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The 3-3-1 model proposed in 2011 based on discrete symmetry S4 responsible for the
neutrino and quark masses is updated, in which the nonzero θ13 is focused. Neutrino
masses and mixings are consistent with the most recent data on neutrino oscillations
without perturbation. The new feature is adding a new SU(3)L anti-sextet lying in dou-
blet under S4 which can result the nonzero θ13 without perturbation, and consequently,
the number of Higgs multiplets required is less than those of other models based on
non-Abelian discrete symmetries and the 3-3-1 models. The exact tribimaximal form
obtained with the breaking S4 → Z3 in charged lepton sector and S4 → K in neutrino
sector. If both breakings S4 → K and K → Z2 are taken place in neutrino sector, the
realistic neutrino spectrum is obtained without perturbation. The upper bound on neu-
trino mass and the effective mass governing neutrinoless double beta decay at the tree
level are presented. The model predicts the Dirac CP violation phase δ = 292.45◦ in the
normal spectrum (with θ23 6= π

4
) and δ = 303.14◦ in the inverted spectrum.

Keywords: Neutrino mass and mixing; nonstandard-model neutrinos, right-handed neu-
trinos; flavor symmetries; discrete symmetries; models beyond the standard model.

PACS numbers: 14.60.Pq, 14.60.St, 11.30.Hv, 11.30.Er, 12.60.−i

1550102-1

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

http://dx.doi.org/10.1142/S0217751X1550102X
mailto:wvienk16@gmail.com
mailto:hnlong@iop.vast.ac.vn
mailto:khoidp@vinhuni.edu.vn


V. V. Vien, H. N. Long & D. P. Khoi

1. Introduction

Nowadays, particle physicists are attracted by two exciting subjects: Higgs and

neutrino physics. The neutrino mass and mixing are the first evidence of beyond

Standard Model physics. Many experiments show that neutrinos have tiny masses

and their mixing is still mysterious.1,2 The tribimaximal form for explaining the

lepton mixing scheme was first proposed by Harrison–Perkins–Scott (HPS), which

apart from the phase redefinitions, is given by3–6

UHPS =
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6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2























, (1)

can be considered as a good approximation for the recent neutrino experimental

data.

The most recent data are a clear sign of rather large value θ13.
7 The data in the

Particle Data Group PDG20148 imply:

sin2(2θ12) = 0.846± 0.021 , sin2(2θ23) = 0.999+0.001
−0.018 ,

sin2(2θ13) = (9.3± 0.8)× 10−2 , ∆m2
21 = (7.53± 0.18)× 10−5 eV2 ,

∆m2
32 = (2.44± 0.06)× 10−3 eV2 , (Normal hierarchy) ,

(2)

sin2(2θ12) = 0.846± 0.021 , sin2(2θ23) = 1.000+0.000
−0.017 ,

sin2(2θ13) = (9.3± 0.8)× 10−2 , ∆m2
21 = (7.53± 0.18)× 10−5 eV2 ,

∆m2
32 = (2.52± 0.07)× 10−3 eV2 , (Inverted hierarchy) .

(3)

These large neutrino mixing angles are completely different from the quark mix-

ing ones defined by the Cabibbo–Kobayashi–Maskawa (CKM) matrix,9,10 and they

cannot be explained by the Standard Model. It is an interesting challenge to formu-

late dynamical principles that can lead to the flavor mixing patterns for quarks and

leptons given in a complete natural way as first approximations. This has stimulated

work on flavor symmetries and non-Abelian discrete symmetries are considered to be

the most attractive candidate to formulate dynamical principles that can lead to the

flavor mixing patterns for quarks and lepton. There are many recent models based

on the non-Abelian discrete symmetries, such as A4 (Refs. 11–28), A5 (Refs. 29–41),

S3 (Refs. 42–83), S4 (Refs. 84–112), D4 (Refs. 113–124), D5 (Refs. 125 and 126), T ′

(Refs. 127–131) and so forth. In our previous works,132–140 the discrete symmetries

have been explored to the 3-3-1 models. In Ref. 133, we have studied the 3-3-1 model

with neutral fermions based on S4 group, in which most of the Higgs multiplets are
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The 3-3-1 model based on S4 flavor symmetry

in triplets under S4 except χ lying in a singlet, and the exact tribimaximal form3–6

is obtained, where θ13 = 0.

As we know, the recent considerations have implied θ13 6= 0,11–28,42–112 but

small as given in Eqs. (2) and (3). This problem has been improved in Ref. 134 by

adding a new triplet ρ put in 1′ under S3 and another antisextet s′ put in 2 under

S3, in which s′ is regarded as a small perturbation, or a new triplet ρ put in 1′′

under D4 regarded as a small perturbation.135 Therefore, the models contain up to

eight Higgs multiplets, and the scalar potential of the model is quite complicated.

In this paper, we introduce another SU(3)L antisextet lying in 2 under S4 which

can result the nonzero θ13 without perturbation. The rest of this work is organized

as follows. In Sec. 2, we review some main results from Ref. 133. Section 3 is devoted

for the neutrino mass and mixing. Section 4 presents the remark on the vacuum

alignments and ρ parameter. We summarize our results in Sec. 5. Appendix A is

devoted to S4 group with its Clebsch–Gordan coefficients. Appendix B presents the

lepton numbers and lepton parities of model particles. Appendix C provides the

breakings of S4 group by triplets 3 and 3′.

2. The Model

The fermions in this model under [SU(3)L,U(1)X ,U(1)L, S4] symmetries, respec-

tively, transform as133

ψL ≡ ψ1,2,3L =







ν1,2,3L

l1,2,3L

N c
1,2,3R






∼ [3,−1/3, 2/3, 3] ,

l1R ∼ [1,−1, 1, 1] , lR ≡ l2,3R ∼ [1,−1, 1, 2] ,

Q3L =





u3L
d3L
UL



 ∼ [3, 1/3,−1/3, 1] ,

QL ≡ Q1,2L =





d1,2L
−u1,2L
D1,2L



 ∼ [3∗, 0, 1/3, 2] ,

uR ≡ u1,2,3R ∼ [1, 2/3, 0, 3] , dR ≡ d1,2,3R ∼ [1,−1/3, 0, 3] ,

UR ∼ [1, 2/3,−1, 1] , DR ≡ D1,2R ∼ [1,−1/3, 1, 2] ,

(4)

where the numbered subscripts on field indicate respective families and define com-

ponents of their S4 multiplet representation. Note that the 2 for quarks meets the

requirement of anomaly cancellation where the last two left-quark families are in 3∗

while the first one as well as the leptons are in 3 under SU(3)L. All the L charges

of the model multiplets are listed in the square brackets.
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V. V. Vien, H. N. Long & D. P. Khoi

To generate masses for the charged leptons, we have introduced two SU(3)L
scalar triplets φ and φ′ lying in 3 and 3′ under S4, respectively, with the VEVs

〈φ〉 = (v, v, v) and 〈φ′〉 = (v′, v′, v′) written as those of S4 components,133 i.e. S4 is

broken into Z3 that consists of the elements;a {1, T, T 2}. From the invariant Yukawa

interactions for the charged leptons, we obtain me =
√
3h1v, mµ =

√
3(h2v−h3v′),

mτ =
√
3(h2v + h3v

′), and the left- and right-handed charged leptons mixing

matrices are given133

UL =
1√
3





1 1 1

1 ω ω2

1 ω2 ω



 , UR = 1 . (5)

In similarity to the charged lepton sector, to generate the quark masses, we

have additionally introduced three scalar Higgs triplets χ, η, η′ lying in 1, 3 and

3′ under S4, respectively. Quark masses can be derived from the invariant Yukawa

interactions for quarks with supposing that the VEVs of η, η′ and χ are u, u′ and

vχ, respectively, where u = 〈η01〉, u′ = 〈η′01 〉, vχ = 〈χ0
3〉 and the other VEVs 〈η03〉,

〈η′03 〉, and 〈χ0
1〉 vanish due to the lepton parity conservation. The exotic quarks

get masses mU = f3vχ and mD1,2
= fvχ. The masses of ordinary up-quarks and

down-quarks are:

mu = −
√
3(huv + h′uv′) , mc = −

√
3(huv − h′uv′) , mt =

√
3hu3u ,

md =
√
3(hdu+ h′du′) , ms =

√
3(hdu− h′du′) , mb =

√
3hd3v .

(6)

The unitary matrices, which couple the left-handed up- and down-quarks to those

in the mass bases, are Uu
L = 1 and Ud

L = 1, respectively. Therefore, we get the quark

mixing matrix UCKM = Ud†
L Uu

L = 1. For a detailed study on charged lepton and

quark mass, the reader is referred to Ref. 133. In this work, we add a new SU(3)L
anti-sextet lying in 2 under S4 responsible for the nonzero θ13 without perturbation

which is different from those in Refs. 133–135. The vacuum alignments and the

gauge boson masses and mixings are similar to those in Refs. 135 and 141 so we

will not discuss it further in this work.

3. Neutrino Mass and Mixing

In this type of the models, the neutrino masses arise from the couplings of ψ̄c
LψL to

scalars, where ψ̄c
LψL transforms as 3∗ ⊕ 6 under SU(3)L and 1 ⊕ 2 ⊕ 3 ⊕ 3′ under

S4. For the known scalar triplets (φ, φ′, χ, η, η′), the available interactions are only

(ψ̄c
LψL)φ and (ψ̄c

LψL)φ
′, but explicitly suppressed because of the L-symmetry. We

will therefore propose new SU(3)L antisextets, lying in either 1, 2, 3, or 3′ under

aWith the VEV alignment: 〈φ1〉 = 〈φ2〉 = 〈φ3〉 6= 0, S4 group is broken into S3 which consist of
the elements {1, T, T 2, TSTS2, STS2, S2TS}; with the VEV alignment: 〈φ′

1〉 = 〈φ′
2〉 = 〈φ′

3〉 6= 0,
S4 is broken into Z3 that consists of the elements {1, T, T 2} as presented in App. C.
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The 3-3-1 model based on S4 flavor symmetry

S4, which interact with ψ̄c
LψL to produce masses for the neutrinos. In Ref. 133, we

have introduced two SU(3)L antisextets σ, s transform as follows

σ =









σ0
11 σ+

12 σ0
13

σ+
12 σ++

22 σ+
23

σ0
13 σ+

23 σ0
33









∼ [6∗, 2/3,−4/3, 1] ,

s =









s011 s+12 s013

s+12 s++
22 s+23

s013 s+23 s033









∼ [6∗, 2/3,−4/3, 3] ,

(7)

with the VEV of s is set as (〈s1〉, 0, 0) under S4, where

〈s1〉 =





λs 0 vs
0 0 0

vs 0 Λs



 , (8)

and the VEV of σ is

〈σ〉 =





λσ 0 vσ
0 0 0

vσ 0 Λσ



 . (9)

With these SU(3)L anti-sextets, the exact tribimaximal form was obtained, in which

θ13 = 0.133 However, the recent experimental data have implied θ13 6= 0 as given

in Eqs. (2) and (3). So that we need to modify the neutrino mass matrix to fit the

recent data.

Notice that the VEV alignment as in (8), S4 is broken into a group

which is isomorphic to Klein four group93 that consists of the elements K =

{1, S2, TSTS2, TST }. To obtain a realistic neutrino spectrum, in this work we

additionally introduce another SU(3)L anti-sextet (s′) which lies in 2 under S4

and responsible for the breaking K → Z2. This happens in any case below:

〈s′〉 = (〈s′1〉, 0), with

〈s′1〉 =





λ′s 0 v′s
0 0 0

v′s 0 Λ′
s



 . (10)

The VEV alignment of s′ as in (10) will breakK into Z2 that consists of the elements

{1, A2} (instead of S4 is broken into another Klein four group93 that consists of the

elements {1, S2, TS2T 2, T 2S2T }).
In calculation, combining both cases we have the Yukawa interactions responsi-

ble for neutrino mass:

−Lν =
1

2
x
(

ψ̄c
LψL

)

1
σ +

1

2
y
(

ψ̄c
LψL

)

3
s+

1

2
z
(

ψ̄c
LψL

)

2
s′ +H.c.

=
x

2

(

ψ̄c
1Lψ1L + ψ̄c

2Lψ2L + ψ̄c
3Lψ3L

)

σ
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V. V. Vien, H. N. Long & D. P. Khoi

+
y

2

[(

ψ̄c
2Lψ3L + ψ̄c

3Lψ2L

)

s1

+
(

ψ̄c
3Lψ1L + ψ̄c

1Lψ3L

)

s2 +
(

ψ̄c
1Lψ2L + ψ̄c

2Lψ1L

)

s3
]

+
z

2

[(

ψ̄c
1Lψ1L + ω2ψ̄c

2Lψ2L + ωψ̄c
3Lψ3L

)

s′2

+
(

ψ̄c
1Lψ1L + ωψ̄c

2Lψ2L + ω2ψ̄c
3Lψ3L

)

s′1
]

+H.c. (11)

The mass Lagrangian for the neutrinos is given by

−Lmass
ν =

1

2
x
(

λσ ν̄
c
1Lν1L + vσ ν̄

c
1LN

c
1R + vσN̄1Rν1L + ΛσN̄1RN

c
1R

+ λσ ν̄
c
2Lν2L + vσ ν̄

c
2LN

c
2R + vσN̄2Rν2L + ΛσN̄2RN

c
2R

+ λσ ν̄
c
3Lν3L + vσ ν̄

c
3LN

c
3R + vσN̄3Rν3L + ΛσN̄3RN

c
3R

)

+
y

2

[

λs
(

ν̄c2Lν3L + ν̄c3Lν2L
)

+ vs
(

ν̄c2LN
c
3R + ν̄c3LN

c
2R

)

+ vs
(

N̄2Rν3L + N̄3Rν2L
)

+ Λs

(

N̄2RN
c
3R + N̄2RN

c
3R

)]

+
z

2

[(

λ′sν̄
c
1Lν1L + v′sν̄

c
1LN

c
1R + v′sN̄1Rν1L + Λ′

sN̄1RN
c
1R

)

+ ω
(

λ′sν̄
c
2Lν2L + v′sν̄

c
2LN

c
2R + v′sN̄2Rν2L + Λ′

sN̄2RN
c
2R

)

+ ω2
(

λ′sν̄
c
3Lν3L + v′sν̄

c
3LN

c
3R + v′sN̄3Rν3L + Λ′

sN̄3RN
c
3R

)]

+H.c. (12)

We can rewrite the mass Lagrangian for the neutrinos in the matrix form:

−Lmass
ν =

1

2
χ̄c
LMνχL +H.c. ,

χL ≡
(

νL

N c
R

)

, Mν ≡
(

ML MT
D

MD MR

)

,

(13)

where ν = (ν1, ν2, ν3)
T and N = (N1, N2, N3)

T . The mass matrices are then ob-

tained by

ML,D,R =









aL,D,R + dL,D,R 0 0

0 aL,D,R + ωdL,D,R bL,D,R

0 bL,D,R aL,D,R + ω2dL,D,R









,

where

aL = λσx , aD = vσx , aR = Λσx ,

bL = λsy , bD = vsy , bR = Λsy ,

dL = λ′sz , dD = v′sz , dR = Λ′
sz .

(14)
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The 3-3-1 model based on S4 flavor symmetry

The VEVs Λσ,s break the 3-3-1 gauge symmetry down to that of the standard

model, and provide the masses for the neutral fermions NR and the new gauge

bosons: the neutral Z ′ and the charged Y ± and X0,0∗. The λσ,s and vσ,s belong to

the second stage of the symmetry breaking from the standard model down to the

SU(3)C ⊗ U(1)Q symmetry, and contribute the masses to the neutrinos. Hence, to

keep a consistency, we assume that Λσ,s ≫ vσ,s, λσ,s.
133 The natural smallness of

the lepton number violating VEVs λσ,s and vσ,s was explained in Ref. 133. Three

active neutrinos therefore gain masses via a combination of type I and type II

seesaw mechanisms derived from (13) as

Meff =ML −MT
DM

−1
R MD =





A 0 0

0 B1 D

0 D B2



 , (15)

where

A = aL + dL − (aD + dD)2

aR + dR
, D =

a2 − b2
a2R + d2R − aRdR − b2R

,

B1 = − a1 + b1ω
2 + c1ω

a2R + d2R − aRdR − b2R
, B2 =

a1 + b1ω + c1ω
2

a2R + d2R − aRdR − b2R
,

(16)

with

a1 = a2DaR + 2aD
(

dDdR − bDbR
)

+ aR
(

b2D − dLdR
)

− aL
(

a2R − b2R + d2R
)

+ aLaRdR ,

b1 = a2DdR + aR
(

d2D − dLdR
)

,

c1 = 2dD
(

aDaR − bDbR
)

+
(

b2D + d2D
)

dR

− dL
(

a2R − b2R + d2R
)

,

a2 = a2DbR − 2bD
(

aDaR + dDdR
)

+ a2RbL

+ bR
(

b2D − bLbR + d2D
)

+ bLd
2
R ,

b2 = −aRbDdD + aDbRdD − aDbDdR + aRbLdR .

(17)

We can diagonalize the mass matrix (15) as follows:

UT
ν MeffUν = diag(m1,m2,m3) ,

where

m1 =
1

2

(

B1 +B2 +
√

4D2 + (B1 −B2)2
)

, m2 = A ,

m3 =
1

2

(

B1 +B2 −
√

4D2 + (B1 −B2)2
)

,

(18)
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V. V. Vien, H. N. Long & D. P. Khoi

and the corresponding eigenstates put in the lepton mixing matrix:

Uν =

















0 1 0

1√
K2 + 1

0
K√

K2 + 1

− K√
K2 + 1

0
1√

K2 + 1





















1 0 0

0 1 0

0 0 −i



 , (19)

where

K =
B1 −B2 −

√

4D2 + (B1 −B2)2

2D
. (20)

The lepton mixing matrix is defined as

Ulep ≡ U †
LUν =

1√
3























1−K√
K2 + 1

1
1 +K√
K2 + 1

ω(ω −K)√
K2 + 1

1
ω(Kω + 1)√
K2 + 1

ω(1−Kω)√
K2 + 1

1
ω(ω +K)√
K2 + 1























·





1 0 0

0 1 0

0 0 −i



 . (21)

It is easy to check that UL in (5) is a unitary matrix. So, if Uν in (19) is unitary

then Ulep in (21) is unitary. Here, we will only consider real values for K since the

unitary condition of Ulep. Furthermore, it is worth noting that in the case of the

subgroup K is unbroken, i.e. without contribution of s′ (or λ′s = v′s = Λ′
s = 0), the

lepton mixing matrix (21) being equal to UHPS as given in (1).

The value of the Jarlskog invariant JCP, which gives a convention-independent

measure of CP violation, is defined from (21) as

JCP = Im[U21U
∗
31U

∗
22U32] =

1−K2

6
√
3(1 +K2)

. (22)

Until now the values of neutrino masses (or the absolute neutrino masses) as

well as the mass ordering of neutrinos are unknown. The neutrino mass spectrum

can be the normal hierarchy (|m1| ≃ |m2| < |m3|), the inverted hierarchy (|m3| <
|m1| ≃ |m2|) or nearly degenerate (|m1| ≃ |m2| ≃ |m3|). An upper bound on the

absolute value of neutrino mass was found from the analysis of the cosmological

data142

mi ≤ 0.6 eV , (23)

while the upper limit on the sum of neutrino masses given in143

3
∑

i=1

mi < 0.23 eV . (24)
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The 3-3-1 model based on S4 flavor symmetry

In the case of three-neutrino mixing, the two possible signs of ∆m2
23 corresponding

to two types of neutrino mass spectrum can be provided as follows:

◦ Normal hierarchy (NH): |m1| ≃ |m2| < |m3|, ∆m2
32 = m2

3 −m2
2 > 0.

◦ Inverted hierarchy (IH): |m3| < |m1| ≃ |m2|, ∆m2
32 = m2

3 −m2
2 < 0.

As will be discussed below, the model under consideration can provide both normal

and inverted mass hierarchy.

3.1. Normal case (∆m2

32
> 0)

In the Normal Hierarchy, combining (22) with the data in Ref. 8, JCP = −0.032,

we get

K = −1.41297 , (25)

and the lepton mixing matrices are obtained as

Ulep =























0.805
1√
3

0.138

−0.402 + 0.119i
1√
3

0.069 + 0.697i

−0.402− 0.119i
1√
3

0.069− 0.697i























× P , (26)

or

|Ulep| =





0.805 0.577 0.138

0.420 0.577 0.700

0.420 0.577 0.700



 . (27)

In the standard parametrization, the lepton mixing matrix can be parametrized as

UPMNS =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









· P , (28)

where P = diag(1, eiα, eiβ), and cij = cos θij , sij = sin θij with θ12, θ23 and θ13
being the solar, atmospheric and reactor angles, respectively. δ = [0, 2π] is the Dirac

CP violation phase while α and β are two Majorana CP violation phases. Using

the parametrization in Eq. (28), we get

JCP =
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (29)

With the help of (2), (25) and (29) we have sin δCP = −0.9242, i.e. δCP = −67.55◦

or δCP = 292.45◦.
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V. V. Vien, H. N. Long & D. P. Khoi

To get explicit values of the model parameters, we set A = 10−2 eV, which is

safely small. The other physical neutrino masses are explicitly given as

|m1| ≃ 4.97× 10−3 eV , |m2| = 10−2 eV , |m3| ≃ 5.04× 10−2 eV . (33)

It follows that

|mN
ee| ≃ 7.50× 10−3 eV , |mN

β | = 9.87× 10−3 eV , (34)

B1 = −3.523× 10−2 eV , B2 = −2.013× 10−2 eV , D = 2.142× 10−2 eV . (35)

This solution means a normal mass spectrum as mentioned above. Furthermore, by

assuming thatc

λs = λ′s = λσ = 1 eV , vs = v′s = vσ , Λ′
s = Λσ = Λs , Λs = av2s , (36)

we obtain a solution

x ≃ (2.0 + 0.2i)× 10−3 , y ≃ −(6.1 + 0.61i)× 10−3 ,

z = −(4.85 + 0.48)× 10−3 , a ≃ 0.222 + 0.017i .
(37)

3.2. Inverted case (∆m2

32
< 0)

For inverted hierarchy, the data in Ref. 8 implies JCP = −0.029. Hence, we get

K = −1.36483 , (38)

and the lepton mixing matrices are obtained as

Ulep =





















0.807
1√
3

−0.125

−0.403 + 0.108i
1√
3

0.062 + 0.699i

−0.403− 0.108i
1√
3

0.062− 0.699i





















× P , (39)

or

|Ulep| =





0.807 0.577 0.125

0.418 0.577 0.701

0.418 0.577 0.701



 . (40)

Combining (3), (29) and (38) yields sin δCP = −0.8371, i.e. δCP = −56.84◦ or

δCP = 303.14◦.

From Eqs. (20) and (38) we get

B1 = B2 − 0.632138D. (41)

cThe values of the parameters λs, λ′
s, λσ , vs, v′s, vσ , Λs, Λ′

s, Λσ have not been confirmed by
experiment, however, their hierarchies were given in Ref. 134. The parameters in Eqs. (36) and
(37) is a set of the model parameters that can fit the experimental data on neutrino given in (2).

1550102-12

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 







The 3-3-1 model based on S4 flavor symmetry

This solution means an inverted mass spectrum. Furthermore, by assuming thate

λs = λ′s = λσ = a , vs = v′s = −vσ , Λ′
s = Λs = −Λσ ,

Λs = v2s , Λ′
s = v′2s , Λσ = −v2σ ,

(46)

we obtain a solution

x ≃ (3.192− 0.452i)× 10−2 , y ≃ (−2.563 + 0.294i)× 10−2 ,

z = −(1.910 + 0.825i)× 10−2 , a ≃ 0.105− 0.186i .
(47)

4. Remark on the Vacuum Alignments and ρ Parameter

In the model under consideration, to generate masses for all fermions, we need eight

Higgs scalars φ, φ′, χ, η, η′, σ, s, s′. It is important to note that χ and s′ do not

break S4 since they are put in 1 under S4 while s′, φ, η; φ′, η′ can break S4 into

its subgroups since they are put in nontrivial representations 2, 3, 3′ of S4. The

breaking of S4 group depends on the vacuum alignment of the flavones.

For doublets 2 (s′) we have two followings alignments. The first alignment,

0 6= 〈s′1〉 6= 〈s′2〉 = 0 or 0 6= 〈s′2〉 6= 〈s′1〉 = 0 or 0 6= 〈s′1〉 6= 〈s′2〉 6= 0 then S4 is broken

into a group which is isomorphic to Klein four group93 that consists of the elements

{1, TS2T 2, S2, T 2S2T }. The second alignment, 〈s′1〉 = 〈s′2〉 6= 0 then S4 is broken

into D4 that consists of the elements {1, TSTS2, TST, S, S3, TS2T 2, S2, T 2S2T }.
For triplets 3 and 3′ the breakings of S4 are given in App. C.

To obtain a realistic neutrino spectrum, in this work, we argue that the breaking

S4 → Z3 has taken place in charged lepton sector while both breakings S4 → K
and K → Z2 must be taken place in neutrino sector.

Note that Λσ, Λs, Λσ′ are needed to the same order and not to be so large that

can naturally be taken at TeV scale as the VEV vχ of χ. This is because vσ, vs
and vσ′ carry lepton number, simultaneously breaking the lepton parity which is

naturally constrained to be much smaller than the electroweak scale.132–134,150,151

This is also behind a theoretical fact that vχ, Λσ, Λs, Λσ′ are scales for the gauge

symmetry breaking in the first stage from SU(3)L ⊗ U(1)X → SU(2)L ⊗ U(1)Y in

the original form of 3-3-1 models.150–153 They provide masses for the new gauge

bosons Z ′, X and Y . Also, the exotic quarks gain masses from vχ while the neutral

fermions masses arise from Λσ, Λs, Λσ′ . The second stage of the gauge symmetry

breaking from SU(2)L⊗U(1)Y → U(1)Q is achieved by the electroweak scale VEVs

such as u, v responsible for ordinary quark masses. In combination with those of

type II seesaw as determined, in this type of the model, the following limit is often

taken into account:132–134,150–153

(eV)2 ∼ λ2σ, λ
2
s, λ

2
σ′ ≪ v2σ, v

2
s , v

2
σ′ ≪ u2, u′2, v2, v′2

≪ v2χ ∼ Λ2
σ ∼ Λ2

s ∼ Λ2
σ′ ∼ (TeV)2 . (48)

eThe values of the parameters λs, λ′
s, λσ , vs, v′s, vσ , Λs, Λ′

s, Λσ have not been confirmed by
experiment, however, their hierarchies were given in Ref. 134. The parameters in Eqs. (46) and
(47) is a set of the model parameters that can fit the experimental data on neutrino given in (3).
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V. V. Vien, H. N. Long & D. P. Khoi

On the other hand, our model can modify the precision electroweak parameter

such as ρ parameter at the tree-level. To see this, let us approximate the masses of

W and Z bosons:f

M2
W ≃ 2g2(3u2 − v2σ) , M2

Z ≃ g2u2

c2W

(

6− v2σ
12

)

, (49)

M2
Y ≃ g2

2

(

6Λ2
σ + 4Λ2

σ′ + 2Λ2
σ′ + v2χ

)

. (50)

The ρ parameter is defined as

ρ =
M2

W

c2WM2
Z

≃ 1− v2s
3u2

. (51)

It is easy to see that the ρ parameter in (51) is absolutely close to the unity since

v2s ≪ u2 and this is in agreement with the data in Ref. 8.

The mixings between the charged gauge bosons W − Y and the neutral ones

Z ′ −W4 are in the same order since they are proportional to vσ
Λσ

, and in the limit

vσ ≪ λσ these mixing angles tend to zero. In addition, from (48) and (49), (50), it

follows that M2
W is much smaller than M2

Y .

5. Conclusions

In this paper, we have modified the previous 3-3-1 model combined with discrete

S4 symmetry to adapt the most recent neutrino mixing with nonzero θ13. We have

shown that the realistic neutrino masses and mixings can be obtained if the two

directions of the breakings S4 → K and K → Z2 simultaneously take place in

neutrino sector and are equivalent in size, i.e. the contributions due to s, σ and

s′ are comparable. The new feature is adding a new SU(3)L anti-sextet lying in 2

under S4 which can result the nonzero θ13 without perturbation, and consequently,

the number of Higgs multiplets required is less than those of other models based

on non-Abelian discrete symmetries and the 3-3-1 models. The exact tribimaximal

form obtained with the breaking S4 → Z3 in charged lepton sector while S4 → K
in neutrino sector. If both the breakings S4 → K and K → Z2 are taken place

in neutrino sector, the realistic neutrino spectrum is obtained without perturba-

tion. The upper bound on neutrino mass as well as the effective mass governing

neutrinoless double beta decay at the level are presented. The model predicts the

Dirac CP violation phase δ = 292.45◦ in the normal spectrum (with θ23 6= π
4
) and

δ = 303.14◦ in the inverted spectrum. We have found some regions of model pa-

rameters that can fit the experimental data in 2014 on neutrino masses and mixing

without perturbation.

fWe have used the notation sW = sin θW , cW = cos θW , tW = tan θW , and the continuation of the
gauge coupling constant g of the SU(3)L at the spontaneous symmetry breaking point135,141,153

t = 3
√

2sW
√

3−4s2
W

was used.
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Appendix A. S4 Group and Clebsch Gordan Coefficients

S4 is the permutation group of four objects, which is also the symmetry group

of a cube. It has 24 elements divided into five conjugacy classes, with 1, 1′, 2,

3 and 3′ as its five irreducible representations. Any element of S4 can be formed

by multiplication of the generators S and T obeying the relations S4 = T 3 = 1,

ST 2S = T . Without loss of generality, we could choose S = (1234), T = (123)

where the cycle (1234) denotes the permutation (1, 2, 3, 4) → (2, 3, 4, 1), and (123)

means (1, 2, 3, 4) → (2, 3, 1, 4). The conjugacy classes generated from S and T are

C1 : 1 ,

C2 : (12)(34) = TS2T 2 , (13)(24) = S2 , (14)(23) = T 2S2T ,

C3 : (123) = T , (132) = T 2 , (124) = T 2S2 ,

(142) = S2T , (134) = S2TS2 , (143) = STS ,

(234) = S2T 2 , (243) = TS2 ,

C4 : (1234) = S , (1243) = T 2ST , (1324) = ST ,

(1342) = TS , (1423) = TST 2 , (1432) = S3 ,

C5 : (12) = STS2 , (13) = TSTS2 , (14) = ST 2 ,

(23) = S2TS , (24) = TST , (34) = T 2S .

The character table of S4 is given as follows

Class n h χ1 χ1′ χ2 χ3 χ3′

C1 1 1 1 1 2 3 3

C2 3 2 1 1 2 −1 −1

C3 8 3 1 1 −1 0 0

C4 6 4 1 −1 0 −1 1

C5 6 2 1 −1 0 1 −1

where n is the order of class and h is the order of elements within each class. Let

us note that C1,2,3 are even permutations, while C4,5 are odd permutations. The

two three-dimensional representations differ only in the signs of their C4 and C5

matrices. Similarly, the two one-dimensional representations behave the same.
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We will work in the basis where 3, 3′ are real representations whereas 2 is

complex. One possible choice of generators is given as follows

1 : S = 1 , T = 1 ,

1′ : S = −1 , T = 1 ,

2 : S =

(

0 1

1 0

)

, T =

(

ω 0

0 ω2

)

,

3 : S =





−1 0 0

0 0 −1

0 1 0



 , T =





0 0 1

1 0 0

0 1 0



 ,

3′ : S = −





−1 0 0

0 0 −1

0 1 0



 , T =





0 0 1

1 0 0

0 1 0



 ,

where ω = e2πi/3 = −1/2+i
√
3/2 is the cube root of unity. Using them, we calculate

the Clebsch–Gordan coefficients for all the tensor products as given below.

First, let us put 3(1, 2, 3) which means some 3 multiplets such as x =

(x1, x2, x3) ∼ 3 or y = (y1, y2, y3) ∼ 3 or so on, and similarly for the other represen-

tations. Moreover, the numbered multiplets such as (. . . , ij, . . .) mean (. . . , xiyj , . . .)

where xi and yj are the multiplet components of different representations x and y,

respectively. In the following, the components of representations on the left-hand

side will be omitted and should be understood, but they always exist in order in

the components of decompositions on the right-hand side:

1 ⊗ 1 = 1(11) , 1′ ⊗ 1′ = 1(11) , 1 ⊗ 1′ = 1′(11) ,

1 ⊗ 2 = 2(11, 12) , 1′ ⊗ 2 = 2(11,−12) ,

1 ⊗ 3 = 3(11, 12, 13) , 1′ ⊗ 3 = 3′(11, 12, 13) ,

1 ⊗ 3′ = 3′(11, 12, 13) , 1′ ⊗ 3′ = 3(11, 12, 13) ,

2 ⊗ 2 = 1(12 + 21)⊕ 1′(12− 21)⊕ 2(22, 11) ,

2 ⊗ 3 = 3((1 + 2)1, ω(1 + ω2)2, ω2(1 + ω22)3)

⊕ 3′((1− 2)1, ω(1− ω2)2, ω2(1− ω22)3) ,

2 ⊗ 3′ = 3′((1 + 2)1, ω(1 + ω2)2, ω2(1 + ω22)3)

⊕ 3((1 − 2)1, ω(1− ω2)2, ω2(1− ω22)3) ,

3 ⊗ 3 = 1(11 + 22 + 33)⊕ 2(11 + ω222 + ω33, 11 + ω22 + ω233)

⊕ 3s(23 + 32, 31 + 13, 12 + 21)⊕ 3′a(23− 32, 31− 13, 12− 21) ,

3′ ⊗ 3′ = 1(11 + 22 + 33)⊕ 2(11 + ω222 + ω33, 11 + ω22 + ω233)

⊕ 3s(23 + 32, 31 + 13, 12 + 21)⊕ 3′a(23− 32, 31− 13, 12− 21) ,

3 ⊗ 3′ = 1′(11 + 22 + 33)⊕ 2(11 + ω222 + ω33,−11− ω22− ω233)

⊕ 3′s(23 + 32, 31 + 13, 12 + 21)⊕ 3a(23− 32, 31− 13, 12− 21) ,
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The 3-3-1 model based on S4 flavor symmetry

where the subscripts s and a respectively refer to their symmetric and antisymmetric

product combinations as explicitly pointed out. We also notice that many group

multiplication rules above have similar forms as those of S3 and A4 groups.

In the text we usually use the following notations, for example, (xy′)3 = [xy′]3 ≡
(x2y

′
3 − x3y

′
2, x3y

′
1 − x1y

′
3, x1y

′
2 − x2y

′
1) which is the Clebsch–Gordan coefficients of

3a in the decomposition of 3 ⊗ 3′, where as mentioned x = (x1, x2, x3) ∼ 3 and

y′ = (y′1, y
′
2, y

′
3) ∼ 3′.

The rules to conjugate the representations 1, 1′, 2, 3 and 3′ are given by

2∗(1∗, 2∗) = 2(2∗, 1∗) , 1∗(1∗) = 1(1∗) , 1′∗(1∗) = 1′(1∗) ,

3∗(1∗, 2∗, 3∗) = 3(1∗, 2∗, 3∗) , 3′∗(1∗, 2∗, 3∗) = 3′(1∗, 2∗, 3∗) ,

where, for example, 2∗(1∗, 2∗) denotes some 2∗ multiplet of the form (x∗1, x
∗
2) ∼ 2∗.

Appendix B. The Numbers

In the following, we will explicitly point out the lepton number (L) and lepton

parity (Pl) of the model particles (notice that the family indices are suppressed):

Particles L Pl

NR, u, d, φ+
1 , φ′+

1 , φ0
2, φ

′0
2 , η01 , η

′0
1 , η−2 , η′−2 χ0

3, σ
0
33, s

0
33 0 1

νL, l, U , D∗, φ+
3 , φ′+

3 , η03 , η
′0
3 , χ0∗

1 , χ+
2 , σ0

13, σ
+
23, s

0
13, s

+
23 −1 −1

σ0
11, σ

+
12, σ

++
22 , s011, s

+
12, s

++
22 −2 1

Appendix C. The Breakings of S4 by Triplets 3 and 3′

For triplets 3, we have the followings alignments:

(1) The first alignment: 〈φ1〉 6= 〈φ2〉 6= 〈φ3〉 then S4 is broken into {1} ≡ {identity},
i.e. S4 is completely broken.

(2) The second alignment: 0 6= 〈φ1〉 6= 〈φ2〉 = 〈φ3〉 6= 0 or 0 6= 〈φ1〉 = 〈φ3〉 6= 〈φ2〉 6=
0 or 0 6= 〈φ1〉 = 〈φ2〉 6= 〈φ3〉 6= 0 then S4 is broken into Z2 which consisting of

the elements {1, TSTS2} or {1, TSS2} or {1, S2TS}, respectively.
(3) The third alignment: 〈φ1〉 = 〈φ2〉 = 〈φ3〉 6= 0 then S4 is broken into S3 which

consisting of the elements {1, T, T 2, TSTS2, STS2, S2TS}.
(4) The fourth alignment: 0 = 〈φ2〉 6= 〈φ1〉 = 〈φ3〉 6= 0 or 0 = 〈φ1〉 6= 〈φ2〉 = 〈φ3〉 6=

0 or 0 = 〈φ3〉 6= 〈φ1〉 = 〈φ2〉 6= 0 then S4 is broken into Z2 which consisting of

the elements {1, TSTS2} or {1, TSS2} or {1, S2TS}, respectively.
(5) The fifth alignment: 0 = 〈φ2〉 6= 〈φ1〉 6= 〈φ3〉 6= 0 or 0 = 〈φ1〉 6= 〈φ2〉 6= 〈φ3〉 6= 0

or 0 6= 〈φ1〉 6= 〈φ2〉 6= 〈φ3〉 = 0 then S4 is completely broken.

(6) The sixth alignment: 0 6= 〈φ1〉 6= 〈φ2〉 = 〈φ3〉 = 0 or 0 6= 〈φ2〉 6= 〈φ3〉 = 〈φ1〉 = 0

or 0 6= 〈φ3〉 6= 〈φ1〉 = 〈φ1〉 = 0 then S4 is broken into Klein four group K which

consisting of the elements {1, S2, TSTS2, TST } or {1, TS2T 2, STS2, T 2S} or

{1, T 2S2T, ST 2, S2TS}, respectively.
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For triplets 3′ we have the followings alignments:

(1) The first alignment: 〈φ′1〉 6= 〈φ′2〉 6= 〈φ′3〉 then S4 is broken into {1} ≡ {identity},
i.e. S4 is completely broken.

(2) The second alignment: 0 6= 〈φ′1〉 6= 〈φ′2〉 = 〈φ′3〉 6= 0 or 0 6= 〈φ′1〉 = 〈φ′3〉 6= 〈φ′2〉 6=
0 or 0 6= 〈φ′1〉 = 〈φ′2〉 6= 〈φ′3〉 6= 0 then S4 is broken into {1} ≡ {identity}, i.e.
S4 is completely broken.

(3) The third alignment: 〈φ′1〉 = 〈φ′2〉 = 〈φ′3〉 6= 0 then S4 is broken into Z3 that

consists of the elements {1, T, T 2}.
(4) The fourth alignment: 0 = 〈φ′2〉 6= 〈φ′1〉 = 〈φ′3〉 6= 0 or 0 = 〈φ′1〉 6= 〈φ′2〉 = 〈φ′3〉 6=

0 or 0 = 〈φ′3〉 6= 〈φ′1〉 = 〈φ′2〉 6= 0 then S4 is broken into Z2 which consisting of

the elements {1, T 2S} or {1, TST } or {1, ST 2}, respectively.
(5) The fifth alignment: 0 = 〈φ′2〉 6= 〈φ′1〉 6= 〈φ′3〉 6= 0 or 0 = 〈φ′1〉 6= 〈φ′2〉 6= 〈φ′3〉 6= 0

or 0 6= 〈φ′1〉 6= 〈φ′2〉 6= 〈φ′3〉 = 0 then S4 is completely broken.

(6) The sixth alignment: 0 6= 〈φ′1〉 6= 〈φ′2〉 = 〈φ′3〉 = 0 or 0 6= 〈φ′2〉 6= 〈φ′3〉 = 〈φ′1〉 = 0

or 0 6= 〈φ′3〉 6= 〈φ′1〉 = 〈φ′1〉 = 0 then S4 is broken into a four-element subgroup

generated by a four-cycle, which consisting of the elements {1, S, S2, S3} or

{1, TST 2, ST, TS2T 2} or {1, TS, T 2ST, T 2S2T }, respectively.

References

1. G. Altarelli, Nucl. Phys. B (Proc. Suppl.) 241-242, 77 (2013), arXiv:1210.3467
[hep-ph].

2. G. Altarelli, Nuovo Cimento C 036, 68 (2013), arXiv:1304.5047 [hep-ph], and
references therein.

3. P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002).
4. Z. Z. Xing, Phys. Lett. B 533, 85 (2002).
5. X. G. He and A. Zee, Phys. Lett. B 560, 87 (2003).
6. X. G. He and A. Zee, Phys. Rev. D 68, 037302 (2003).
7. A. Yu. Smirnov, Nucl. Phys. B (Proc. Suppl.) 235-236, 431 (2013), arXiv:1210.4061

[hep-ph].
8. Particle Data Group (K. A. Olive et al.), Chin. Phys. C 38, 090001 (2014).
9. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

10. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
11. E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001).
12. K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003).
13. G. Altarelli and F. Feruglio, Nucl. Phys. B 720, 64 (2005).
14. E. Ma, Phys. Rev. D 73, 057304 (2006).
15. X. G. He, Y. Y. Keum and R. R. Volkas, J. High Energy Phys. 0604, 039 (2006).
16. S. Morisi, M. Picariello and E. Torrente-Lujan, Phys. Rev. D 75, 075015 (2007).
17. C. S. Lam, Phys. Lett. B 656, 193 (2007).
18. F. Bazzocchi, S. Kaneko and S. Morisi, J. High Energy Phys. 0803, 063 (2008).
19. A. Blum, C. Hagedorn and M. Lindner, Phys. Rev. D 77, 076004 (2008).
20. F. Bazzochi, M. Frigerio and S. Morisi, Phys. Rev. D 78, 116018 (2008).
21. G. Altarelli, F. Feruglio and C. Hagedorn, J. High Energy Phys. 0803, 052 (2008).
22. M. Hirsch, S. Morisi and J. W. F. Valle, Phys. Rev. D 78, 093007 (2008).
23. E. Ma, Phys. Lett. B 671, 366 (2009).
24. G. Altarelli and D. Meloni, J. Phys. G 36, 085005 (2009).

1550102-20

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



The 3-3-1 model based on S4 flavor symmetry

25. Y. Lin, Nucl. Phys. B 813, 91 (2009).

26. Y. H. Ahn and C. S. Chen, Phys. Rev. D 81, 105013 (2010).

27. J. Barry and W. Rodejohanny, Phys. Rev. D 81, 093002 (2010).

28. G. J. Ding and D. Meloni, Nucl. Phys. B 855, 21 (2012).

29. A. Datta, F. S. Ling and P. Ramond, Nucl. Phys. B 671, 383 (2003).
30. C. Luhn, S. Nasri and P. Ramond, J. Math. Phys. 48, 123519 (2007), arXiv:0709.1447

[hep-th].

31. Y. Kajiyama, M. Raidal and A. Strumia, Phys. Rev. D 76, 117301 (2007),

arXiv:0705.4559 [hep-ph].

32. C. Luhn and P. Ramond, J. Math. Phys. 49, 053525 (2008), arXiv:0803.0526
[hep-th].

33. L. L. Everett and A. J. Stuart, Phys. Rev. D 79, 085005 (2009).

34. A. Adulpravitchai, A. Blum and W. Rodejohann, New J. Phys. 11, 063026 (2009),

arXiv:0903.0531 [hep-ph].

35. C. S. Chen, T. W. Kephart and T. C. Yuan, J. High Energy Phys. 1104, 015 (2011),
arXiv:1011.3199 [hep-ph].

36. I. K. Cooper, S. F. King and A. J. Stuart, Nucl. Phys. B 875, 650 (2013),

arXiv:1212.1066 [hep-ph].

37. C. S. Chen, T. W. Kephart and T. C. Yuan, Prog. Theor. Exp. Phys. 10, 103B01

(2013), arXiv:1110.6233 [hep-ph].

38. K. Hashimoto and H. Okada, Lepton flavor model and decaying dark matter in the
binary icosahedral group symmetry, arXiv:1110.3640 [hep-ph].

39. G. J. Ding, L. L. Everett and A. J. Stuart, Nucl. Phys. B 857, 219 (2012),

arXiv:1110.1688 [hep-ph].

40. F. Feruglio and A. Paris, J. High Energy Phys. 1103, 101 (2011).

41. L. L. Everett and A. J. Stuart, Phys. Lett. B 698, 131 (2011), arXiv:1011.4928
[hep-ph].

42. L. Wolfenstein, Phys. Rev. D 18, 958 (1978).

43. S. Pakvasa and H. Sugawara, Phys. Lett. B 73, 61 (1978).

44. S. Pakvasa and H. Sugawara, Phys. Lett. B 82, 105 (1979).

45. E. Durman and H. S. Tsao, Phys. Rev. D 20, 1207 (1979).

46. Y. Yamanaka, H. Sugawara and S. Pakvasa, Phys. Rev. D 25, 1895 (1982).
47. K. Kang, J. E. Kim and P. Ko, Z. Phys. C 72, 671 (1996).

48. H. Fritzsch and Z. Z. Xing, Phys. Lett. B 372, 265 (1996).

49. K. Kang, S. K. Kang, J. E. Kim and P. Ko, Mod. Phys. Lett. A 12, 1175 (1997).

50. M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 57, 4429 (1998).

51. H. Fritzsch and Z. Z. Xing, Phys. Lett. B 440, 313 (1998).
52. Y. Koide, Phys. Rev. D 60, 077301 (1999).

53. H. Fritzsch and Z. Z. Xing, Phys. Rev. D 61, 073016 (2000).

54. M. Tanimoto, Phys. Lett. B 483, 417 (2000).

55. G. C. Branco and J. I. Silva-Marcos, Phys. Lett. B 526, 104 (2002).

56. M. Fujii, K. Hamaguchi and T. Yanagida, Phys. Rev. D 65, 115012 (2002).
57. J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui, Prog. Theor.

Phys. 109, 795 (2003).

58. J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui, Prog. Theor.

Phys. 114, 287(E) (2005).

59. P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003).

60. S.-L. Chen, M. Frigerio and E. Ma, Phys. Rev. D 70, 073008 (2004).
61. H. Fritzsch and Z. Z. Xing, Phys. Lett. B 598, 237 (2004).

1550102-21

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



V. V. Vien, H. N. Long & D. P. Khoi

62. F. Caravaglios and S. Morisi, Neutrino masses and mixings with an S3 family per-

mutation symmetry, arXiv:hep-ph/0503234.

63. W. Grimus and L. Lavoura, J. High Energy Phys. 0508, 013 (2005).

64. R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 639, 318 (2006).

65. R. Jora, S. Nasri and J. Schechter, Int. J. Mod. Phys. A 21, 5875 (2006).
66. J. E. Kim and J.-C. Park, J. High Energy Phys. 0605, 017 (2006).

67. Y. Koide, Eur. Phys. J. C 50, 809 (2007).

68. A. Mondragon, M. Mondragon and E. Peinado, Phys. Rev. D 76, 076003 (2007).

69. A. Mondragon, M. Mondragon and E. Peinado, AIP Conf. Proc. 1026, 164 (2008).

70. M. Picariello, Int. J. Mod. Phys. A 23, 4435 (2008).
71. C. Y. Chen and L. Wolfenstein, Phys. Rev. D 77, 093009 (2008).

72. R. Jora, J. Schechter and M. N. Shahid, Phys. Rev. D 80, 093007 (2009).

73. R. Jora, J. Schechter and M. N. Shahid, Phys. Rev. 82, 079902(E) (2010).

74. D. A. Dicus, S. F. Ge and W. W. Repko, Phys. Rev. D 82, 033005 (2010).

75. Z. Z. Xing, D. Yang and S. Zhou, Phys. Lett. B 690, 304 (2010).
76. R. Jora, J. Schechter and M. N. Shahid, Phys. Rev. D 82, 053006 (2010).

77. S. Dev, S. Gupta and R. R. Gautam, Phys. Lett. B 702, 28 (2011).

78. D. Meloni, S. Morisi and E. Peinado, J. Phys. G 38, 015003 (2011).

79. G. Bhattacharyya, P. Leser and H. Pas, Phys. Rev. D 83, 011701(R) (2011).

80. T. Kaneko and H. Sugawara, Phys. Lett. B 697, 329 (2011).

81. S. Zhou, Phys. Lett. B 704, 291 (2011).
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