.

(2) Inverted hierarchy (IH): |m3| < |m1| ≃ |m2|, ∆m2
31 = m2

3 −m2
1 < 0.

As will be discussed below, the neutrino mass matrix in (36) can provide both

normal and inverted mass hierarchies.

In this work, to have explicit values of the model parameters, the values of K:

K = −1.43, K = 1.43, K = −0.7 and K = 0.7 [which all satisfy (43)] are used. The

corresponding expressions of B1,2, C and m1,2,3 are given in Apps. C–F for normal

hierarchy and in Apps. G–J for inverted hierarchy. However, the corresponding

physical results such as the values of the absolute neutrino masses are the same.

So, here we only consider in detail the caseK = −1.43 for both normal and inverted

spectrum.

Combining with the constraint values on the element U11 of lepton mixing

matrix,7 U11 = 0.812, we obtain two solutions on ε3:

ε3 = −0.0318467− 0.00695743i (46)

and

ε3 = −0.0318467+ 0.00695743i . (47)

With the solution (46), it follows:

Ulep ≃





0.812 0.567 + 0.003i −0.139 + 0.013i

−0.395− 0.128i 0.567 + 0.003i 0.067− 0.708i

−0.417 + 0.128i 0.567 + 0.003i 0.074 + 0.695i



× P (48)

or

|Ulep| =





0.812 0.567 0.140

0.415 0.567 0.711

0.436 0.567 0.699



 , (49)

and ε2 = −0.0224354+ 0.0238703i.

With the solution (47), we get:

Ulep =





0.812 0.567− 0.003i −0.139− 0.013i

−0.417− 0.128i 0.567− 0.003i 0.074− 0.695i

−0.395 + 0.128i 0.567− 0.003i 0.067 + 0.708i



 × P (50)

or

|Ulep| =





0.812 0.567 0.140

0.436 0.567 0.699

0.415 0.567 0.711



 (51)

and ε2 = −0.0224354− 0.0238703i.
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In the standard Particle Data Group (PDG) parametrization, the lepton mixing

matrix can be parametrized as

UPMNS =









c12c13 −s12c13 −s13e−iδ

s12c23 − c12s23s13e
iδ c12c23 + s12s23s13e

iδ −s23c13
s12s23 + c12c23s13e

iδ c12s23 − s12c23s13e
iδ c23c13









× P , (52)

where P = diag(1, eiα, eiβ), and cij = cos θij , sij = sin θij with θ12, θ23 and θ13
being the solar, atmospheric and reactor angles, respectively. δ = [0, 2π] is the

Dirac CP violation phase while α and β are two Majorana CP violation phases.

The observable angles in the standard PMNS parametrization are given by11

s13 = |U13| , s23 =
|U23|

√

1− |U13|2
, s12 =

|U12|
√

1− |U13|2
. (53)

Combining Eqs. (48) and (53) yields:

sin θ13 = 0.140 , sin θ23 = 0.719 , sin θ12 = 0.573

or

θ13 ≃ 8.055◦ , θ23 ≃ 45.95◦ , θ12 ≃ 34.93◦ ,

which are all very consistent with the recent data on neutrino mixing angles. On

the other hand, comparing Eqs. (42) and (41) yields α = 0, β = π
2 and δ = 5.41◦

since eiδ = −s13/U13 = 0.995547 + 0.0942709i. These results also implies that

in the model under consideration, the value of the Jarlskog invariant JCP which

determines the magnitude of CP violation in neutrino oscillations is determined:50

JCP =
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ = 0.003 . (54)

Similarly, with the solution (47), we get the results given in Table 3.

Table 3. The model parameters with the solution (47) in nor-
mal hierarchy.

Parameter Best fit 1σ range 2σ range

A [eV] 10−2 J −0.00303931

B1 [eV] −0.0356733 |m1| [eV] 0.00487852

B2 [eV] −0.0199378 |m2| 0.01

C [eV] 0.0215348 |m3| [eV] 0.0507326

θ13 [◦] 8.05436
∑

[eV] 0.0656112

θ12 [◦] 34.929 |mee| [eV] 0.0010064

θ23 [◦] 44.9281 |mβ | [eV] 0.00991761

δ [◦] 354.59

1550117-14



July 22, 2015 10:28 IJMPA S0217751X15501171 page 15

Neutrino mixing with nonzero θ13 and CP violation in the 3-3-1 model

Now, substituting K = −1.43 in Eq. (40) we obtain

B1 = B2 − 0.730699C . (55)

4.1. Normal hierarchy (∆m2

31
> 0)

Combining (55) and (38) with the two experimental constraints on squared mass

differences of neutrinos in normal hierarchy as shown in Table 1, we get the solutions

(in [eV]) given in App. C. The solutions from Eqs. (C.1)–(C.4) have the same

absolute values of m1,2,3, the unique difference is the sign of m1,3. Hence, we only

consider in detail the case of (C.1). On the other hand, the expressions from (C.1)–

(C.4) show that mi (i = 1, 2, 3) depends only on one parameter A = m2, so we will

considerm1,3 as functions ofm2. However, to have an explicit hierarchy on neutrino

masses, in the following figures,m2 should be included. The use of the upper bound

on absolute value of neutrino mass in (44) leads to A ≤ 0.6 eV. Moreover, in this

case, A ∈ (0.00873, 0.01) eV or A ∈ (−0.01,−0.00873) eV are good regions of A

that can reach the realistic neutrino mass hierarchy.

In Fig. 1, we have plotted the absolute values |m1,2,3| as functions of A with

A ∈ (0.00873, 0.01) eV. This figure shows that there exist allowed regions for

values A (or m2) where either normal or quasi-degenerate neutrino masses spec-

trum is achieved. The quasi-degenerate mass hierarchy is obtained when |A| lies
in a region [0.05 eV,+∞] (|A| increases but must be small enough because of

the scale of m1,2,3). The normal mass hierarchy will be obtained if |A| takes the

values around (0.00873, 0.05) eV. The sum
∑

=
∑3

i=1 |mi| is plotted in Fig. 2 with

m2 ∈ (0.00873, 0.01) eV.

Fig. 1. |m1,2,3| as functions of A in the case of ∆m2
31 > 0 with A ∈ (0.00873, 0.01) eV.
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Fig. 2.
∑

as a function of A with A ∈ (0.00873, 0.01) eV in the case of ∆m2
31 > 0.

The effective mass 〈mee〉 governing neutrinoless double beta decay51–55 is then

obtained,

〈mee〉 =
3
∑

i=1

U2
eimi = (0.321369 + 0.00369042i)A

− (0.339313− 0.00184244i)
√

4A2 − 0.0003048

− (0.0205292− 0.0039231i)

√

α1 − 2
√

β1 , (56)

and

m2
β =

3
∑

i=1

|Uei|2m2
i

= −4.66947× 10−6 + 1.03963A2

− 0.0445038
√

β1 + 0.0209007
√

4A2 − 0.0003048

√

α1 − 2
√

β1 , (57)

with α1, β1 are given in (C.5).

We also note that in the normal spectrum, |m1| ≈ |m2| < |m3|, so m1 given

in (C.1) is the lightest neutrino mass, therefore, it is denoted as m1 ≡ mlight. In

Fig. 3 we have plotted the values of |mee|, |mβ | and |mlight| as functions of A with

A ∈ (0.00875, 0.05) eV.

Figure 3 shows that in normal case 〈mee〉 < |mβ | < |mlight|, all of them are

consistent with the recent experimental data.11 By assuming A ≡ m2 = 10−2 eV,

which is safely small, then the other neutrino masses are explicitly given as m1 =

−4.87852 × 10−3 eV, m3 = −5.07326 × 10−2 eV and
∑

= 6.56112 × 10−2 eV,

|mee| ≃ 0.900184× 10−3 eV, |mβ| ≃ 0.991761× 10−2 eV. Three physical neutrino

masses are: |m1| = 4.87852 × 10−3 eV, |m2| = 10−2 eV, |m3| = 5.07326 × 10−2.
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Fig. 3. |mee|, |mβ | and |mlight| as functions of A from (C.1) in normal hierarchy with A ∈
(0.00875, 0.05) eV.

This solution means a normal neutrino mass spectrum as mentioned above and

consistent with the recent experimental data.11,16 It follows that

B1 = −0.0356733 eV , B2 = −0.0199378 eV , C = 0.0215348 eV . (58)

There has not yet been an explicit experimental test of the values of parameters

λs,σ , vs,σ, Λs,σ, however, from the original form of the 3-3-1 models they obey the

relation56 λs,σ ∼ v2s,σ/Λs,σ. To show that there exist the model parameters that

consist with experimental data, the following assumption is used:

λs = λσ = 1 eV , vρ = vs = vσ , Λs = −Λσ = v2σ , (59)

It is then

A = 2x , B1 =
x(2x2 + 2y2 − 4yz + z2)

x2 − y2
,

B2 =
x(2x2 + 2y2 + 4yz + z2)

x2 − y2
, C =

y(4x2 − z2)

x2 − y2
.

(60)

Combining (58) and (60) yields: x = 5× 10−3, y ≃ −7.73× 10−3, z ≃ 1.77× 10−3.

4.2. Inverted case (∆m2

31
< 0)

For inverted hierarchy, by combining (55) and (38) with the two experimental con-

straints on squared mass differences of neutrinos as shown in Table 2, we get the

solutions (in [eV]) given in App. G. The solutions from Eq. (G.1) to Eq. (G.2) have

the same absolute values of m1,2,3, the unique difference is the sign of m1,3. Hence,

we only consider in detail the case of (G.1). Because mi (i = 1, 2, 3) only depends

on one parameter A = m2, so we will consider m1,3 as functions of A. However, to
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Fig. 4. |m1,2,3| as functions of A with A ∈ (0.05, 0.06) eV in the case of ∆m2
31 < 0.

Fig. 5.
∑

as a function of A with A ∈ (0.05, 0.06) eV in the case of ∆m2
31 < 0.

have an explicit hierarchy on neutrino masses, in the following figures, m2 should

be included. In this case, A ∈ (0.05, 0.06) eV is a good region of A that can reach

the realistic neutrino mass hierarchy.

In Fig. 4, we have plotted the absolute values |m1,2,3| as functions of A with

A ∈ (0.05, 0.06) eV. This figure shows that there exist allowed regions for values

A (or m2) where either inverted or quasi-degenerate neutrino masses spectrum

is achieved. The quasi-degenerate mass hierarchy is obtained when |A| lies in a

region [0.06 eV,+∞] (|A| increases but must be small enough because of the scale

of m1,2,3). The inverted mass hierarchy will be obtained if |A| takes the values

around (0.05, 0.06) eV. The sum
∑

=
∑3

i=1 |mi| is plotted in Fig. 5 with m2 ∈
(0.05, 0.06) eV.
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Fig. 6. |mI
ee|, |mI

β
| and |mI

light
| as functions of A from (G.1) in inverted hierarchy with A ∈

(0.05, 0.06) eV.

The effective mass 〈mee〉 governing neutrinoless double beta decay51–55 in

inverted hierarchy is then obtained,

〈mI
ee〉 =

∣

∣

∣

∣

∣

3
∑

i=1

U2
eimi

∣

∣

∣

∣

∣

=
∣

∣

∣(0.321369 + 0.00369042i)A

+ (0.339313− 0.00184244i)
√

4A2 − 0.0003048

− (0.0205292− 0.0039231i)

√

α3 − 2
√

β3

∣

∣

∣
, (61)

and

(

mI
β

)2
=

3
∑

i=1

|Uei|2m2
i

= −0.000102434+ 1.03963A2 + 0.0445038
√

β

− 0.0209007
√

4A2 − 0.0003048

√

α3 − 2
√

β3 , (62)

with α3, β3 are given in (G.3).

We also note that in the inverted spectrum, |m2| ≈ |m1| > |m3|, so m3 given

in (G.1) is the lightest neutrino mass, therefore, it is denoted as m3 ≡ mI
light. In

Fig. 6, we have plotted the values of |mI
ee|, |mI

β | and |mI
light| as functions of A with

A ∈ (0.05, 0.06) eV.

By assuming A ≡ m2 = 5 × 10−2 eV, which is safely small, then the other

physical neutrino masses are explicitly given as |m1| = 4.92321 × 10−2 eV,

|m3| = 2.48998 × 10−3 eV, and
∑

= 0.101722 eV, mI
ee ≃ 4.85391 × 10−2 eV,
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mI
β ≃ 4.90048 × 10−2 eV. This solution means an inverted neutrino mass spec-

trum as mentioned above and consistent with the recent experimental data.11,16 It

follows that

B1 = (1.61687 + 0.167223i)× 10−2 eV ,

B2 = (3.30634 + 0.0817754i)× 10−2 eV ,

C = (2.31213− 0.116939i)× 10−2 eV .

(63)

Furthermore, by assuming that56

λs = λσ = 1 eV , vρ = vs = vσ , Λs = aΛσ , Λσ = −v2σ , (64)

we obtain a solution

A = 2x , C =
(a+ 3)x

a+ 1
+

az2

x(1 − a2)
, x = y ,

B1 =
(a− 1)(a+ 3)x2 − 2(a− 1)xz − z2

x(a2 − 1)
,

B2 =
(a− 1)(a+ 3)x2 + 2(a− 1)xz − z2

x(a2 − 1)
.

(65)

Combining (63) and (65) yields:

a ≃ 1.0587− 0.0097i ,

x = y = 2.5× 10−2 ,

z ≃ (8.6933− 0.4808i)× 10−3 .

(66)

5. Quarks Sector

We note that the scalar triplet φ in Eq. (8) is not enough to generate mass for all

the quarks. Hence, to generate masses for quarks, two SU(3)L triplets, put in 1 and

3 under A4, are additionally introduced:34

η =
(

η01 η−2 η03
)T ∼ (3,−1/3,−1/3, 3) , (67)

χ =
(

χ0
1 χ−

2 χ0
3

)T ∼ (3,−1/3, 2/3, 1 ) . (68)

It is worth mentioning that the SU(3)L triplet ρ does not give new Yukawa terms,

so the results in quark sector remain the same. The Yukawa interactions are:

−Lq = hd3Q̄3L(φdR)1 + hu1 Q̄1L(φ
∗uR)1′′ + hu2 Q̄2L(φ

∗uR)1′

+ hu3 Q̄3L(ηuR)1 + hd1Q̄1L(η
∗dR)1′′ + hd2Q̄2L(η

∗dR)1′

+ f3Q̄3LχUR + f1Q̄1Lχ
∗D1R + f2Q̄2Lχ

∗D2R +H.c. (69)
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The VEVs of η and χ are supposed to be34

〈η〉 = (〈η1〉, 〈η1〉, 〈η1〉) (70)

under A4, where 〈η1〉 = (u 0 0)T and 〈χ〉 = (0 0 vχ)
T . The exotic quarks get masses

directly from the VEV of χ:34 mU = f3vχ, mDi
= fivχ, (i = 1, 2).

Substituting (8), (12) and (70) into (69), the mass matrices for ordinary up-

quarks and down-quarks are, respectively, obtained as follows:

Mu =











−hu1v −ωhu1v(1 + ε2) −ω2hu1v(1 + ε2)

−hu2v −ω2hu2v(1 + ε2) −ωhu2v(1 + ε2)

hu3u hu3u hu3u











, (71)

Md =











hd1u ωhd1u ω2hd1u

hd2u ω2hd2u ωhd2u

hd3v hd3v(1 + ε2) hd3v(1 + ε3)











. (72)

The matrices Mu and Md in (71), (72) are, respectively, diagonalized as

Uu+
L MuU

u
R = diag(mu,mc,mt) ,

Ud+
L MdU

d
R = diag(md,ms,mb) ,

(73)

where

mu = − (1 + i
√
3)(3 + 2ε2 + 2ε3 + ε2ε3)h

u
1v

3i+
√
3 + (i +

√
3) + 2iε3

,

mc =
(−1 + i

√
3)(3 + 2ε2 + 2ε3 + ε2ε3)h

u
2v

−3i+
√
3 + (−i+

√
3)ε3

,

mt =
(3 + 2ε2 + 2ε3 + ε2ε3)h

u
3u√

3(1 + ε2)
,

md =
(1 + i

√
3)(3 + 2ε2 + 2ε3)h

d
1u

3i+
√
3 + (i+

√
3)ε3 + 2iε2

,

ms =
(1− i

√
3)(3 + ε2 + ε3)h

d
2u

−3i+
√
3− 2iε3

,

mb =
(3 + ε2 + ε3)h

d
3v√

3
,

(74)
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and Uu
R, U

d
R are the right-handed up- and down-quarks mixing matrices; Uu

L, U
d
L

are the left-handed up- and down-quarks mixing matrices, respectively,

Uu
R =

1√
3























1
ω2(1 + ε2)− (1 + ε3)

ω2(1 + ε3)− 1
1 + ε3

ω(1 + ε3)− 1

ω2(1 + ε2)− ω(1 + ε3)
ω

1 + ε3
1 + ε2

1− ω2(1 + ε2)

ω2(1 + ε2)− ω(1 + ε3)

ω(1− ω)− ω2ε2
ω2(1 + ε3)− 1

1























,

Ud
R =

1√
3























1
ω2(1 + ε3)− (1 + ε2)

ω2 − (1 + ε3)
1

ω − (1 + ε3)

ω2(1 + ε3)− ω(1 + ε2)
ω 1

1 + ε2 − ω2

ω2(1 + ε3)− ω(1 + ε2)

ω(1− ω) + ωε2
ω2 − (1 + ε3)

1























,

Uu
L = Ud

L = 1 .

(75)

The right-handed up- and down-quarks mixing matrices Uu
R, U

d
R given in (75) is

one of the different issues of this work compared with Ref. 34. However, the CKM

matrix is then given as11

UCKM = Uu
LU

d†
L = 1 , (76)

which is the same as that in Ref. 34. A tree-level CKM matrix obtained equal to the

identity matrix is the common property for some models based on the A4 group.35

6. Conclusions

In this paper, we have proposed a 3-3-1 model with neutral fermions based on A4

flavor symmetry responsible for fermion masses and mixings with nonzero θ13. For

this purpose, we additionally introduce a new SU(3)L triplet (ρ) lying in 3 under

A4. The neutrinos get small masses from two SU(3)L anti-sextets and one SU(3)L
triplet. The model can fit the present data on neutrino masses and mixing as well

as the effective mass governing neutrinoless double beta decay. Our results show

that the neutrino masses are naturally small and a little deviation from the tri-

bimaximal neutrino mixing form can be realized. The Dirac CP violation phase δ

is predicted to either 5.41◦ or 354.59◦ with θ23 6= π
4 . It is emphasized that this

consequence does not require θ23 = π
4 .
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Appendix A. A4 Group and Clebsch Gordan Coefficients

A4 is the group of even permutation of four objects, which is also the symmetry

group of a regular tetrahedron. It has 12 elements and four equivalence classes with

three inequivalent one-dimensional representations and one three-dimensional one.

Any element of A4 can be formed by multiplication of the generators S and T

obeying the relations34 S2 = T 3 = (ST )3 = 1. Without loss of generality, we could

choose S = (12) (34), T = (234) where the cycles (12) (34) denote the permutation

(1, 2, 3, 4) → (2, 1, 4, 3), and (234) means (1, 2, 3, 4) → (1, 3, 4, 2). The conjugacy

classes of A4 generated from S and T are

C1 : 1 ,

C2 : S, TST 2, T 2ST ,

C3 : T, TS, ST, STS ,

C4 : T 2, ST 2, T 2S, TST .

The character table of A4 is given in Table A.1, where n is the order of class and h

the order of elements within each class. We will work on a basis where 3 is a real

representation. One possible choice of generators is given as follows

1 : S = 1 , T = 1 ,

1 ′ : S = 1 , T = ω ,

1 ′′ : S = 1 , T = ω2 ,

3 : S =





1 0 0

0 −1 0

0 0 −1



 , T =





0 1 0

0 0 1

1 0 0



 ,

where ω = e2πi/3 = −1/2+i
√
3/2 is the cube root of unity. Using them we calculate

the Clebsch–Gordan coefficients for all the tensor products as given below.

First, let us put 3(1, 2, 3) which means some 3 multiplet such as x =

(x1, x2, x3) ∼ 3 or y = (y1, y2, y3) ∼ 3 and so on, and similarly for the other

representations. Moreover, the numbered multiplets such as (. . . , ij, . . .) mean

(. . . , xiyj , . . .) where xi and yj are the multiplet components of different represen-

tations x and y, respectively. In the following, the components of representations

on the left-hand side will be omitted and should be understood, but they always

Table A.1. The character table of A4 group.

Class n h χ1 χ1 ′ χ1 ′′ χ3

C1 1 1 1 1 1 3

C2 3 2 1 1 1 −1

C3 4 3 1 ω ω2 0

C4 4 3 1 ω2 ω 0
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exist in order in the components of decompositions on the right-hand side:

1 ⊗ 1 = 1(11) , 1 ⊗ 1 ′ = 1 ′(11) , 1 ⊗ 1 ′′ = 1 ′′(11) , (A.1)

1 ′ ⊗ 1 ′ = 1 ′′(11) , 1 ′ ⊗ 1 ′′ = 1(11) , 1 ′′ ⊗ 1 ′′ = 1 ′(11) , (A.2)

1 ⊗ 3 = 3(11, 12, 13) ,

1 ′ ⊗ 3 = 3(11, ω12, ω213) ,

1 ′′ ⊗ 3 = 3(11, ω212, ω13) ,

(A.3)

3 ⊗ 3 = 1(11 + 22 + 33)

⊕ 1 ′(11 + ω222 + ω33)

⊕ 1 ′′(11 + ω22 + ω233)

⊕ 3 s(23 + 32, 31 + 13, 12 + 21)

⊕ 3 a(23− 32, 31− 13, 12− 21) , (A.4)

where the subscripts “s” and “a” respectively refer to their symmetric and anti-

symmetric product combinations as explicitly pointed out.

In the paper, we usually use the following notations, for example, (xy′)3 =

[xy′]3 ≡ (x2y
′
3 − x3y

′
2, x3y

′
1 −x1y

′
3, x1y

′
2 − x2y

′
1) which is the Clebsch–Gordan coef-

ficients of 3 a in the decomposition of 3⊗3 , where as mentioned x = (x1, x2, x3) ∼ 3

and y′ = (y′1, y
′
2, y

′
3) ∼ 3 .

The rules to conjugate the representations 1 , 1 ′, 1 ′′ and 3 are given by

1 ∗(1∗) = 1(1∗) ,

1 ′∗(1∗) = 1 ′(1∗) ,

1 ′′∗(1∗) = 1 ′′(1∗) ,

3 ∗(1∗, 2∗, 3∗) = 3(1∗, 2∗, 3∗) .

(A.5)

Appendix B. Lepton Number and Lepton Parity

The lepton number (L) and lepton parity (Pl) of the model particles are given in

Table B.1.

Table B.1. The model particles.

Particles L Pl

NR, u, d, φ+
1 , φ′+

1 , φ0
2, φ

′0
2 , η01 , η

′0
1 , η−2 , η′−2 , χ0

3, σ
0
33, s

0
33 0 1

νL, l, U , D∗, φ+
3 , φ′+

3 , η03 , η
′0
3 , χ0∗

1 , χ+
2 , σ0

13, σ
+
23, s

0
13, s

+
23 −1 −1

σ0
11, σ

+
12, σ

++
22 , s011, s

+
12, s

++
22 −2 1
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Appendix C. The Solutions with K = −1.43 in the Normal Case

• The first case:

C = 0.5

√

α1 − 2
√

β1 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.34965

√

α1 − 2
√

β1 ,

m1 = −0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 − 2
√

β1 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06465

√

α1 − 2
√

β1 .

(C.1)

• The second case:

C = 0.5

√

α1 + 2
√

β1 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.34965

√

α1 + 2
√

β1 ,

m1 = −0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 + 2
√

β1 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06465

√

α1 + 2
√

β1 .

(C.2)

• The third case:

C = 0.5

√

α1 − 2
√

β1 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α1 − 2
√

β1 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 − 2
√

β1 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α1 − 2
√

β1 .

(C.3)

• The fourth case:

C = 0.5

√

α1 + 2
√

β1 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α1 + 2
√

β1 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 + 2
√

β1 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α1 + 2
√

β1 .

(C.4)

where

α1 = 0.00211525+ 1.76448A2 ,

β1 = −1.46721× 10−7 + 0.00186616A2 + 0.778345A4 .
(C.5)
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Appendix D. The Solutions with K = 1.43 in the Normal Case

• The first case:

C = −0.5

√

α1 − 2
√

β1 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.34965

√

α1 − 2
√

β1 ,

m1 = −0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 − 2
√

β1 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06465

√

α1 − 2
√

β1 .

(D.1)

• The second case:

C = −0.5

√

α1 + 2
√

β1 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.34965

√

α1 + 2
√

β1 ,

m1 = −0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 + 2
√

β1 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06465

√

α1 + 2
√

β1 .

(D.2)

• The third case:

C = −0.5

√

α1 − 2
√

β1 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α1 − 2
√

β1 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 − 2
√

β1 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α1 − 2
√

β1 .

(D.3)

• The fourth case:

C = −0.5

√

α1 + 2
√

β1 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α1 + 2
√

β1 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α1 + 2
√

β1 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α1 + 2
√

β1 ,

(D.4)

where α1, β1 are given in (C.5).
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Appendix E. The Solutions with K = −0.70 in the Normal Case

• The first case:

C = 0.5

√

α2 − 2
√

β2 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.714286

√

α2 − 2
√

β2 ,

m1 = −0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06429

√

α2 − 2
√

β2 .

(E.1)

• The second case:

C = 0.5

√

α2 + 2
√

β2 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.714286

√

α2 + 2
√

β2 ,

m1 = −0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06429

√

α2 + 2
√

β2 .

(E.2)

• The third case:

C = 0.5

√

α2 − 2
√

β2 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α2 − 2
√

β2 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α2 − 2
√

β2 .

(E.3)

• The fourth case:

C = 0.5

√

α2 + 2
√

β2 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α2 + 2
√

β2 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α2 + 2
√

β2 ,

(E.4)

where

α2 = 0.0021167+ 1.76569A2 ,

β2 = −1.46922× 10−7 + 0.00186872A2 + 0.779412A4 .
(E.5)
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Appendix F. The Solutions with K = 0.70 in the Normal Case

• The first case:

C = −0.5

√

α2 − 2
√

β2 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.714286

√

α2 − 2
√

β2 ,

m1 = −0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06429

√

α2 − 2
√

β2 .

(F.1)

• The second case:

C = −0.5

√

α2 + 2
√

β2 ,

B2 = −0.5
√

4A2 − 0.0003048− 0.714286

√

α2 + 2
√

β2 ,

m1 = −0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = −0.5
√

4A2 − 0.0003048− 1.06429

√

α2 + 2
√

β2 .

(F.2)

• The third case:

C = −0.5

√

α2 − 2
√

β2 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α2 − 2
√

β2 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α2 − 2
√

β2 .

(F.3)

• The fourth case:

C = −0.5

√

α2 + 2
√

β2 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α2 + 2
√

β2 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α2 + 2
√

β2 ,

(F.4)

where α2, β2 are given in (E.5).
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Appendix G. The Solutions with K = −1.43 in the Inverted Case

• The first case:

C = 0.5

√

α3 − 2
√

β3 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α3 − 2
√

β3 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α3 − 2
√

β3 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α3 − 2
√

β3 .

(G.1)

• The second case:

C = 0.5

√

α3 + 2
√

β3 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α3 + 2
√

β3 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α3 + 2
√

β3 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α3 + 2
√

β3 ,

(G.2)

where

α3 = −0.00227829+ 1.76448A2 ,

β3 = 1.48642× 10−7 − 0.00201A2 + 0.778345A4 .
(G.3)

Appendix H. The Solutions with K = 1.43 in the Inverted Case

• The first case:

C = −0.5

√

α3 − 2
√

β3 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α3 − 2
√

β3 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α3 − 2
√

β3 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α3 − 2
√

β3 .

(H.1)
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• The second case:

C = −0.5

√

α3 + 2
√

β3 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.34965

√

α3 + 2
√

β3 ,

m1 = 0.5
√

4A2 − 0.0003048

− 1.11022× 10−16

√

α3 + 2
√

β3 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06465

√

α3 + 2
√

β3 ,

(H.2)

where α3, β3 are given in (G.3).

Appendix I. The Solutions with K = −0.7 in the Inverted Case

• The first case:

C = 0.5

√

α4 − 2
√

β4 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α4 − 2
√

β4 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α4 − 2
√

β4 .

(I.1)

• The second case:

C = 0.5

√

α4 + 2
√

β4 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α4 + 2
√

β4 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α4 + 2
√

β4 ,

(I.2)

where

α4 = −0.00227985+ 1.76569A2 ,

β4 = 1.48846× 10−7 − 0.00201275A2 + 0.779412A4 .
(I.3)

Appendix J. The Solutions with K = 0.7 in the Inverted Case

• The first case:

C = −0.5

√

α4 − 2
√

β4 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α4 − 2
√

β4 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α4 − 2
√

β4 .

(J.1)
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• The second case:

C = −0.5

√

α4 + 2
√

β4 ,

B2 = 0.5
√

4A2 − 0.0003048− 0.714286

√

α4 + 2
√

β4 ,

m1 = 0.5
√

4A2 − 0.0003048 , m2 = A ,

m3 = 0.5
√

4A2 − 0.0003048− 1.06429

√

α4 + 2
√

β4 ,

(J.2)

where α4, β4 are given in (I.3).
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