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We show that the 3-3-1 model with minimal lepton content can work as a two-Higgs-triplet 3-3-1 model
while leaving the other scalars as inert particles responsible for dark matter. We study two cases of dark
matter, corresponding to the doublet and singlet scalar candidates, and we determine the parameter spaces
in the WMAP-allowed region of relic density. Indirect and direct searches for dark matter in both cases are
investigated by using micrOMEGAs.

DOI: 10.1103/PhysRevD.91.115019 PACS numbers: 12.60.-i, 95.35.+d

I. INTRODUCTION

Cosmological observations [1] suggest that there must
exist cold dark matter that contains approximately 27% of
all energy density of the Universe. Dark matter is a
mysterious and interesting subject in particle physics as
well as in astrophysics. In the context of particle physics,
the most popular dark-matter candidates include the lightest
supersymmetric particle, the lightest KK particle, the
lightest T-odd particle, the axion, some form of sterile
neutrinos, inert scalars, and others [2].
The Standard Model is very successful in describing

experimentally observed phenomena, but it leaves some
unsolved problems, such as neutrino masses and mixing,
matter-antimatter asymmetry, dark matter, dark energy, etc.,
which leads us to go beyond the Standard Model. One
simple way to go beyond the Standard Model is to extend
the gauge group SUð2ÞL ⊗ Uð1ÞY to SUð3ÞL ⊗ Uð1ÞX
[3,4]. The class of SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX (3-3-1)
models has many interesting characteristics; for example,
these models can explain the number of fermion gener-
ations, the uncharacteristically heavy top quark [5], the
electric charge quantization [6], the light neutrino masses
[7], and dark matter [8].
There are two main versions of the 3-3-1 model,

depending on which type of particle is located at the
bottom of the lepton triplets. The minimal 3-3-1 model [3]
uses ordinary charged leptons eR, while the version with
right-handed neutrinos includes νR [4]. There is no dark-
matter candidate in the original minimal 3-3-1 model, nor

in the original 3-3-1 model with right-handed neutrinos,
since the new particles in these models either are electri-
cally charged or rapidly decay. A natural approach [9] is
that the stability of dark matter is based onW parity (similar
to R parity in supersymmetry) through considering the
baryon minus lepton numbers as a local gauge symmetry.
However, this mechanism works only with the 3-3-1 model
with neutral fermions (NR) that possess LðNRÞ ¼ 0 and
BðNRÞ ¼ 0. Therefore, the issue of dark matter for the
original 3-3-1 models remains unresolved.
If the B − L charge [even for similar charges that do not

commute with SUð3ÞL] is conserved, the 3-3-1 models are
not self-consistent, because the B − L and 3-3-1 sym-
metries are algebraically nonclosed [9,10]. Hence, the 3-3-
1 models are manifest only if they contain interactions that
explicitly violate B − L (this perspective views B − L as an
approximate symmetry). Because the normal Lagrangians
of the 3-3-1 models—including the gauge interactions,
minimal Yukawa Lagrangian, and minimal scalar potential
—conserve B − L, the unwanted (abnormal) interactions
that violate B − L must be presented. Such an interaction
provides the nonzero small masses for the neutrinos [11]. In
this work, we argue that the existence of inert fields not
only can make the 3-3-1 model viable, but also can provide
realistic candidates for dark matter. In more detail, one
might introduce a Z2 symmetry so that one scalar triplet of
the theory is odd, while all other fields are even under the
Z2 symmetry. Odd particles act as inert fields [12]; there-
fore, the lightest and neutral inert particle is stable and can
be dark matter [10,11]. Inert fields communicate with
normal fields via an interaction that violates B − L, and
this interaction subsequently separates the masses of the
inert fields that make the dark-matter candidate viable
under the direct searches.
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The minimal 3-3-1 model originally works with three
scalar triplets ρ ¼ ðρþ1 ; ρ02; ρþþ

3 Þ, η ¼ ðη01; η−2 ; ηþ3 Þ, and
χ ¼ ðχ−1 ; χ−−2 ; χ03Þ, and either with or without one scalar
sextet S ¼ ðS011; S−12; Sþ13; S−−22 ; S023; Sþþ

33 Þ. In order to enrich
the inert scalar sector responsible for dark matter, one can
consider the “reduced 3-3-1 model” [13] by excluding η
and S, or the “simple 3-3-1 model” [11] by excluding ρ and
S. Unfortunately, the reduced 3-3-1 model gives large
flavor-changing neutral currents as well as a large ρ
parameter because the new physics scale is limited by a
low Landau pole of around 5 TeV. The approach with the
simple 3-3-1 model seems to be more realistic, except for
the discrepancy between the flavor-changing neutral cur-
rent and ρ-parameter constraints (this, however, has not
really ruled out the model) [14]. Additional inert scalars can
be a triplet ρ or sextets (S, σ), or a replication of η or χ.
Among these proposals, the simple 3-3-1 model with inert
scalar sextet σ [that has X ¼ 1, where X is the charge of
Uð1ÞX] or with the replication of η or χ can provide realistic
dark-matter candidates. Dark-matter candidates for the
model with inert σ have already been studied in [11]. In
this work, we focus on dark matter in the models with η
and χ replications. We remind the reader that dark-matter
candidates of the model with ρ and the model with S are
ruled out by direct search constraints. Here, in these cases
the candidates are degenerate in masses and the interactions
of inert and normal sectors conserve B − L [11].
As a result of SUð3ÞL ⊗ Uð1ÞX symmetry, the normal

interactions generally produce relevant, new particles in
pairs, similar to superparticles in supersymmetry (cf. [9]).
Therefore, the 3-3-1 models have been thought to provide
dark-matter candidates in a similar manner [8]. The
problem, however, is how to suppress or evade the
unwanted interactions and vacuums that cause the fast
decay of dark matter. Fregolente and Tonasse [8] discussed
a scalar sector of the minimal 3-3-1 model, but their
candidate turned out to be the Goldstone boson of Z0,
which is unstable. Even the corresponding Higgs field
interpreted therein would decay into ordinary particles via
its coupling to the Standard Model Higgs bosons, exotic
quarks, and gauge bosons. Long and Lan and Filippi et al.
[8] discussed the scalar sector of the 3-3-1 model with
right-handed neutrinos; the candidate was the real or
imaginary part of a neutral scalar bilepton. Since the
dark-matter stability mechanism was not given, there is
no reason why the bilepton cannot develop a vacuum
expectation value (VEV), and the lepton-number-violating
(renormalizable) interactions in the Yukawa Lagrangian
and scalar potential will turn on. Thus, the real part will
decay into ordinary particles via the coupling to the
Standard Model Higgs bosons, while the real and imagi-
nary parts decay into light quarks due to ordinary and
exotic quark mixings. To keep the bilepton stable, Pires and
Rodrigues da Silva [8] imposed the lepton-number sym-
metry, which subsequently suppressed all the unwanted

interactions and vacuums. However, the problem was in
generating the neutrino masses; this finally breaks or
violates the symmetry (contradictory to the postulate),
and this destabilizes the candidate (e.g., the five-
dimensional interactions for neutrino masses mentioned
therein will lead to dark-matter decays into light neutrinos).
Mizukoshi et al. [8] introduced another lepton sector, along
with a Z2 symmetry or Uð1ÞG for dark-matter stability.
However, the Z2 is broken by the Higgs vacuum, while
Uð1ÞG is broken by its nontrivial dynamics [9]. The correct
stability mechanism should be a W parity as the residual
gauge symmetry. However, this works only with a new
lepton sector as well as the inclusion of B − L as a gauge
symmetry. To conclude, the identification of dark matter
and its stability for typical 3-3-1 models remain unsolved,
which have called for our attention. The advantage of inert
fields is that the dark-matter and neutrino masses can be
simultaneously understood.
Our paper is organized as follows: In Sec. II, we briefly

describe minimal 3-3-1 models that behave as the simple
3-3-1 model, and versions with η and χ replications. We
also calculate the interactions of inert particles with the
normal matter sector. In Sec. III, we present the dark-matter
relic density and experimental searches for those two
models. Finally, we summarize our work in Sec. IV.

II. BRIEF DESCRIPTION OF MINIMAL 3-3-1
MODELS

A. The simple 3-3-1 model

The fermions of the simple 3-3-1 model are arranged
as [11]

ψaL ≡
0
B@

νaL

eaL
ðeaRÞc

1
CA ∼ ð1; 3; 0Þ;

QαL ≡
0
B@

dαL
−uαL
JαL

1
CA ∼ ð3; 3�;−1=3Þ;

Q3L ≡
0
B@

u3L
d3L
J3L

1
CA ∼ ð3; 3; 2=3Þ; ð1Þ

uaR ∼ ð3; 1; 2=3Þ; daR ∼ ð3; 1;−1=3Þ;
JαR ∼ ð3; 1;−4=3Þ; J3R ∼ ð3; 1; 5=3Þ; ð2Þ

where a ¼ 1; 2; 3 and α ¼ 1; 2 are family indices. The
quantum numbers in parentheses are defined upon the
gauge symmetries SUð3ÞC; SUð3ÞL; Uð1ÞX, respectively.
The electric charge operator has the form Q ¼

T3 −
ffiffiffi
3

p
T8 þ X, where Tiði ¼ 1; 2…; 8Þ and X are the

charges of SUð3ÞL and Uð1ÞX, respectively. The exotic
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quarks have electric charges different from the usual ones,
QðJαÞ ¼ −4=3 and QðJ3Þ ¼ 5=3.
The model works well with two scalar triplets [11] as

η ¼

0
BB@

1ffiffi
2

p ðuþ S1 þ iA1Þ
η−2
ηþ3

1
CCA ∼ ð1; 3; 0Þ;

χ ¼

0
B@

χ−1
χ−−2

1ffiffi
2

p ðωþ S3 þ iA3Þ

1
CA ∼ ð1; 3;−1Þ: ð3Þ

The scalar potential is given by

Vsimple ¼ μ21η
†ηþ μ22χ

†χ þ λ1ðη†ηÞ2 þ λ2ðχ†χÞ2
þ λ3ðη†ηÞðχ†χÞ þ λ4ðη†χÞðχ†ηÞ; ð4Þ

where μ1;2 have dimension of mass, while λ1;2;3;4 are
dimensionless. These parameters satisfy

μ21;2 < 0; λ1;2;4 > 0;

−2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
< λ3 < Minf2λ1ðμ2=μ1Þ2; 2λ2ðμ1=μ2Þ2g: ð5Þ

The model contains four massive scalars, the respective
masses of which were obtained in [11] as follows:

h≡ cξS1 − sξS3; m2
h ≃ 4λ1λ2 − λ23

2λ2
u2;

H ≡ sξS1 þ cξS3; m2
H ≃ 2λ2ω

2;

H� ≡ cθη�3 þ sθχ�1 ; m2
H� ≃ λ4

2
ω2; ð6Þ

with denotations cx ¼ cosðxÞ; sx ¼ sinðxÞ; tx ¼ tanðxÞ for
any angle x. The mixing angles ξ, θ are defined as

tθ ¼
u
ω
; t2ξ ≃ λ3u

λ2ω
: ð7Þ

There are eight Goldstone bosons GZ ≡ A1, GZ0 ≡ A3,
G�

W ≡ η�2 , G
��
Y ≡ χ��

2 , and G�
X ≡ cθχ�1 − sθη�3 , which are

eaten by eight massive gauge bosons Z, Z0, W�, Y��, and
X� (see below), respectively. In the limit u ≪ ω, we have
ξ; θ → 0, thus

h≃ S1; H ≃ S3; H� ≃ η�3 ; G�
X ≃ χ�1 : ð8Þ

In the gauge sector, the gauge boson masses arise from
the Lagrangian

P
Φ¼η;χðDμhΦiÞ†ðDμhΦiÞ, where the covar-

iant derivative is defined asDμ ¼ ∂μþ igstiGiμþ igTiAiμþ
igXXBμ, in which the gauge coupling constants gs; g, and
gX and the gauge bosons Giμ; Aiμ, and Bμ are associated
with the 3-3-1 groups, respectively. The gauge bosons with
their masses are respectively given by [11]

W� ≡ A1∓iA2ffiffiffi
2

p ; m2
W ¼ g2

4
u2;

X∓ ≡ A4∓iA5ffiffiffi
2

p ; m2
X ¼ g2

4
ðω2 þ u2Þ; ð9Þ

Y∓∓ ≡ A6∓iA7ffiffiffi
2

p ; m2
Y ¼ g2

4
ω2; ð10Þ

and for the neutral gauge bosons

A ¼ sWA3 þ cWð−
ffiffiffi
3

p
tWA8 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

q
BÞ; mA ¼ 0;

Z1 ≃ cWA3 − sWð−
ffiffiffi
3

p
tWA8 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

q
BÞ; m2

Z1
≃ g2

4c2W
u2;

Z2 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

q
A8 þ

ffiffiffi
3

p
tWB; m2

Z2
≃ g2c2W

3ð1 − 4s2WÞ
ω2; ð11Þ

where sW ¼ e=g ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2

p
, with t ¼ gX=g, is the sine of Weinberg angle [15]. The photon field Aμ is exactly massless.

For the gauge bosons Z1; Z2 we have taken the limit u ≪ ω. The Z1 is identified as the Standard Model Z. The VEV u is
constrained by the mass of W, thus u≃ 246 GeV.
The Yukawa Lagrangian is given by

LY ¼ hJ33Q̄3LχJ3R þ hJαβQ̄αLχ
�JβR þ hu3aQ̄3LηuaR þ huαa

Λ
Q̄αLηχuaR þ hdαaQ̄αLη

�daR þ hd3a
Λ

Q̄3Lη
�χ�daR

þ heabψ̄
c
aLψbLηþ

h0eab
Λ2

ðψ̄c
aLηχÞðψbLχ

�Þ þ sνab
Λ

ðψ̄c
aLη

�ÞðψbLη
�Þ þ H:c:; ð12Þ

where the Λ is a new scale with the mass dimension. All the couplings, denoted by h’s, conserve B − L, except that sν

violates L by two units. The sν coupling can generate small masses for the neutrinos [11].
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Let us introduce a Z2 symmetry where all fields of the
simple 3-3-1 model are assigned as even under the Z2.
Below, we consider replication of the simple 3-3-1 model
by adding an extra scalar triplet, i.e., either η0 or χ0 assigned
as an odd field under the Z2.

B. The simple 3-3-1 model with η replication

An extra scalar triplet that replicates η is defined as

η0 ¼

0
B@

1ffiffi
2

p ðH0
1 þ iA0

1Þ
η0−2
η0þ3

1
CA ∼ ð1; 3; 0Þ: ð13Þ

We notice that η0 and η have the same gauge quantum
numbers. However, η0 is assigned as an odd field under the
Z2, η0 → −η0, so hη0i ¼ 0.
The scalar potential includes the Vsimple given in Eq. (4)

and the terms contained η0,

Vη0 ¼ μ2η0η
0†η0 þ x1ðη0†η0Þ2 þ x2ðη†ηÞðη0†η0Þ

þ x3ðχ†χÞðη0†η0Þ þ x4ðη†η0Þðη0†ηÞ þ x5ðχ†η0Þðη0†χÞ

þ 1

2
½x6ðη0†ηÞ2 þ H:c:�: ð14Þ

Here, μη0 has mass dimension, while xiði ¼ 1; 2; 3;…; 6Þ
are dimensionless. All the x6, u, and ω can be considered to
be real.
The model requires [10]

μ2η0 > 0; x1;3 > 0; x2 þ x4 � x6 > 0: ð15Þ

The gauge states H0
1, A

0
1, η

0�
2 ≡H0�

2 , and η0�3 ≡H0�
3 by

themselves are physically inert particles with correspond-
ing masses as follows:

m2
H0

1
¼ M2

η0 þ
1

2
ðx4 þ x6Þu2;

m2
A0
1
¼ M2

η0 þ
1

2
ðx4 − x6Þu2;

m2
H0�

2

¼ M2
η0 ; m2

H0�
3

¼ M2
η0 þ

1

2
x5ω2; ð16Þ

where M2
η0 ≡ μ2η0 þ 1

2
x2u2 þ 1

2
x3ω2. If H0

1 (or A0
1) is the

lightest inert particle (LIP), it can be the dark-matter
candidate.
All the interactions in Eq. (14) conserve B − L except

that of x6, since in principle the η0 fields can have arbitrary
B − L charges. This is analogous to the case of the 3-3-1
model with right-handed neutrinos [10]. The masses of H0

1

and A0
1 are separated by x6. Otherwise, the conservation of

B − L, i.e., x6 ¼ 0, rules out the candidates H0
1 and A0

1

because they possess a large scattering cross section off
nuclei due to the t-channel exchange by the Z boson [16].

Let us calculate the interactions of inert particles with
normal ones. Because of the Z2 symmetry, inert scalars
interact only with normal scalars and gauge bosons, not
with fermions. Details of the interactions are given in
Appendix A.
Under the Standard Model symmetry, the candidatesH0

1,
A0
1 transform as a SUð2ÞL doublet, analogous to the ones of

the inert doublet model [12]. However, our candidates are
distinguishable due to the following two points: (i) Since ω
is the 3-3-1 breaking scale fixed at TeV range [11], the
candidates that have masses ∼ω are naturally heavy.
However, note also that their masses depend on the scalar
couplings as well as the μη0 parameter. (ii) Besides the
interactions with the Standard Model particles, the candi-
dates have new interactions with the new gauge and Higgs
bosons. That is, in the large mass region the dark-matter
observables can be governed by new physics of the 3-3-1
model.

C. The simple 3-3-1 model with χ replication

The χ replication takes the form

χ0 ¼

0
B@

χ0−1
χ0−−2

1ffiffi
2

p ðH0
3 þ iA0

3Þ

1
CA ∼ ð1; 3;−1Þ: ð17Þ

The χ0 is assigned as odd under the Z2 symmetry that
requires hχ0i ¼ 0. The additional potential into Eq. (4) due
to the χ0 field is given as

Vχ0 ¼ μ2χ0χ
0†χ0 þ y1ðχ0†χ0Þ2 þ y2ðη†ηÞðχ0†χ0Þ

þ y3ðχ†χÞðχ0†χ0Þ þ y4ðη†χ0Þðχ0†ηÞ þ y5ðχ†χ0Þðχ0†χÞ

þ 1

2
½y6ðχ0†χÞ2 þ H:c:�: ð18Þ

To make sure the scalar potential is bounded from below
and the Z2 is conserved by the vacuum, we impose

μ2χ0 > 0; y1;2 > 0; y3 þ y5 � y6 > 0: ð19Þ

The physical inert scalars H0
3, A0

3, χ0�1 ≡H0�
1 , and

χ0��
2 ≡H0�

2 with the respective masses are obtained as

m2
H0

3
¼ M2

χ0 þ
1

2
ðy5 þ y6Þω2;

m2
A0
3
¼ M2

χ0 þ
1

2
ðy5 − y6Þω2;

m2
H0��

2

¼ M2
χ0 ; m2

H0�
1

¼ M2
χ0 þ

1

2
y4u2; ð20Þ

whereM2
χ0 ≡ μ2χ0 þ 1

2
y2u2 þ 1

2
y3ω2. IfH0

3 (or A
0
3) is the LIP,

it can be the dark-matter candidate.
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The couplings y1;2;3;4;5 conserve B − L, whereas y6
violates this charge because χ0 can have arbitrary B − L
charges. The masses of H0

3 and A0
3 are separated by y6,

similar to the previous case. If their masses are degenerate,
i.e., B − L is conserved, there is a scattering of H0

3 and A0
3

off nuclei due to the t-channel exchange by the Z0 boson.
This cross section is also large because the Z0 mass is
limited by the Landau pole, which is experimentally
unacceptable (this matter is analogous to the case of the
sextet presented in [11]).
Let us consider the interactions of inert Higgs with

normal Higgs as well as the gauge bosons. We remind the
reader that inert scalars do not interact with fermions
because of the invariance under the Z2 symmetry.
Details of interactions are given in Appendix B.
The candidatesH0

3 and A
0
3 transform as singlets under the

Standard Model symmetry, similar to the phantom of
Silveira-Zee model [17]. However, their physics is distin-
guishable due to the interactions with the new gauge and
Higgs bosons, in addition to the Standard Model Higgs
portal. The dark-matter observables in their large mass
range can be governed by the new physics; since the
candidates have masses proportional to ω, they have natural
masses in the TeV range. Please note that their masses
depend on the scalar couplings as well as the μχ0 parameter.

III. DARK MATTER IN MINIMAL 3-3-1 MODELS

Let us recall that the simple 3-3-1 model with an inert ρ
triplet and the model with inert scalar sextets were
previously considered in [11]. In this work, we study dark
matter in the simple 3-3-1 model with η replication (which
we call the η0 model) and the model with χ replication
(called the χ0 model) in detail.
In order to calculate the relic density as well as indirect

and direct searches for dark matter, we use micrOMEGAs
[18,19] after expanding the relevant interactions and
implementing new model files in CalcHEP [20]. All
possible annihilation and coannihilation channels are con-
sidered in the computation of relic density. The coannihi-
lation may reduce the relic density significantly if the mass
of inert particles exists within around 10%, or even 20%, of
the LIP mass [21].
Dark-matter annihilation produces pairs of Standard

Model particles (or new particles, in our model) that
hadronize and decay into stable particles. Indirect search
observes the signals of positrons, antiprotons, and gamma
rays that are finally produced in dark-matter annihilation
processes. MicrOMEGAs computes the photon, positron,
and antiproton flux at a given energy E and the angle of the
direction of observation (this can be the source for experi-
ments such as PAMELA, Fermi, etc.).
In direct searches, one measures the recoil energy

deposited by the scattering of LIPs with the nuclei. In this
work, both the η0 model and the χ0 model provide Higgs
dark matter that can only contribute to the spin-independent

interactions with the nuclei. To derive the LIP-nucleus
cross section, we use the method mentioned in [19]. All
interactions of the LIP with quarks are input in the model
files; CalcHEP then generates and calculates all diagrams
for LIP-quark and -antiquark elastic scattering at zero
momentum. The normalized cross section on a pointlike
nucleus is obtained as

σSILIP−N ¼ 4μ2LIP
π

ðZλp þ ðA − ZÞλnÞ2; ð21Þ

where μLIP is the LIP-nucleus reduced mass,
μLIP ¼ mLIPmnuclei=ðmLIP þmnucleiÞ≃mnuclei. λp and λn
are the effective couplings of the LIP to protons and
neutrons, respectively. The couplings λp;n are connected
to the coefficients fNq , which are linked to the pion-nucleon
sigma term σπN and the quantity σ0 [19]. Recent analyses
suggest that [22]

σπN ¼ 55 − 73 MeV; σ0 ¼ 35� 5 MeV: ð22Þ

The direct rate does not change as much in the above ranges
of σπN and σ0. The results of the relic density as well as of
searches for dark matter in each model are presented in
subsections below.

A. Dark matter in the simple 3-3-1 model
with η replication

The inert particles in the simple 3-3-1 model with η
replication are H0

1; A
0
1; H

0�
2 , and H0�

3 . With the condition
x6 < minf0;−x4; ðω=uÞ2x5 − x4g, H0

1 is the LIP, and can
be a candidate for dark matter. See Appendix C for possible
(co)annihilation channels of H0

1.
The η0 model contains the following parameters:

μ2η0 ;ω; λ1;2;3;4, and x1;2;3;4;5;6. Let us choose some fixed
ones as

λ2 ¼ λ3 ¼ λ4 ¼ 0.1; x1 ¼ 0.01; x2 ¼ 0.03;

x3 ¼ 0.01; x4 ¼ 0.07; x5 ¼ 0.08; x6 ¼ −0.09:

ð23Þ

The coupling λ1 is constrained by the mass of the Standard
Model Higgs,mh ¼ 125 GeV. The squared-mass splittings
of inert fields are obviously defined, where the doublet
components (H0

1; A
0
1; H

0
2) are slightly separated due to the

weak scale, but they are largely separated from the singlet
H0

3 by the ω scale.
From Eq. (16), the dark-matter mass depends on the two

parameters μη0 and ω. By our choice, the ω term of the dark-
matter mass is

ffiffiffiffix3
2

p
ω≃ 0.07ω, which is given at the weak

scale for ω in a few TeV. Therefore, the dark-matter mass
ranges from the weak scale to the TeV scale for μη0
varying correspondingly on such a range. This selection
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of the dark-matter mass region will scan all contributions of
the Standard Model and 3-3-1 models to the dark-matter
relic density [this is because (co)annihilation precesses
open when the dark matter is heavier than its product].
The simple 3-3-1 model inherits two distinct regions of

mass spectrum: (1), given at the weak scale (u) of the
Standard Model particles such as t, h, Z,W, and so on; and
(2), achieved at the TeV scale (ω) of new particles,
including X, Y, Z0, J1;2;3, H0, and H�. Notice that for ω ¼
3 − 5 TeV [11], X; Y; Z0, H0 (and assumed J1;2;3) all have
mass beyond 1 TeV. However, H� is slightly lighter,
mH� ≃ 0.67 − 1.12 TeV. This is due to the particular
choice of the scalar couplings. Of course, one can inves-
tigate the case where all the new scalars are heavy. Indeed,
the conclusions given below remain unchanged.
Figure 1 shows the relic density as a function of dark-

matter mass by varying μη0 from 100 to 5000 GeV for ω ¼
3 TeV (red), ω ¼ 4 TeV (green), and ω ¼ 5 TeV (blue).
For each value of ω, there are three regions of dark-matter
mass yielding right abundances (Ωh2 ≤ 0.1120� 0.0056
[23], where h is the reduced Hubble constant, which
should not be confused with the Higgs field as given at
outset).
(1) The first region: mH0

1
< 600 GeV. The relic density

in this regime is governed by the Standard Model
gauge and Higgs portals with only the Standard
Model productions. Therefore, the relic density is
independent of ω, the 3-3-1 breaking scale. All these
contributions can be theoretically computed, which
yields the effective, thermally averaged annihilation
cross section times velocity as [24]

hσvi≃
�

α

150 GeV

�
2
��

600 GeV
mH0

1

�
2

þ
�
x × 1.354 TeV

mH0
1

�
2
�
; ð24Þ

where ðα=150 GeVÞ2 ≃ 1 pb, x≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x24 þ x26

q
,

and the first and second terms in the brackets come
from the gauge and Higgs portals, respectively.
Because the Higgs couplings are small, x≃ 0.11,
the Higgs portal contributes negligibly. Hence, the
relic density is governed by the gauge portal, which
leads to mH0

1
≃ 600 GeV in order to recover the

correct abundance, Ωh2 ≃ 0.1 pb=hσvi≃ 0.11.
This matches the result given by micrOMEGAs.
From Fig. 1, we see that the three lines coincide at
the region below 600 GeV for ω ¼ 3; 4, or 5 TeV, as
predicted. This implies that we can have a dark-
matter candidate with a mass of just or below
600 GeV, in agreement with the WMAP results
on the relic density; this is independent with the new
physics of the simple 3-3-1 model. The simple 3-3-1
model as well as the inert fields play the new role in
the next two regions.

(2) The second region:H resonance. This regime for the
dark-matter relic density is very narrow, as can be
seen by the dotted lines in Fig. 1. It is due to an H
resonance through the s-channel annihilation
of the dark matter into Standard Model particles,
including H� if kinematically allowed, by H ex-
change (note that H is a new Higgs of the simple
3-3-1 model). In other words, the relic density for
this regime is set by the H resonance with the dark-

matter mass around mH0
1
¼ 1

2
mH ¼

ffiffiffi
λ2
2

q
ω, which

yields mH0
1
≃ 670 GeV for ω ¼ 3 TeV, mH0

1
≃

895 GeV for ω ¼ 4 TeV, and mH0
1
≃ 1.118 TeV

for ω ¼ 5 TeV. The resonant points (dark-matter
mass) as seen in the figure coincide with the given
estimation. On the other hand, all the new particles
of the simple 3-3-1 model are heavier than 1 TeV,
except H� which has a mass of 670 GeV to
1.12 TeV for ω ¼ 3 − 5 TeV, as mentioned above.
Therefore, only the H� channel can be additionally
opened to give a small contribution to the relic
density in this range (from 600 GeV to the point
before the other new particles of the simple 3-3-1
model enter the product of dark-matter annihilation,
a point which depends on the size of ω). Despite this
contribution, the relic density radically increases and
overpopulates out of the resonance regime, since the
dark-matter mass increases.

(3) The third region: the 3-3-1 region. When the dark-
matter mass reaches various masses of the new

FIG. 1 (color online). Ωh2 as a function of mH0
1
for ω ¼ 3 TeV

(red), ω ¼ 4 TeV (green), and ω ¼ 5 TeV (blue). The three
curved lines are coincident at low-mass region and separated at
the TeV scale for ω ¼ 3 TeV, ω ¼ 4 TeV, and ω ¼ 5 TeV,
respectively, from left to right. The dotted lines are rare regions
for ω ¼ 3 TeV (left), ω ¼ 4 TeV (middle), and ω ¼ 5 TeV
(right). The horizontal line is the WMAP limit on the relic
density.
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particles of the simple 3-3-1 model, the correspond-
ing annihilation channels open, and the dark-matter
candidate can annihilate into the new gauge bosons,
new Higgs bosons, and exotic quarks. Because of the
numerous contributions, the relic density decreases
to the correct abundance, with the values of dark-
matter mass evaluated as follows: mH0

1
≥ 1.15 TeV

for ω ¼ 3 TeV,mH0
1
≥ 1.6 TeV for ω ¼ 4 TeV, and

mH0
1
≥ 2.05 TeV for ω ¼ 5 TeV, in order to satisfy

the WMAP bounds [23]. Reaching far above the ω
scale, the inert fields are highly degenerated, and the
coannihilations such as H0

1A
0
1, H

0
1H

0
2, H

0
1H

0
3, and so

on, dominate over the effective annihilation cross
section of dark matter. As a matter of fact, all the
inert doublet and singlet components have gauge
interactions with ordinary and new gauge bosons
such that the s-channel coannihilation cross sections
are turned on in this regime, which are more
enhanced than the annihilation ones (this is also
valid for the scalar interactions, but is not signified in
that case). This effect makes the relic density
continuously decrease [21]. The simple 3-3-1 model,
like the minimal 3-3-1 model, encounters a low
Landau pole [25]; the next evolution of dark-matter
mass is therefore nonsense.

All the above conclusions are shown more clearly
in Fig. 2, in which we determine the ω − μη0 (left)
and ω −mH0

1
(right) planes by varying both ω and μη0 in

the regions (3000 GeV< ω< 9000 TeV) and (100 GeV <
μη0 < 3100 GeV). The color regions are in agreement with
the requirement Ωh2 < 0.1176. The red regions satisfy
0.1064 < Ωh2 < 0.1176. The lightest dark-matter mass
can be at the electroweak scale, mH0

1
ðminÞ ¼ 235.2 GeV

for ω ¼ 3 TeV and μη0 ¼ 100 GeV. However, please note
that this is by our choice of the parameter values, despite

the fact that the dark matter has a natural mass in the ω
scale, as mentioned before. The right panel of Fig. 2 shows
that the 600-GeV dark matter supplies the correct relic
density when ω changes (corresponding to the red point
line in the region μη0 < 600 GeV in the left panel). This is
due to the Standard Model contribution only. The middle
(straight) red point line is due to the H resonance. The
rightmost red point line is due to the contribution of new
particles of the simple 3-3-1 model. Here, the dark-matter
mass is beyond 1 TeV.
Now let us consider in detail the results of indirect and

direct searches for dark matter. For example, with
ω ¼ 3 TeV, μη0 ¼ 534 GeV we get mH0

1
¼ 574.7 GeV

and other inert particles mH0
2
¼ 575.2 GeV,

mA0
1
¼ 579.4 GeV, and mH0

3
¼ 831.2 GeV. Since the

mass-squared difference between m2
H0

1
; m2

A0
1
, and m2

H0
2
is

of the order of x4u2, x6u2, the mass of A0
1 and H0�

2 is very
close to mH0

1
for any values of ω. That is why the

coannihilation contributes significantly to 1
Ωh2. For the

choice ω ¼ 3 TeV, μη0 ¼ 534 GeV, we get
Ωh2 ¼ 0.111, and the main annihilation/coannihilation
channels are

H0þ
2 H0−

2 → WþW−; H0
1H

0
1 → Z1Z1;

H0
1H

0
1 → WþW−; H0

1H
0�
2 → AW�;

H0þ
2 H0−

2 → AA: ð25Þ

In this case, the photon flux, positron flux, and antiproton
flux are

2.8 × 10−14 ðs cm2 sr GeVÞ−1;
1.8 × 10−12 ðs cm2 sr GeVÞ−1;
3.5 × 10−11 ðs cm2 sr GeVÞ−1;

FIG. 2 (color online). Contour plot of the relic density on the ω-μη0 plane (left) and the ω-mH0
1
plane (right) in agreement with WMAP

data. The red regions (in black and white, the darker fringe) yield the correct abundance, 0.1064 < Ωh2 < 0.1176.
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correspondingly, for the angle of sight 0.10 rad and energy
E ¼ 100 GeV. The H0

1 − p; n cross section is 1.5 ×
10−47 cm2 and the total number of events is
2.2 × 10−6 events=day=kg.
The dark-matter mass can be at the TeV scale if we

choose μη0 ¼ 1171 GeV for ω ¼ 3 TeV. In this case the
dominant channels of annihilation/coannihilation can be
heavy gauge bosons, such as H0þ

2 H0þ
3 → WþXþ; YþþZ1.

For dark matter with mass around 570 GeV, the results of
the relic density as well as the search for dark matter do not
change when varying ω, since the couplings in the
dominant channels do not depend on ω, as mentioned
above. The plane hσ:vreli −mH0

1
for the abundance below

the experimental upper bound, Ωh2ðmaxÞ ¼ 0.1176, is
shown in Fig. 3. For the correct abundance of dark matter,
the total annihilation cross section times the relative
velocity of incoming dark-matter particles and the

dark-matter mass is of the order of 10−26 cm3=s for
mH0

1
< 2 TeV, and it decreases when mH0

1
increases

because heavier dark matter increases the contribution of
coannihilation to 1

Ωh2.
Figure 4 shows the values of σLIP-nucleon as a function of

the dark-matter mass obtained from micrOMEGAs by
fixing the nucleon form factors, σ0 ¼ 30 MeV and
σπN ¼ 73 MeV. The value of σLIP-nucleon is 5.4 ×
10−48 cm2 for a Xe detector and the total number of events
is 1.1 × 10−8 events=day=kg for dark matter with mass
around 2 TeV.
Let us calculate the direct dark-matter search by hand

and compare it to the results achieved from micrOMEGAs.
The dark matter scatters off the nuclei of a large detector via
interaction with quarks confined in nucleons. Because the
dark matter is closely nonrelativistic, the process can be
described by an effective Lagrangian [19],

LS ¼ 2λqmH0
1
H0

1H
0
1q̄q: ð26Þ

Note that for the real scalar field, only spin-independent
and even interactions are possible. There exist interactions
of the pairH0

1 coupled to h andH0. However, the dominant
contributions to H0

1-quark scattering are done by the
t-channel exchange of h. We obtain

λq ¼
ðx2 þ x4 þ x6Þmq

2mH0
1
m2

h

: ð27Þ

The H0
1-nucleon scattering amplitude is taken as a sum-

mation over the quark-level interactions with the respective
nucleon form factors. The H0

1-nucleon cross section is
given as

FIG. 3 (color online). The hσ:vreli −mH0
1
plane in agreement

with WMAP data. The red regions (in black and white, the darker
regions) yield the correct abundance, 0.1064 < Ωh2 < 0.1176.

FIG. 4 (color online). σH0
1
−N (left) and the total number of events=day=kg (right) as functions ofmH0

1
. The (blue) continuous line on the

left panel was obtained from the analytical calculation for direct search.
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σH0
1
−N ¼ 4m2

r

π
λ2N; ð28Þ

where N ¼ p; n denotes nucleon, and

mr ¼
mH0

1
mN

mH0
1
þmN

≃mN;

λN
mN

¼
X
u;d;s

fNTq
λq
mq

þ 2

27
fNTG

X
c;b;t

λq
mq

; ð29Þ

where fNTG ¼ 1 −
P

u;d;sf
N
Tq. The fNTq values were consid-

ered in [26],

fNTu ¼ 0.014� 0.003; fNTd ¼ 0.036� 0.008;

fNTs ¼ 0.118� 0.062: ð30Þ

Taking mN ¼ 1 GeV and mh ¼ 125 GeV [27], we obtain

σH0
1
−N ≃

�ðx2 þ x4 þ x6Þ TeV
mH0

1

�
2

× 6.146 × 10−44 cm2

≃
�
1 TeV
mH0

1

�
2

× 6.146 × 10−48 cm2; ð31Þ

noting that x2;4;6 were given in Eq. (23). The σH0
1
−N

obtained in Eq. (31) is inversely proportional to the square
of the dark-matter mass that is shown as a (blue) continuous
line passed by the red region in Fig. 4. It implies that the
direct search calculated by hand is in nice agreement with
the result yielded by the micrOMEGAs package.
Dark-matter candidates can be searched for at particle

colliders as well. At the LHC, the collision of protons may
produce candidates, recognized in form of large missing
transverse momentum or energy. The minimal experimental
signature would be an excess of a mono-X final state,
recoiling against suchmissing energy.WhenH0

1 is in the first
region, its production is via the exchanges of the Standard
Model h, Z, and W bosons, as it has couplings hH0

1H
0
1,

ZH0
1A

0
1,WH0

1H
0
2, hhH

0
1H

0
1, ZZH

0
1H

0
1, andWWH0

1H
0
1 (note

that h can interact with gluons via a t-quark loop). The
mono-X signatures possibly include: (i) jet, which is either a
gluon (g) or a quark (q), by processes gg → gH0

1H
0
1,

gq → qH0
1H

0
1, qq̄ → gH0

1H
0
1 (all via h exchange), gq →

qH0
1A

0
1, qq̄ → gH0

1A
0
1 (all via Z exchange), and

gq → qH0
1H

0
2,qq̄ → gH0

1H
0
2 (all viaW exchange); (ii)ZðWÞ

by process qq̄ → ZðWÞH0
1H

0
1 via ZðWÞ and h (or only the

former, without the latter) exchange; and (iii) h by processes
gg → hH0

1H
0
1, qq̄ → hH0

1A
0
1 via h or ZðWÞ exchange. Note

that for the processes concerning theW boson, the two fields
ðq; qÞ do notmean the same quark.WhenH0

1 is in the second
or third region, the new physics of the 3-3-1 model
contributes instead, where we have similar processes with
h replaced by H and Z replaced by Z0 (in this case, H
interacts with gluons via exotic quark loops). The mono-X

signatures are jet, Z0, andH, possibly additionally including
H�,X�,Y��, and exotic quarks.Data fromLHC run Imight
provide some constraints, but the LHC run II would yield
crucial tests of them. All the mentioned phenomena are
worth exploring in future studies.

B. Dark matter in the simple 3-3-1 model
with χ replication

The simple 3-3-1 model with χ replication contains six
inert particles: H0�

1 ; H0��
2 ; H0

3, and A0
3. If we assume that

y6 < minf0;−y5; ðu=ωÞ2y4 − y5g, H0
3 is the lightest inert

particle and can be the dark-matter candidate. The (co)
annihilation processes concerning this candidate are given
in Appendix C.
The parameters appeared in this model are μ2χ0 ;ω; λ1;2;3;4,

and y1;2;3;4;5;6, in which the couplings λ1;2;3;4 are fixed as
given in the η0 model. Now let us consider the results for
relic density and indirect search, as well as direct search
with a set of y1;2;3;4;5;6 in the same order,

y1 ¼ 0.01; y2 ¼ 0.04; y3 ¼ 0.058;

y4 ¼ 0.01; y5 ¼ 0.05; y6 ¼ −0.06: ð32Þ

All the ingredients of the simple 3-3-1 model, such as the
masses of new particles, the mass hierarchies among the
new particles and ordinary particles, and the couplings as
given, are retained. Note also that the squared-mass
splittings of inert fields are definitely small; the doublet
components ðH0

1; H
0
2Þ are separated by the u scale, while

the singlets H0
3 and A

0
3, as well as the singlets and doublets,

are separated by the ω scale.
Because the dark matter H0

3 is a singlet under Standard
Model symmetry, it does not have gauge interactions with
Standard Model gauge bosons. Therefore, at low energy,
the gauge portal for dark-matter (co)annihilations is sup-
pressed. The relic density in this regime is only governed
by the Higgs portal (h) with the Standard Model produc-
tions. The effective annihilation cross section times velocity
is obtained by [10]

hσvi≃
�

α

150 GeV

�
2
�
y2 × 2.2 TeV

mH0
3

�
2

: ð33Þ

Because the chosen scalar coupling is small, y2 ¼ 0.04, the
relic density given by Ωh2 ≃ 0.1 pb=hσvi≃ 0.1 ×

ðmH0
3
=88 GeVÞ2 is overpopulated; this spoils the WMAP

bounds, provided that mH0
3
is larger than the weak scale. Of

course, we can have a low-energy solution for the dark-
matter candidate if the y2 coupling is enhanced. While this
possibility is interesting as studied in the literature [17], it
will be not be addressed in our work. We are concerned
with the high-energy regime of dark matter, where the
simple 3-3-1 model contributions become important.
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The relic abundance is considered as a function of mH0
3
,

shown in Fig. 5 for ω ¼ 3 TeV (red), ω ¼ 4 TeV (green),
and ω ¼ 5 TeV (blue). For each value of ω, when the
dark-matter mass rises from the outset, the relic density is
rapidly decreased. This phenomenon is due to the H
resonance of the dark-matter annihilation (H0

3) into the
Standard Model particles, including H� if kinematically
allowed, analogous to the previous model. That is, the H
resonance is crucial in determining the dark-matter
relic density at its low-mass regime before new particles
of the simple 3-3-1 model enter the production. The
resonant point is given by mH0

3
¼ 1

2
mH, which yields

mH0
3
≃ 670 GeV for ω ¼ 3 TeV, mH0

3
≃ 895 GeV for

ω ¼ 4 TeV, and mH0
3
≃ 1.118 TeV for ω ¼ 5 TeV (these

values coincide, respectively, with those of the previous
model). Furthermore, the dark-matter mass is bounded by
mH0

3
≥ 580 GeV for ω ¼ 3 TeV, mH0

3
≥ 770 GeV for

ω ¼ 4 TeV, or mH0
3
> 990 GeV for ω ¼ 5 TeV.

After the resonant point, the relic density increases as the
dark-matter mass increases. However, it is quickly depopu-
lated due to the new contributions of the simple 3-3-1
model. From the figure we see that there is a gap (in the
dark-matter mass) when ω > 4 TeV; the relic density is
overpopulated. The phenomenon happens in a similar
manner as the previous model, because the dark-matter
mass increases against the contributions from the new
particles of the simple 3-3-1 model. Going far above the ω
scale, the relic density still decreases. This effect is due to
the large contributions of the coannihilations resulting from
strongly degenerate inert fields [21]. Because the model has
a low Landau pole, as mentioned [25], continuously rising
the mass parameter is simply nonsense.
The discussion above can be illustratedmore clearly in the

ω − μχ0 plane (left) and ω −mH0
3
plane (right) in Fig. 6. For

each value ofω, there is a lower bound on thevalue ofμχ0 that
results in a respective lower bound onmH0

3
, in order to satisfy

the WMAP data. It is different from the η0 model in that the
doublet dark matter H0

1 in the η0 model can appear near the
electroweak scale as governed by the StandardModel gauge
portal, but the singlet darkmatterH0

3 in the χ
0model does not

appear at this regime because the gauge portal does not
work. Note that in this regime both models have suppressed
Higgs portals. Given that the scalar couplings are enhanced
(by other choices) in a comparable manner as the gauge
couplings, their dark-matter phenomenologies should hap-
pen similarly. Again, from the figure, the two parallel red
point lines at the leftmost regime present the edges of the
resonant width imposed by WMAP bounds. The bottom of
the red hat is the bound on ω (∼4 TeV) at which the relic
density becomes overpopulated after the resonance. The
wide red bank describes various contributions of the new
particles of the simple 3-3-1 model.
By varying ω and μχ0 in the ranges (3000, 9000) GeV

and (100, 3000) GeV, respectively, we figure out the

FIG. 5 (color online). Ωh2 as a function of mH0
3
for ω ¼ 3 TeV

(red), ω ¼ 4 TeV (green), and ω ¼ 5 TeV (blue), from left to
right, respectively.

FIG. 6 (color online). Contour plot of the relic density on the ω − μχ0 plane (left) and the ω −mH0
3
plane (right) in agreement with

WMAP data. The red regions (in black and white, the darker fringe) yield the correct abundance, 0.1064 < Ωh2 < 0.1176.

P. V. DONG et al. PHYSICAL REVIEW D 91, 115019 (2015)

115019-10



hσ:vreli −mH0
3
plane in Fig. 7, in which the green regions

satisfy the relic density Ωh2 ≤ 0.1064 while the red ones
yield the correct abundance. The hσ:vreli gets the typical
value ∼10−26 cm3=s for the dark-matter mass below 2 TeV,
similar to the η0 model. The direct search results depending
on mH0

3
are shown in Fig. 8. The H0

3-nucleon cross section

is 2.1 × 10−47 cm2 and the number of events is 8.7 ×
10−7 events=day=kg for mH0

3
¼ 2 TeV.

Here, we give an example of dark matter at low energy.
For ω ¼ 3 TeV, μχ0 ¼ 361 GeV, the dark matter with
mass 589 GeV provides the abundance 0.11. The main
annihilation/coannihilation channels are

H0
3H

0
3 → hh; H0þþ

2 H0−−
2 → hh; H0þ

1 H0−
1 → hh;

H0
3H

0�
1 → Z1X�; H0

3H
0��
2 → Z1Y��: ð34Þ

The photon flux, positron flux, and antiproton flux are

5.3 × 10−16 ðs cm2 sr GeVÞ−1;
2.4 × 10−14 ðs cm2 sr GeVÞ−1;
6.9 × 10−13 ðs cm2 sr GeVÞ−1;

respectively, for the angle of sight 0.10 rad and energy
E ¼ 100 GeV. The H0

3 − p; n cross section is 2.3 ×
10−46 cm2 and the total number of events=day=kg is
3.3 × 10−5. For the same dark-matter mass around
580 GeV, the signals in the indirect search for dark matter
in the η0 model are more sensitive, but the direct search
results are lower, than that in the χ0 model. This conclusion
remains the same if we test for dark matter in the TeV range.
Similarly, we can calculate the direct search by hand as

analysis of the η0 model. The effective Lagrangian takes the
form

L0
S ¼ 2λ0qmH0

3
H0

3H
0
3q̄q: ð35Þ

We obtain

λ0q ¼
y2mq

2mH0
3
m2

h

; ð36Þ

and finally

σH0
3
−N ≃

�
y2 TeV
mH0

3

�
2

× 6.146 × 10−44 cm2: ð37Þ

The result given in Eq. (37) is depicted as a (blue)
continuous line shown on the left side of Fig. 8 for
y2 ¼ 0.04. The line goes through the red region, indicating
that the result calculated by hand is in nice agreement with
the one yielded from micrOMEGAs.
The mono-X search forH0

3 differs from the previous case
for the low-energy regime (if it is allowed by reselecting

FIG. 7 (color online). The hσ:vreli −mH0
3
plane in agreement

with WMAP data. The red regions (in black and white, the darker
regions) yield the correct abundance, 0.1064 < Ωh2 < 0.1176.

FIG. 8 (color online). σH0
3
−N (left) and the total number of events=day=kg (right) as functions ofmH0

3
. The (blue) continuous line on the

left panel was obtained from the analytical calculation for direct search.
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parameter values) because it has only the Standard Model
Higgs portal interactions. Therefore, only the processes that
are exchanged by h are available. When H0

3 is at the high-
energy regime with the 3-3-1 contributions, the mono-X
signatures are jet, H, and Z0, and possibly include exotic
quarks, H�, X�, and Y��. Here, all the processes analo-
gous to the previous case are present. Therefore, the inert
scalar singlet has rich phenomenologies featured for the
3-3-1 model, unlike previous proposals. Also, because this
particle is bilepton, the new charged scalars H� might
present characteristic signatures at colliders, and it can be
created in pairs or in association with other bileptons such
as the exotic quarks and new non-Hermitian gauge bosons.

IV. CONCLUSION

The minimal 3-3-1 model can work as the simple 3-3-1
model with two scalar triplets η and χ, while leaving all other
scalars as odd (inert) fields under a Z2 symmetry [11]. As a
common feature of the 3-3-1 models recently investigated,
the simple 3-3-1 model is only a low-energy effective theory
such that B − L nonconserving interactions must present
[9,10]. This feature is strongly supported by the fact that the
proton decay operator always disappears due to the lepton-
party ð−1ÞL conservation, while the small neutrino masses
result from the approximate lepton-number symmetry [11].
Furthermore, with such criteria, inert fields as mentioned are
naturally accommodated. Indeed, their presence (besides the
neutrino mass operators) not only makes the model viable,
but it also provides dark-matter candidates. The B − L
nonconserving interactions between inert fields and normal
scalars are crucial to determine the dark-matter mass splitting
from its complex counterpart. As a result, this splitting
suppresses the large scattering magnitudes of dark matter
with nuclei via the Z; Z0 boson exchanges (which evades the
strengthened direct search bounds). Among the inert fields
proposed, the simple 3-3-1 model with inert X ¼ 1 sextet,
the model with η replication (the η0 model), and the version
with χ replication (the χ0 model) satisfy the above conditions.
The latter two models have been further discussed in
this work.
As a matter of fact, the original simple 3-3-1 model does

not contain dark matter. The introduction of inert triplets (η0
in the η0 model and χ0 in the χ0 model) that are odd under a Z2

symmetry (where all the other fields are even) means that
they do not mix with normal particles. Because of the Z2

conservation, inert scalars have zero VEV and interact only
with the normal scalars and gauge bosons. There is no
interaction between inert particles and fermions. The lightest
and neutral inert particle is stable; it can be the dark-matter
candidate. Our proposals provide a doublet dark matter H0

1,
in the η0 model, as well as a singlet dark matter H0

3, in the χ
0

model. All the relevant interactions that can contribute to
the annihilation/coannihilation processes have been calcu-
lated. The results for the relic density as well as experi-
mental searches for the dark-matter candidates have been

investigated using the micrOMEGAs package including the
implementation of the new model files.
It is interesting that in both the η0 and χ0 models, the dark-

matter observables in the middle scale (between the weak
and 3-3-1 scales) are governed by theH resonance, whereH
is the new neutral Higgs boson of the simple 3-3-1 model.
The dominant contributions from various new gauge portals
and the new Higgs portal set the dark-matter observables in
the 3-3-1 scale. The large coannihilation effects due to
strongly degenerated inert fields make the relic densities
continuously decrease when the dark-matter masses are very
large, far above the ω scale. There is a limit for the dark-
matter mass, as well as the dark-matter observables, due to
the Landau pole subjected to the 3-3-1 models. At low
energy, the doublet candidate H0

1 has the Standard Model
gauge portal interactions, whereas the singlet one H0

3 does
not. Both candidates can interact with the Standard Model
via the Higgs portal (h). If the scalar couplings for the
candidates are small in comparison to the gauge couplings,
there is no low-energy solution for the singlet candidate.
However, when the scalar couplings become comparable to
the gauge ones, all of them can be realized as low-energy
dark matters via the Higgs portal language.
From the imposed parameter values, the following

conclusions are derived:
(1) The region below 2 TeV yields the typical value of

the thermally averaged annihilation cross section
times velocity for dark matter, hσvi ∼ 10−26 cm3=s.

(2) The dark matter–nucleon scattering cross section
given by micrOMEGAs perfectly coincides with the
theoretical computation. Furthermore, the values
achieved are in agreement with the experimental
data.

(3) For each value of ω, the dark-matter mass region that
yields the correct abundance is quite narrow.

(4) For all values of ω, the doublet dark matterH0
1 in the

η0 model can be at the electroweak scale, up to the
scale bounded by 600 GeV. The singlet dark matter
H0

3 in the χ0 model disappears in this range. There is
a lower bound on mH0

3
, for example, mH0

3
>

580 GeV for ω ¼ 3 TeV, mH0
3
> 770 GeV for

ω ¼ 4 TeV, or mH0
3
> 990 GeV for ω ¼ 5 TeV.

(5) Both models have same resonance point at the
middle scale, mDM ¼ 1

2
mH: mDM ≃ 670 GeV for

ω ¼ 3 TeV, mDM ≃ 895 GeV for ω ¼ 4 TeV, and
mDM ≃ 1.118 TeV for ω ¼ 5 TeV.

(6) The indirect search (the particle fluxes) for the dark-
matter candidate in the η0 model is more sensitive.
However, the direct search results such as the
σLIP-nucleon, the total number of events=day=kg, are
lower for the same dark-matter mass in comparison
with signals in the χ0 model.

With the results obtained, we first conclude that the 3-3-1
models may have a natural room for dark matter, and
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second, that the dark-matter phenomenologies are rich. All
of our results call for further study.
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APPENDIX A: INTERACTIONS OF INERT AND
NORMAL SECTORS IN THE η0 MODEL

The Higgs boson–inert scalar interactions are obtained
by expanding the Vη0 as follows:

Vη0 ⊃ x1

�
1

2
ðH02

1 þ A02
1 Þ þH0þ

2 H0−
2 þH0þ

3 H0−
3

�
2

þ x2

�
1

2
ðuþ hÞ2 þHþH−

�
×

�
1

2
ðH02

1 þ A02
1 Þ þH0þ

2 H0−
2 þH0þ

3 H0−
3

�

þ x3
2
ðωþHÞ2 ×

�
1

2
ðH02

1 þ A02
1 Þ þH0þ

2 H0−
2 þH0þ

3 H0−
3

�

þ x4

�
1

2
ðuþ hÞðH0

1 þ iA0
1Þ þH0þ

3 H−
�
×

�
1

2
ðuþ hÞðH0

1 − iA0
1Þ þHþH0−

3

�

þ x5
2
ðωþHÞ2H0þ

3 H0−
3 þ 1

2
x6

��
1

2
ðuþ hÞðH0

1 − iA0
1Þ
�
2

þ ðH0−
3 HþÞ2 þ H:c:

�
: ðA1Þ

All the interactions of inert scalars with normal Higgs bosons are listed in Table I. Note that the symmetry factor and
imaginary unit as imposed by the Feynman rules are not included in the tables (the interacting Lagrangian is understood as
the coupling multiplied by the vertex, respectively).
The triple interactions of the two inert scalars with one gauge boson are given in

Ltriple
gauge−η0 ¼ −ig½η0†ðTiAiμÞ∂μη0� þ H:c:

¼ −
ig
2

�
1

cW
Z1μ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

3

r
Z2μ

�
H0

1 − iA0
1ffiffiffi

2
p ∂↔μ H0

1 þ iA0
1ffiffiffi

2
p −

ig
2

�
−2sWAμ −

c2W
cW

Z1μ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

3

r
Z2μ

�
H0þ

2 ∂↔μ
H0−

2

− ig

�
sWAμ − sWtWZ1μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

3

r
Z2μ

�
H0−

3 ∂↔μ
H0þ

3

−
ig
2
½Wþ

μ ðH0
1 − iA0

1Þ∂
↔μ

H0−
2 þ X−

μ ðH0
1 − iA0

1Þ∂
↔μ

H0þ
3 þ

ffiffiffi
2

p
Y−−
μ H0þ

2 ∂↔μ
H0þ

3 þH:c:�; ðA2Þ
where we have denoted A∂↔μ

B ¼ Að∂μBÞ − ð∂μAÞB.
The quartic interactions of the two inert scalars with two gauge bosons are given by

Lquartic
gauge−η0 ¼ g2½η0†ðTiAiμÞ2η0�

¼ g2

4

�
WþμW−

μ þ XþμX−
μ þ 1

2

�
1

cW
Z1μ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p
ffiffiffi
3

p Z2μ

�2�
ðH02

1 þ A02
1 Þ

þ g2

4

�
2WþμW−

μ þ 2YþþμY−−
μ þ

�
2sWAμ þ

c2W
cW

Z1μ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p
ffiffiffi
3

p Z2μ

�2�
H0þ

2 H0−
2

þ g2

4

�
2XþμX−

μ þ 2YþþμY−−
μ þ 4

�
sWAμ þ sWtWZ1μ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p
ffiffiffi
3

p Z2μ

�2�
H0þ

3 H0−
3

þ g2

4

�� ffiffiffi
2

p
X−μYþþ

μ þ 2Wþμ

�
−sWAμ þ sWtWZ1μ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p
ffiffiffi
3

p Z2μ

��
ðH0

1 − iA0
1ÞH0−

2 þ H:c:

�

þ g2

4

�� ffiffiffi
2

p
WþμY−−

μ þ X−μ
�
2sWAμ þ

c2W
cW

Z1μ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p
ffiffiffi
3

p Z2μ

��
ðH0

1 − iA0
1ÞH0þ

3 þ H:c:

�

þ g2

4

��
2W−μX−

μ −
ffiffiffi
2

p
Y−−μ

�
1

cW
Z1μ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p
ffiffiffi
3

p Z2μ

��
H0þ

2 H0þ
3 þ H:c:

�
: ðA3Þ

All the triple and quartic interactions of inert scalars with gauge bosons are presented in Table II and Table III, respectively.
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APPENDIX B: INTERACTIONS OF INERT AND NORMAL SECTORS IN THE χ 0 MODEL

The Higgs boson-inert scalar interactions are obtained as follows:

Vχ0 ⊃ y1

�
H0þ

1 H0−
1 þH0þþ

2 H0−−
2 þ 1

2
ðH02

3 þ A02
3 Þ
�
2

þ y2

�ðuþ hÞ2
2

þHþH−
�
×

�
H0þ

1 H0−
1 þH0þþ

2 H0−−
2 þ 1

2
ðH02

3 þ A02
3 Þ
�

þ y3
2
ðωþHÞ2 ×

�
H0þ

1 H0−
1 þH0þþ

2 H0−−
2 þ 1

2
ðH02

3 þ A02
3 Þ
�

þ y4
2
½ðuþ hÞH0−

1 þ ðH0
3 þ iA0

3ÞH−� × ½ðuþ hÞH0þ
1 þ ðH0

3 − iA0
3ÞHþ�

þ 1

4
ðωþHÞ2½ðy5 þ y6ÞH02

3 þ ðy5 − y6ÞA02
3 �: ðB1Þ

TABLE I. Interactions of inert scalars with normal Higgs
bosons in the η0 model.

Vertex Coupling Vertex Coupling

hA0
1A

0
1

ðx2þx4−x6Þu
2

hH0
1H

0
1

ðx2þx4þx6Þu
2

hH0þ
2 H0−

2
x2u hH0þ

3 H0−
3

x2u
HA0

1A
0
1

x3ω
2

HH0
1H

0
1

x3ω
2

HH0þ
2 H0−

2
x3ω HH0þ

3 H0−
3

ðx3 þ x5Þω
H0

1H
þH0−

3
ðx4þx6Þu

2
A0
1H

0þ
3 H− iðx6−x4Þu

2

H0
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0
1hh

x2þx4þx6
4

H0
1H

0
1H

þH− x2
2

H0
1H

0
1HH x3

4
H0

1H
0
1A

0
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0
1

x1
2

A0
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0
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þH− x2
2

A0
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1HH x3

4

A0
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0
1hh

x2þx4−x6
4

A0
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0
1H

0þ
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2
x1
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1A

0
1H

0þ
3 H0−

3
x1 H0

1H
0þ
3 H−h x4þx6

2

A0
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0þ
3 H−h iðx6−x4Þ

2
H0

1H
0
1H

0þ
2 H0−

2
x1

hhH0þ
2 H0−

2
x2
2 HHH0þ

2 H0−
2

x3
2

HþH−H0þ
2 H0−

2
x2 H0þ

2 H0−
2 H0þ

3 H0−
3

2x1
H0

1H
0
1H

0þ
3 H0−

3
x1 hhH0þ

3 H0−
3

x2
2

HHH0þ
3 H0−

3
x3þx5

2
HþH−H0þ

3 H0−
3

x2 þ x4

TABLE II. Triple interactions of inert scalars with gauge
bosons in the η0 model.

Vertex Coupling Vertex Coupling

Z1μH0
1∂
↔μ

A0
1

g
2cW Z2μH0

1∂
↔μ

A0
1

g
ffiffiffiffiffiffiffiffiffiffi
1−4s2W

p
2
ffiffi
3

p
cW
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H0þ
2

ig
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H0−
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2

AμH
0þ
2 ∂↔μ

H0−
2

igsW Y−−
μ H0þ

2 ∂↔μ
H0þ

3
− igffiffi

2
p

Z1μH
0þ
2 ∂↔μ

H0−
2

igc2W
2cW Z2μH

0þ
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H0−
2 − ig

ffiffiffiffiffiffiffiffiffiffi
1−4s2W

p
2
ffiffi
3

p
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AμH
0þ
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H0−
3
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3

−igsWtW

Z2μH
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H0−
3 − ig
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1−4s2W

pffiffi
3

p
cW

TABLE III. Quartic interactions of inert scalars with gauge
bosons in the η0 model.

Vertex Coupling Vertex Coupling

H0
1H
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þW− g2

4
H0
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0
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þX− g2

4
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0
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Interactions of two inert scalars with one gauge boson are shown in

Ltriple
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Quartic interactions of two inert scalars with two gauge bosons are given by
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TABLE IV. Interactions of inert scalars with normal Higgs bosons in the χ0 model.

Vertex Coupling Vertex Coupling
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The interactions of inert scalars with normal Higgs bosons
in this model are given in Table IV, while the gauge-inert
field interactions are listed in Table V and Table VI.

APPENDIX C: FEYNMAN DIAGRAMS

For the reader’s convenience, we will list the Feynman
diagrams for dark-matter (co)annihilation processes. The
annihilation channels of H0

1 are given in Fig. 9.
Since the candidate H0

3 is the Standard Model singlet, it
does not interact with the Standard Model gauge bosons as
H0

1 does. Excluding these elements, the remaining annihi-
lation channels of H0

1 are almost similar to H0
3 by the

replacement H0
1 → H0

3 and A0
1 → A0

3. Figure 10 lists
only the channels that are different from those of H0

1.
We see that there is only one possible diagram for each
H0

3H
0
3 → Z1Z1;Z1Z2;WþW− via the Higgs portals (less

than the number of diagrams corresponding to H0
1 annihi-

lation, as noted) while there are additionally possibilities
of H0

3H
0
3 → YþþY−−.

TABLE VI. Quartic interactions of inert scalars with gauge bosons in the χ0 model.

Vertex Coupling Vertex Coupling
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TABLE V. Triple interactions of inert scalars with gauge bosons
in the χ0 model.
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FIG. 9. Diagrams contributing to the annihilation of H0
1 dark matter.
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