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The recent groundbreaking discovery of nonzero neutrino masses and oscillations is strong
evidence of physics beyond the SM. The gauge symmetry of the SM and those of many
extensions fix only the structure of gauge bosons. The fermions and Higgs representations
have to be chosen somewhat arbitrarily. Thus, the models with the non-Abelian SM gauge
symmetries are the main subject in this special issue. The authors have focused on models
based on the SU(3)C ⊗ SU(3)L ⊗ U(1)X (3-3-1) gauge group, left-right symmetric model,
and models with discrete symmetries. The gauge-Higgs unification based on the space-time
extension has been also discussed in the issue.

The paper “Mass mixing effect and oblique radiative corrections in extended SU(2)R ⊗
SU(2)L ⊗ U(1) effective theory” by Y. Zhang analyzes the properties of electroweak chiral
effective Lagrangian with an extended SU(2)R gauge group. The non-Abelian SU(2)R
contains sufficient complexity to incorporate interesting issues related to spontaneous parity
violation and precise electroweak observables. The author discusses all possible mass-mixing
terms and calculates the exact physical mass eigenvalues by diagonalization of mixing matrix
without any approximations. The contributions to oblique radiative corrections parameters
STU from SU(2)R fields are also presented.

In the paper “Sources of FCNC in SU(3)C ⊗ SU(3)L ⊗U(1)X models” by J. M. Cabarcas
et al., the authors explore the possible sources of flavor changing neutral currents and
lepton flavor violation at tree level, in the 3-3-1 models. In the paper “Non-standard neutrinos
interactions in a 3-3-1 model with minimum Higgs sector” by M. M. Jaime and P. C. de Holanda,
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the nonstandard neutrino interactions in the economical 3-3-1 model is presented. The limit
on new gauge bosons is obtained.

The paper “Gauge boson mixing in the 3-3-1 models with discrete symmetries” by Dong
Phung et al. deals with the mixing among gauge bosons in the 3-3-1 model with the discrete
symmetries. The authors have shown that the neutrino tribimaximal mixing leads to the CPT
violation. In the paper “Radiatively generated leptogenesis in S4 flavor symmetry models” by T. P.
Nguyen andD. Phung radiatively generated leptogenesis in the S4 flavor symmetrymodels is
presented. The authors have found a link between leptogenesis and amplitude of neutrinoless
double beta decay |mee| through a high-energy CP phase φ.

The paper “Gauge-Higgs unification models in six dimensions with S2/Z2 extra space and
GUT gauge symmetry” by C.-W. Chiang et al. reviews gauge-Higgs unification models in six
dimensions with S2/Z2 extra space and GUT gauge symmetry. It presents two scenarios for
constructing a four-dimensional theory from the six-dimensional model, which leads to an
SM-like gauge theory with the SU(3) ⊗ SU(2)L ⊗ U(1)Y (⊗U(1)2) symmetry and the SM
fermions in four dimensions. The gauge boson and Higgs boson masses are obtained.

Hoang Ngoc Long
Vicente Pleitez

Marc Sher
Masaki Yasue
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We review gauge-Higgs unification models based on gauge theories defined on six-dimensional
spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions
are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a
four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12) gauge
symmetry with a special symmetry condition imposed on the gauge field, whereas the other
employs the E6 gauge symmetry without requiring the additional symmetry condition. Both
models lead to a standard model-like gauge theory with the SU(3) × SU(2)L × U(1)Y (×U(1)2)
symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed.
The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson
masses are obtained.

1. Introduction

The Higgs sector of the standard model (SM) plays an essential role in the spontaneous
symmetry breaking (SSB) from the SU(3)C × SU(2)L ×U(1)Y gauge group down to SU(3)C ×
U(1)EM, thereby giving masses to the SM elementary particles. However, the SM does not
address the most fundamental nature of the Higgs sector, such as the mass and self-coupling
constant of the Higgs boson. Therefore, the Higgs sector is not only the last territory in the
SM to be discovered, but will also provide key clues to new physics at higher energy scales.

Gauge-Higgs unification is one of many attractive approaches to physics beyond the
SM in this regard [1–3] (for recent approaches, see [4–20]). In this approach, the Higgs
particles originate from the extradimensional components of the gauge field defined on



2 Advances in High Energy Physics

spacetimewith the number of dimensions greater than four (for cases where). In other words,
the Higgs sector is embraced into the gauge interactions in the higher-dimensional model,
and many fundamental properties of Higgs boson are dictated by the gauge interactions.

In our recent studies, we have shown interesting properties of one type of gauge-Higgs
unification models based on grand unified gauge theories defined on six-dimensional (6D)
spacetime, with the extradimensional space having the topological structure of two-sphere
orbifold S2/Z2 [21, 22].

In the usual coset space dimensional reduction (CSDR) approach [1, 23–26], one
imposes on the gauge fields the symmetry condition which identifies the gauge transforma-
tion as the isometry transformation of S2 due to its coset space structure S2 = SU(2)/U(1).
The dimensional reduction is explicitly carried out by applying the solution of the symmetry
condition. A background gauge field is introduced as part of the solution [1]. Such a
background gauge field is also necessary for obtaining chiral fermions in four-dimensional
(4D) spacetime, even without the symmetry condition. After the dimensional reduction,
no Kaluza-Klein (KK) mode appears because of the imposed symmetry condition. The
symmetry condition also restricts the gauge symmetry and the scalar contents originated
from the extra gauge field components in the 4D spacetime. Moreover, a suitable potential
for the scalar sector can be obtained to induce SSB at tree level.

In this paper, we consider two scenarios for constructing the 4D theory from a 6D
model: one utilizing the symmetry condition for the gauge field with SO(12) symmetry [21],
whereas the other without it for the gauge field with E6 symmetry [22]. In the first scenario,
however, we do not impose the condition on the fermions as used in other CSDR models.
We then have massive KK modes for fermions but not the gauge and scalar fields in 4D. We
can thus obtain a dark matter candidate under assumed KK parity. In the case without the
symmetry condition, we find that the background gauge field is able to restrict the gauge
symmetry and massless particle contents in 4D. Also, there are KK modes for each field, with
the mass spectrum determined according to the model. Generically, massless modes do not
appear in the KK mass spectrum because of the positive curvature of the S2 space [27]. With
the help of the background gauge field, however, we obtain massless KKmodes for the gauge
bosons and fermions.

In general, the gauge symmetry of a grand unified theory (GUT) tends to remain
in 4D in these dimensional reduction approaches [24, 28–32]. Also, it is usually difficult to
obtain an appropriate Higgs potential to break the GUT gauge symmetry to the SM-like
one because of the gauge group structure. A GUT gauge symmetry can be broken to the
SM-like gauge symmetry by imposing nontrivial boundary conditions (for cases with orbi-
fold extra space, see, e.g., [4–8, 11, 12, 16–18, 33, 34]). Therefore, to solve the above-mentioned
problems, we impose on the fields of the 6D model a set of nontrivial boundary conditions
on the S2/Z2 space. Therefore, the gauge symmetry, scalar contents, and massless fermions
are determined by these boundary conditions and the background gauge field. We find that
in both scenarios, with or without the symmetry condition for the gauge field, the electro-
weak symmetry breaking (EWSB) can be realized spontaneously. The Higgs boson mass is
predicted by analyzing the Higgs potential in the respective models.

This paper is organized as follows. In Section 2, we review two schemes for construct-
ing a 4D theory from gauge models defined on 6D spacetime whose extra space has the
S2/Z2 topology with a set of nontrivial boundary conditions. In Section 3, we show the mo-
dels based on SO(12) and E6 gauge symmetries, with the former being imposedwith the sym-
metry condition on the gauge field and the latter without. We summarize our results in
Section 4.
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2. The 6D Gauge-Higgs Unification Model Construction Scheme with
Extra S2/Z2 Space

There are two schemes for constructing a 4D theory from a 6D gauge theory, where the extra
space is a two-sphere orbifold S2/Z2. Use of the symmetry condition is made on the first
scheme but not the other. We apply nontrivial boundary condition in both schemes.

2.1. A Gauge Theory on 6D Spacetime with S2/Z2 Extraspace

2.1.1. The 6D Spacetime with S2/Z2 Extraspace

We begin by considering a 6D spacetimeM6 that is assumed to be a direct product of the 4D
Minkowski spacetimeM4 and two-sphere orbifold S2/Z2, that is,M6 =M4×S2/Z2. The two-
sphere S2 is a unique two-dimensional coset space and can be written as S2 = SU(2)I/U(1)I ,
where U(1)I is a subgroup of SU(2)I . This coset space structure of S

2 requires that S2 have the
isometry group SU(2)I and that the U(1)I group be embedded in the group SO(2)which is in
turn a subgroup of the full Lorentz group SO(1,5). We denote the coordinates ofM6 byXM =
(xμ, yθ = θ, yφ = φ), where xμ and {θ, φ} are M4 coordinates and S2 spherical coordinates,
respectively. The spacetime index M runs over μ ∈ {0, 1, 2, 3} and α ∈ {θ, φ}. The orbi-
fold S2/Z2 is defined by the identification of (θ, φ) and (π − θ,−φ) [35], leaving two fixed
points: (π/2, 0) and (π/2, π). The metric gMN ofM6 is written as

gMN =

(
ημν 0

0 −gαβ

)
, (2.1)

where ημν = diag(1,−1,−1,−1) and gαβ = R2 diag(1, sin2θ) are the metrics for M4 and S2,
respectively, and R is the radius of S2. We define the vielbeins eMA that connect the metric
of M6 and that of the tangent space of M6, denoted by hAB, through the relation gMN =
eAMe

B
NhAB. Here A = (μ, a), where a ∈ {4, 5}, is the index for the coordinates of tangent space

ofM6. The explicit forms of the vielbeins are

e4θ = R, e5φ = R sin θ, e4φ = e5θ = 0. (2.2)

Also the nonzero components of the spin connection are

R45
φ = −R54

φ = − cos θ. (2.3)

2.1.2. Lagrangian on 6D Spacetime with S2/Z2 Extra Space

We now discuss the general structure of a gauge theory on M6. We first introduce a gauge
field AM(x, y) = (Aμ(x, y), Aα(x, y)), which belongs to the adjoint representation of a gauge
groupG, and fermionsΨ(x, y), which lies in a representation F ofG. The action of this theory
is then given by

S =
∫
dx4R2 sin θ dθ dφ

(
ΨiΓμDμΨ +ΨiΓaeαaDαΨ − 1

4g2
gMNgKL Tr[FMKFNL]

)
, (2.4)
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where FMN = ∂MAN(X)−∂NAM(X)−[AM(X), AN(X)] is the field strength,DM is the covari-
ant derivative including the spin connection, and ΓA represents the Dirac matrices satisfying
the 6D Clifford algebra. Here DM and ΓA can be written explicitly as

Dμ = ∂μ −Aμ, Dθ = ∂θ −Aθ, Dφ = ∂φ − iΣ3

2
cos θ −Aφ,

Γμ = γμ ⊗ I2, Γ4 = iγ5 ⊗ σ1, Γ5 = iγ5 ⊗ σ2,
(2.5)

where {γμ, γ5} are the 4D Dirac matrices, σi (i = 1, 2, 3) are the Pauli matrices, Id is the d × d
identity matrix, and Σ3 = I4 ⊗ σ3. The covariant derivative Dφ has the spin connection term
i(Σ3/2) cos θ which is needed for space with a nonzero curvature- like S2 and applied only
to fermions. In 6D spacetime, one can define the chirality of fermions and the corresponding
projection operators are

Γ± =
1 ± Γ7

2
, (2.6)

where Γ7 ≡ γ5 ⊗ σ3 is the chiral operator. The chiral fermions on 6D spacetime are thus

Ψ± = Γ±Ψ, Γ7Ψ± = ±Ψ±. (2.7)

The 6D chiral fermions can be also written in terms of 4D chiral fermions ψL(R) as

Ψ+ =

(
ψR

ψL

)
, (2.8)

Ψ− =

(
ψL

ψR

)
. (2.9)

Here we note in passing that the mass dimensions of Aμ, Aα, Ψ and g in the 6D model are 1,
0, 5/2 and −1, respectively.

2.1.3. Nontrivial Boundary Conditions on the Two-Sphere Orbifold

On the two-sphere orbifold, one can consider parity operations P : (θ, φ) → (π − θ,−φ) and
azimuthal translation Tφ : (θ, φ) → (θ, φ+2π). Notice that here the periodicity φ → φ+2π is
not associated with the orbifolding. We can impose the following two types of boundary con-
ditions on both gauge and fermion fields under the two operations:

Aμ

(
x, π − θ,−φ) = P1Aμ

(
x, θ, φ

)
P1, Aμ

(
x, π − θ, 2π − φ) = P2Aμ

(
x, θ, φ

)
P2, (2.10)

Aα

(
x, π − θ,−φ) = −P1Aα

(
x, θ, φ

)
P1, Aα

(
x, π − θ, 2π − φ) = −P2Aα

(
x, θ, φ

)
P2, (2.11)

Ψ
(
x, π − θ,−φ) = ±γ5P1Ψ

(
x, θ, φ

)
, Ψ

(
x, π − θ, 2π − φ) = ±γ5P2Ψ

(
x, θ, φ

)
, (2.12)
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or

Aμ

(
x, π − θ,−φ) = P1Aμ

(
x, θ, φ

)
P1, Aμ

(
x, θ, φ + 2π

)
= P̂2Aμ

(
x, θ, φ

)
P̂2, (2.13)

Aα

(
x, π − θ,−φ) = −P1Aα

(
x, θ, φ

)
P1, Aα

(
x, θ, φ + 2π

)
= P̂2Aα

(
x, θ, φ

)
P̂2, (2.14)

Ψ
(
x, π − θ,−φ) = ±γ5P1Ψ

(
x, θ, φ

)
, Ψ

(
x, θ, φ + 2π

)
= ±P̂2Ψ

(
x, θ, φ

)
, (2.15)

where the former conditions are associated with P operation and combination of P and Tφ
operations, while the latter conditions are associated with the P or Tφ operation individually.
More explicitly, P1, P2, and P̂2 correspond to operations P , PTφ, and Tφ, respectively. These
boundary conditions are determined by requiring invariance of the 6D action under the
transformation (θ, φ) → (π − θ,−φ) and φ → φ + 2π . Note that at the poles (sin θ = 0),
the coordinate φ is not well-defined and the translation Tφ is irrelevant. Thus, only the
components which are even under φ → φ + 2π can exist without contradiction.

The projection matrices P1,2 act on the gauge group representation space and have
eigenvalues ±1. They assign different parities for different representation components. For
fermion boundary conditions, the sign in front of γ5 can be either + or − since the fermions
always appear in bilinear forms in the action. The 4D action is then restricted by these parity
assignments.

2.2. Dimensional Reduction Scheme with Symmetry Condition

Here we review the dimensional reduction scheme in which a symmetry condition is applied
to the gauge field [21].

2.2.1. The Symmetry Condition

We impose on the gauge field AM(X) the symmetry which connects SU(2)I isometry
transformation on S2 and the gauge transformation of the field in order to carry out
dimensional reduction. Moreover, the nontrivial boundary conditions of S2/Z2 are also
utilized to restrict the 4D theory. The symmetry demands that the SU(2)I coordinate
transformation should be compensated by a gauge transformation [1, 23]. It further leads
to the following set of the symmetry condition on the gauge field:

ξ
β

i ∂βAμ = ∂μWi +
[
Wi,Aμ

]
,

ξ
β

i ∂βAα + ∂αξ
β

i Aβ = ∂αWi + [Wi,Aα],
(2.16)

where ξαi are the killing vectors that generate the SU(2)I symmetry, and Wi are some fields
that generate an infinitesimal gauge transformation of G. Here the index i = 1, 2, 3 cor-
responds to that of the SU(2) generators. The explicit forms of ξαi s for S

2 are

ξθ1 = sinφ, ξ
φ

1 = cot θ cosφ,

ξθ2 = − cosφ, ξ
φ

2 = cot θ sinφ,

ξθ3 = 0, ξ
φ

3 = −1.

(2.17)
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The LHS’s and RHS’s of (2.16) are infinitesimal isometry transformations and the corre-
sponding infinitesimal gauge transformations, respectively.

2.2.2. Dimensional Reduction and Lagrangian in 4D Spacetime

The dimensional reduction of the gauge sector is explicitly carried out by applying the
solutions of the symmetry condition equations (2.16). These solutions are given by Manton
[1]

Aμ = Aμ(x), Aθ = −Φ1(x), Aφ = Φ2(x) sin θ −Φ3 cos θ, (2.18)

W1 = −Φ3
cosφ
sin θ

, W2 = −Φ3
sinφ
sin θ

, W3 = 0, (2.19)

where Φ1(x) and Φ2(x) are scalar fields and the Φ3 term for Aφ corresponds to the
background gauge field [36]. They satisfy the following constraints:

[
Φ3, Aμ

]
= 0, (2.20)

[−iΦ3,Φi(x)] = iε3ijΦj(x), (2.21)

where the LHS shows the gauge transformation associated with Φ3 and the RHS shows
the U(1)I transformation embedded in Lorentz group SO(2). These constraints can be
satisfied when U(1)I is embedded in the gauge group G and −iΦ3 should be chosen as the
corresponding generator.

Substituting the solutions, (2.18), intoAM(X) in the action, (2.4), one can easily obtain
the 4D action by integrating out coordinates θ and φ in the gauge sector.

S
(gauge)
4D =

∫
d4x

(
− R2

4g2
Tr
[
FμνF

μν(x)
]

− 1
2g2

Tr
[
D′
μΦ1(x)D′μΦ1(x) +D′

μΦ2(x)D′μΦ2(x)
]

− 1
2g2R2

Tr[(Φ3 + [Φ1(x),Φ2(x)])(Φ3 + [Φ1(x),Φ2(x)])]

)
,

(2.22)

where D′
μΦ = ∂μΦ − [Aμ,Φ].

For fermions, we do not impose the symmetry condition. Then the gauge interaction
term is not invariant under the coordinate transformation on S2/Z2. The fermion sector of the
4D action is thus obtained by expanding fermions in terms of the normal modes of S2/Z2 and
then integrating out the S2/Z2 coordinates in the 6D action. As a result, the fermions have
massive KK modes which can provide a dark matter candidate. Generally, the KK modes do
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not contain massless modes because of the positive curvature of S2 [27]. Nevertheless, we
can show that the fermion components satisfying the condition

−iΦ3Ψ =
Σ3

2
Ψ (2.23)

do have massless modes. The squared masses of the KK modes are eigenvalues of the square
of the extradimensional Dirac-operator −iD̂. In the S2 case,

−iD̂ = −ieαaΓaDα

= − i

R

[
Σ1

(
∂θ +

cot θ
2

)
+ Σ2

(
1

sin θ
∂φ + Φ3cot θ

)]
,

(2.24)

where Σi = I4 × σi. Hence,

(
−iD̂

)2
= − 1

R2

[
1

sin θ
∂θ(sin θ∂θ) +

1

sin2θ
∂2φ + i(2(−iΦ3) − Σ3)

cos θ

sin2θ
∂φ

−1
4
− 1

4 sin2θ
+ Σ3(−iΦ3)

1

sin2θ
− (−iΦ3)2cot2θ

]
.

(2.25)

By acting the above operator on a fermion Ψ(X) that satisfies (2.23), we obtain the relation

(
−iD̂

)2
Ψ = − 1

R2

[
1

sin θ
∂θ(sin θ∂θ) +

1

sin2θ
∂2φ

]
Ψ. (2.26)

The eigenvalues of the operator on the RHS are less than or equal to zero. Hence, the
fermion components satisfying (2.23) have massless modes, while other components have
only massive KK modes. Note that the massless mode ψ0 should be independent of S2

coordinates θ and φ, that is,

ψ0 = ψ(x). (2.27)

The existence of massless fermions signifies the meaning and importance of the symmetry
condition. Although the energy density of the gauge sector in the presence of the background
field is higher than that with no background field, the massless fermions may help render a
true ground state as a whole. In other words, the existence of the background field will give
a positive contribution to the energy density of the gauge sector, indicating that the gauge
sector with the background field alone is not at the ground state. Nevertheless, it gives rise
to a negative contribution to the energy density of the fermion sector to induce massless
fermions. We therefore expect that once both the gauge and fermion sectors are considered
together, the existence of the background field renders the system at the ground state. We
also note that one could impose symmetry condition on fermions [24, 37]. In that case, we
obtain the massless condition equation (2.23) from the symmetry condition of fermion, and
the solution of symmetry condition is independent of the S2 coordinates: ψ = ψ(x) with no
massive KKmode. Therefore, the same discussion as before can be applied for this case if one
only focuses on the massless mode in our scheme.
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2.2.3. Gauge Symmetry and Particle Contents in 4D Spacetime

The symmetry condition and the nontrivial boundary conditions substantially constrain the
4D gauge group and the representations of the particle contents.

First, we show the prescriptions to identify gauge symmetry and field components
which satisfy the constraint equations (2.20), (2.21), and (2.23). The gauge group H that
satisfy the constraint equation (2.20) is identified as

H = CG(U(1)I), (2.28)

where CG(U(1)I) denotes the centralizer of U(1)I in G [23]. Note that this implies G ⊃ H =
H ′ × U(1)I , whereH ′ is some subgroup of G. In this way, the gauge group G is reduced to its
subgroupH = H ′ × U(1)I by the symmetry condition.

Secondly, the scalar field components which satisfy the constraint equations (2.21) are
specified by the following prescription. Suppose that the adjoint representations of SU(2)I
and G are decomposed according to the embeddings SU(2)I ⊃ U(1)I and G ⊃ H ′ × U(1)I
as

3
(
adj SU(2)

)
=
(
0
(
adj U(1)

)
I

)
+ (2) + (−2), (2.29)

adj G =
(
adj H

)
(0) + 1

(
0
(
adj U(1)

)
I

)
+
∑
g

hg
(
rg
)
, (2.30)

where hg ’s denote representations of H ′, and rg ’s denote the U(1)I charges. Then the scalar
components satisfying the constraints belong to hg ’s whose corresponding rg ’s in (2.30) are
±2.

Thirdly, the fermion components which satisfy the constraint equations (2.23) are
determined as follows [37]. Let the group U(1)I be embedded in the Lorentz group SO(2)
in such a way that the vector representation 2 of SO(2) is decomposed according to SO(2) ⊃
U(1)I as

2 = (2) + (−2). (2.31)

This embedding specifies a decomposition of the Weyl spinor representation σ6 = 4 of
SO(1, 5) according to SO(1, 5) ⊃ SU(2) × SU(2) ×U(1)I as

σ6 = (2, 1)(1) + (1, 2)(−1), (2.32)

where the SU(2)×SU(2) representations (2, 1) and (1, 2) correspond to left-handed and right-
handed spinors, respectively. We note that this decomposition corresponds to (2.8) [or (2.9)].
We then decompose F according to G ⊃ H ′ ×U(1)I as

F =
∑
f

hf
(
rf
)
. (2.33)
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Now the fermion components satisfying the constraints are identified as those hf ’s whose
corresponding rf ’s in (2.33) are +1 for left-handed fermions and −1 for right-handed
fermions.

Finally, we show which gauge symmetry and field components remain in 4D
spacetime by surveying the consistency between the boundary conditions (2.13)–(2.15), the
solutions in (2.18), and the massless fermion modes equation (2.27). By applying (2.18) and
(2.27) to (2.13)–(2.15), we obtain the parity conditions

Aμ(x) = P1
(
P̂2
)
Aμ(x)P1

(
P̂2
)
,

−Φ1(x) = −P1(−Φ1(x))P1,

−Φ1(x) = P̂2(−Φ1(x))P̂2,

Φ2(x) + Φ3 cos θ = −P1Φ2(x)P1 + P1Φ3P1 cos θ,

Φ2(x) −Φ3 cos θ = P̂2Φ2(x)P̂2 − P̂2Φ3P̂2 cos θ,

Ψ(x) = γ5P1Ψ(x),

Ψ(x) = P̂2Ψ(x).

(2.34)

We find that the gauge fields, scalar fields, and massless fermions in 4D spacetime should be
even for P1AμP1 and P̂2AμP̂2; −P1Φ1,2P1 and P̂2Φ1,2P̂2; γ5P1Ψ and P̂2Ψ, respectively.Φ3 always
remains in the spectrum because it is proportional to the U(1)I generator and commutes with
P(P ′). Therefore, the particle spectrum contains those satisfying both the constraint equations
(2.20), (2.21), and (2.23) and the parity conditions (2.34). The remaining 4D gauge symmetry
can be readily identified by observing which components of the gauge field remain in the
spectrum.

2.3. Dimensional Reduction Scheme without the Symmetry Condition

Here we review the dimensional reduction scheme which does not require the imposition of
the symmetry condition on the gauge field [22].

2.3.1. Background Gauge Field and Gauge Group Reduction

Instead of utilizing the symmetry condition, we consider the background gauge field AB
φ
≡

ÃB
φ
sin θ that corresponds to a Dirac monopole [36]

ÃB
φ = −Q cos θ ∓ 1

sin θ
,

(
− : 0 ≤ θ < π

2
, + :

π

2
≤ θ ≤ π

)
, (2.35)

whereQ is proportional to the generator of a U(1) subgroup of the original gauge group. The
background gauge field AB

φ
corresponds to Φ3 cos θ ⊂ Aφ in (2.18).
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Here we choose the background gauge field to belong to the U(1)I group, which is a
subgroup of original gauge group G:

G ⊃ Gsub ⊗U(1)I . (2.36)

We find that there is no massless mode for gauge field components with a nonzero U(1)I
charge. In fact, these components acquire masses due to the background field from the term
proportional to FμφF

μ

φ
:

Tr
[
−1
4
FμνF

μν +
1

2R2sin2θ
FμφF

μ

φ

]

−→ Tr
[
−1
4
(
∂μAν − ∂νAμ

)
(∂μAν − ∂νAμ) − 1

2R2sin2θ

[
Aμ,A

B
φ

][
Aμ,AB

φ

]]
.

(2.37)

For the components of Aμ with nonzero U(1)I charge, we have

Ai
μQi +AiμQ

i ∈ Aμ, (2.38)

where Qi (Qi = Q†
i ) are generators corresponding to distinct components in (3.30) that have

nonzero U(1)I charges, andAiμ (Ai
μ = A†

iμ) are the corresponding components ofAμ. We find
the term

1

sin2θ
Tr
[[
Aμ,A

B
φ

][
Aμ,AB

φ

]]
=

(cos θ ∓ 1)2

sin2θ
Tr
[[
Ai
μQi +AiμQ

i,Q
][
AiμQi +A

μ

i Q
i,Q

]]

= −2∣∣q∣∣2 (cos θ ∓ 1)2

sin2θ
AiμAiμ,

(2.39)

where q is the Q charge of the relevant component. Use of the facts that AB
φ
belongs to U(1)I

and that Tr[QiQ
i] = 2 has been made in the above equation. A mass is thus associated with

the lowest modes of those components of Aμ with nonzero U(1)I charges:

∫
dΩTr

[
−1
4
(
∂μAν − ∂νAμ

)
(∂μAν − ∂νAμ) − 1

2R2sin2θ

[
Aμ,AB

]
[Aμ,AB]

]∣∣∣∣
lowest

−→ −1
2
[
∂μAiν(x) − ∂νAiμ(x)

][
∂μAiν(x) − ∂νAiμ(x)

]
+m2

BA
i
μ(x)A

iμ(x),

(2.40)

where the subscript “lowest” means that only the lowest KK modes are kept. Here the
lowest KK modes of Aμ correspond to the term Aμ(x)/

√
4π in the KK expansion. In

short, any representation of Aμ carrying a nonzero U(1)I charge acquires a mass mB from
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the background field contribution after one integrates over the extra spatial coordinates. More
explicitly,

m2
B =

∣∣q∣∣2
4πR2

∫
dΩ

(cos θ ∓ 1)2

sin2θ
� 0.39

∣∣q∣∣2
R2

(2.41)

for the zero mode. Therefore the gauge group G is reduced to Gsub ⊗ U(1)I by the presence
of the background gauge field. This condition is the same as the case with the symmetry
condition.

2.3.2. Scalar Field Contents in 4D Spacetime

The scalar contents in 4D spacetime are obtained from the extradimensional components
of the gauge field {Aθ,Aφ} after integrating out the extra spatial coordinates. The kinetic
term and potential term of {Aθ,Aφ} are obtained from the gauge sector containing these
components

Sscalar =
∫
dx4dΩ

(
1

2g2
Tr
[
FμθF

μ

θ

]
+

1

2g2sin2θ
Tr
[
FμφF

μ

φ

]
− 1

2g2R2sin2θ
Tr
[
FθφFθφ

])

−→
∫
dx4dΩ

(
1

2g2
Tr

[(
∂μAθ − i

[
Aμ,Aθ

])2] + 1
2g2

Tr

[(
∂μÃφ − i

[
Aμ, Ãφ

])2
])

− 1
2g2R2

Tr

[(
1

sin θ
∂θ
(
sin θÃφ + sin θÃB

φ

)
− 1
sin θ

∂φAθ − i
[
Aθ, Ãφ + ÃB

φ

])2
]
,

(2.42)

where we have taken Aφ = Ãφ sin θ + ÃB
φ
sin θ. In the second step indicated by the arrow

in (2.42), we have omitted terms which do not involve Aθ and Ãφ from the right-hand
side of the first equality. It is known that one generally cannot obtain massless modes for
physical scalar components in 4D spacetime [14, 38]. One can see this by noting that the
eigenfunction of the operator (1/ sin θ)∂θ sin θ swith zero eigenvalue is not normalizable
[14]. In other words, these fields have only KK modes. However, an interesting feature is
that it is possible to obtain a negative squared mass when taking into account the interactions
between the background gauge field ÃB

φ and {Aθ, Ãφ}. This happens when the component
carries a nonzero U(1)I charge, as the background gauge field belongs to U(1)I . In this case,
the (l = 1,m = 1)modes of these real scalar components are found to have a negative squared
mass in 4D spacetime. They can be identified as the Higgs fields once they are shown to
belong to the correct representation under the SM gauge group. Here the numbers (�,m) are
the angular momentum quantum number on S2/Z2, and each KK mode is characterized by
these numbers. One can show that the (l = 1, m = 0) mode has a positive squared mass and
is not considered as the Higgs field. A discussion of the KK masses with general (�,m) will
be given in Section 3.2.5.
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2.3.3. Chiral Fermions in 4D Spacetime

We introduce fermions as the Weyl spinor fields of the 6D Lorentz group SO(1,5). They can
be written in terms of the SO(1,3)Weyl spinors as (2.8) and (2.9). In general, fermions on the
two spheres do not have massless KK modes because of the positive curvature of the two
spheres. The massless modes can be obtained by incorporating the background gauge field
(2.35) though, for it can cancel the contribution from the positive curvature. In this case, the
condition for obtaining a massless fermion mode is

QΨ = ±1
2
Ψ, (2.43)

where Q comes from the background gauge field and is proportional to the U(1)I generator
[35, 36, 38]. We observe that the upper [lower] component on the RHS of (2.8) [(2.9)] has a
massless mode for the + [−] sign on the RHS of (2.43).

2.3.4. The Higgs Potential

The Lagrangian for the Higgs sector is derived from the gauge sector that contains
extradimensional components of the gauge field {Aθ, Ãφ}, as given in (2.42), by considering
the lowest KK modes of them. The kinetic term and potential term are, respectively,

LK =
1

2g2

∫
dΩ

(
Tr
[(
∂μAθ − i

[
Aμ,Aθ

])2] + Tr
[(
∂μÃφ − i

[
Aμ, Ãφ

])2
])∣∣∣∣

lowest
,

V =
1

2g2R2

∫
dΩTr

[(
1

sin θ
∂θ
(
sin θÃφ + sin θÃB

φ

)
− 1
sin θ

∂φAθ − i
[
Aθ, Ãφ + ÃB

φ

])2
]∣∣∣∣∣

lowest

.

(2.44)

In our model, scalar components other than the Higgs field have vanishing VEV because
only the Higgs field has a negative mass-squared term, coming from the interaction with
the background gauge field at tree level. Therefore, only the Higgs field contributes to the
spontaneous symmetry breaking. Consider the (1, 1) mode of the {(1, 2)(3,−3, 3) + h.c.}
representation in (3.31) as argued in the previous section. The gauge fields are given by the
following KK expansions:

Aθ = − 1√
2

[
Φ1(x)∂θY−

11

(
θ, φ

)
+ Φ2(x)

1
sin θ

∂φY
−
11

(
θ, φ

)]
+ · · · , (2.45)

Ãφ =
1√
2

[
Φ2(x)∂θY−

11

(
θ, φ

) −Φ1(x)
1

sin θ
∂φY

−
11

(
θ, φ

)]
+ · · · , (2.46)

where · · · represents higher KK mode terms [35]. The function Y−
11 = −1/√2[Y11 + Y1−1] is

odd under (θ, φ) −→ (π/2 − θ,−φ). We will discuss their higher KK modes and masses in
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the existence of the background gauge field in Section 3.2.5. With (2.45) and (2.46), the kinetic
term becomes

LK(x) =
1

2g2

(
Tr
[
DμΦ1(x)DμΦ1(x)

]
+ Tr

[
DμΦ2(x)DμΦ2(x)

])
, (2.47)

where DμΦ1,2 = ∂μΦ1,2 − i[Aμ,Φ1,2] is the covariant derivative acting on Φ1,2. The potential
term, on the other hand, is

V =
1

2g2R2

∫
dΩTr

[(
−
√
2Y−

11Φ2(x) +Q

+
i

2
[Φ1(x),Φ2(x)]

{
∂θY

−
11∂θY

−
11 +

1

sin2θ
∂φY

−
11∂φY

−
11

}

+
i√
2

[
Φ1(x), ÃB

φ

]
∂θY

−
11 +

i√
2

[
Φ2(x), ÃB

φ

] 1
sin θ

∂φY
−
11

)2
]
,

(2.48)

where ∂θ(sin θÃB
φ
) = Q sin θ from (2.35) is used. Expanding the square in the trace, we get

V =
1

2g2R2

∫
dΩTr

[
2
(
Y+
11

)2Φ2
2(x) +Q

2

− 1
4
[Φ1(x),Φ2(x)]2

(
∂θY

−
11∂θY

−
11 +

1

sin2θ
∂φY

−
11∂φY

−
11

)2

− 1
2

[
Φ1(x), ÃB

φ

]2(
∂θY

−
11

)2 − 1
2

[
Φ2(x), ÃB

φ

]2( 1
sin θ

∂φY
−
11

)2

− 2iΦ2(x)
[
Φ1(x), ÃB

φ

]
Y−
11∂θY

−
11 −

[
Φ1(x), ÃB

φ

][
Φ2(x), ÃB

φ

]
∂θY

−
11

1
sin θ

∂φY
−
11

+iQ[Φ1(x),Φ2(x)]
(
∂θY

−
11∂θY

−
11 +

1

sin2θ
∂φY

−
11∂φY

−
11

)]
,

(2.49)

where terms that vanish after the dΩ integration are directly omitted. In the end, the potential
is simplified to

V =
1

2g2R2
Tr
[
2Φ2

2(x) + 4πQ2 − 3
10π

[Φ1(x),Φ2(x)]2 +
5i
2
Q[Φ1(x),Φ2(x)]

+μ1[Q,Φ1(x)]2 + μ2[Q,Φ2(x)]2
]
,

(2.50)

where use of ÃB
φ = −Q(cos θ ∓ 1)/ sin θ has been made and μ1 = 1 − (3/2) ln 2 and μ2 =

(3/4)(1 − 2 ln 2).



14 Advances in High Energy Physics

We now take the following linear combination of Φ1 and Φ2 to form a complex Higgs
doublet,

Φ(x) =
1√
2
(Φ1(x) + iΦ2(x)), (2.51)

Φ(x)† =
1√
2
(Φ1(x) − iΦ2(x)). (2.52)

It is straightforward to see that

[Φ1(x),Φ2(x)] = i
[
Φ(x),Φ†(x)

]
. (2.53)

The kinetic term and the Higgs potential now become

LK =
1
g2

Tr
[
DμΦ†(x)DμΦ(x)

]
, (2.54)

V =
1

2g2R2
Tr
[
2Φ2

2(x) + 4πQ2 +
3

10π

[
Φ(x),Φ†(x)

]2 − 5
2
Q
[
Φ(x),Φ†(x)

]

+μ1[Q,Φ1(x)]2 + μ2[Q,Φ2(x)]2
]
.

(2.55)

The last three terms in the potential are contributions to the squared mass term of the Higgs
boson from the background gauge field and can lead to a negative value. This means that the
existence of the background gauge field makes the minimum of Higgs potential lower.

3. The Models Based on Our Schemes

In this section, we show concrete models based on the scheme introduced in previous section.
We review the model based on SO(12) gauge symmetry for the scheme with symmetry
condition given in [21], and review the model based on E6 gauge symmetry for the scheme
without symmetry condition given in [22].

3.1. The SO(12) Model with Symmetry Condition

Here we show a model based on a gauge group G = SO(12) and a representation F = 32
of SO(12) for fermions, under the scheme with symmetry condition [21]. The choice of G =
SO(12) and F = 32 is motivated by the study based on CSDR which leads to an SO(10) ×
U(1) gauge theory with one generation of fermion in 4D spacetime [28] (for SO(12) GUT see
also [39]).
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3.1.1. A Gauge Symmetry and Particle Contents

First, we show the particle contents in 4D spacetime without parities equations (2.13)–(2.15).
We assume that U(1)I is embedded into SO(12) such as

SO(12) ⊃ SO(10) ×U(1)I . (3.1)

Thus we identify SO(10) × U(1)I as the gauge group which satisfy the constraint equations
(2.20), using (2.28). The SO(12) gauge group is reduced to SO(10) × U(1) by the symmetry
condition. We identify the scalar components which satisfy (2.21) by decomposing adjoint
representation of SO(12):

SO(12) ⊃ SO(10) ×U(1)I : 66 = 45(0) + 1(0) + 10(2) + 10(−2). (3.2)

According to the prescription below (2.28) in Section 2, the scalar components 10(2) + 10(−2)
remains in 4D spacetime. We also identify the fermion components which satisfy (2.23) by
decomposing 32 representations of SO(12) as

SO(12) ⊃ SO(10) ×U(1)I : 32 = 16(1) + 16(−1). (3.3)

According to the prescription below (2.30) in Section 2, we have the fermion components as
16(1) for a left-handed fermion and 16(−1) for a right-handed fermion, respectively, in 4D
spacetime.

Next, we specify the parity assignment of P1(P̂2) in order to identify the gauge
symmetry and the particle contents that actually remain in 4D spacetime. We choose a parity
assignment so as to break gauge symmetry as SO(12) ⊃ SO(10) × U(1)I ⊃ SU(5)× U(1)X ×
U(1)I ⊃ SU(3) × SU(2)L × U(1)Y × U(1)X × U(1)I and to maintain Higgs-doublet in 4D
spacetime. The parity assignment is written in 32 dimensional spinor basis of SO(12) such as

SO(12) ⊃ SU(3) × SU(2)L ×U(1)Y ×U(1)X ×U(1)I ,

32 = (3, 2)(+−)(1,−1, 1) + (3, 2)
(+−)

(−1, 1,−1)

+ (3, 1)(−−)(4, 1,−1) +
(
3, 1

)(−−)
(−4,−1, 1)

+ (3, 1)(−+)(−2,−3,−1) +
(
3, 1

)(−+)
(2, 3, 1)

+ (1, 2)(++)(3,−3,−1) + (1, 2)(++)(−3, 3, 1)

+ (1, 1)(−−)(6,−1, 1) + (1, 1)(−−)(−6, 1,−1)

+ (1, 1)(−+)(0,−5, 1) + (1, 1)(−+)(0, 5,−1),

(3.4)

where for example, (+,−) means that the parities (P1, P̂2) of the associated components are
(even, odd). We find the gauge symmetry in 4D spacetime by surveying parity assignment
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for the gauge field. The parity assignments of the gauge field under Aμ → P1AμP1(P̂2AμP̂2)
are

66 = (8, 1)(++)(0, 0, 0) + (1, 3)(++)(0, 0, 0) + (1, 1)(++)(0, 0, 0)

+ (1, 1)(++)(0, 0, 0) + (1, 1)(++)(0, 0, 0)

+
[
(3, 2)(−+)(−5, 0, 0) +

(
3, 2

)(−+)
(5, 0, 0)

+ (3, 2)(−−)(1, 4, 0) +
(
3, 2

)(−−)
(−1,−4, 0)

+ (3, 1)(+−)(4,−4, 0) +
(
3, 1

)(+−)
(−4, 4, 0)

+ (3, 1)(+−)(−2, 2, 2) +
(
3, 1

)(+−)
(2,−2,−2)

+ (3, 1)(++)(−2, 2,−2) +
(
3, 1

)(++)
(2,−2, 2)

+ (1, 2)(−−)(3, 2, 2) + (1, 2)(−−)(−3,−2,−2)

+ (1, 2)(−+)(3, 2,−2) + (1, 2)(−+)(−3,−2, 2)

+(1, 1)(+−)(6, 4, 0) + (1, 1)(+−)(−6,−4, 0)
]
.

(3.5)

The components with an underline are originated from 10(2) and 10(−2) of SO(10) × U(1)I ,
which do not satisfy constraint equations (2.20), and hence these components do not remain
in 4D spacetime. Thus we have the gauge fields with (+,+) parity components without an
underline in 4D spacetime, and the gauge symmetry is SU(3)×SU(2)L×U(1)Y ×U(1)X×U(1)I .

The scalar particle contents in 4D spacetime are determined by the parity assignments,
under Φ1,2 → −P1 Φ1,2P1 and P̂2Φ1,2P̂2:

66 = (8, 1)(−+)(0, 0, 0) + (1, 3)(−+)(0, 0, 0) + (1, 1)(−+)(0, 0, 0)

+ (1, 1)(−+)(0, 0, 0) + (1, 1)(−+)(0, 0, 0)

+
[
(3, 2)(++)(−5, 0, 0) +

(
3, 2

)(++)
(5, 0, 0)

+ (3, 2)(+−)(1, 4, 0) +
(
3, 2

)(+−)
(−1,−4, 0)

+ (3, 1)(−−)(4,−4, 0) +
(
3, 1

)(−−)
(−4, 4, 0)

+ (3, 1)(−−)(−2, 2, 2) +
(
3, 1

)(−−)
(2,−2,−2)

+ (3, 1)(−+)(−2, 2,−2) +
(
3, 1

)(−+)
(2,−2, 2)
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+ (1, 2)(+−)(3, 2, 2) + (1, 2)(+−)(−3,−2,−2)

+ (1, 2)(++)(3, 2,−2) + (1, 2)(++)(−3,−2, 2)

+(1, 1)(−−)(6, 4, 0) + (1, 1)(−−)(−6,−4, 0)
]
.

(3.6)

Note that the relative sign for the parity assignment of P1 is different from (3.5),
and that the only underlined parts satisfy the constraint equations (2.21). Thus the scalar
components in 4D spacetime are (1, 2)(3, 2,−2) and (1, 2)(−3, −2, 2).

We specify the massless fermion contents in 4D spacetime, by surveying the parity
assignments for each components of fermion fields. We introduce two types of left-handed
Weyl fermions that belong to 32 representation of SO(12), which have parity assignments
ψ(P̂2) → γ5P1ψ

(P̂2)(P̂2ψ(P̂2)) and ψ(−P̂2) → γ5P1ψ
(−P̂2)(−P̂2ψ(−P̂2)), respectively. They have the

parity assignments as

32(P̂2)L = (3, 2)(−−)(1,−1, 1)L +
(
3, 2

)(−−)
(−1, 1,−1)L

+
(
3, 1

)(+−)
(−4,−1, 1)L + (3, 1)(+−)(4, 1,−1)L

+
(
3, 1

)(++)
(2, 3, 1)L + (3, 1)(++)(−2,−3,−1)L

+ (1, 2)(−+)(−3, 3, 1)L + (1, 2)(−+)(3,−3,−1)L

+ (1, 1)(+−)(6,−1, 1)L + (1, 1)(+−)(−6, 1,−1)L

+ (1, 1)(++)(0,−5, 1)L + (1, 1)(++)(0, 5,−1)L,

32(P̂2)R = (3, 2)(+−)(1,−1, 1)R +
(
3, 2

)(+−)
(−1, 1,−1)R

+
(
3, 1

)(−−)
(−4,−1, 1)R + (3, 1)(−−)(4, 1,−1)R

+
(
3, 1

)(−+)
(2, 3, 1)R + (3, 1)(−+)(−2,−3,−1)R

+ (1, 2)(++)(−3, 3, 1)R + (1, 2)(++)(3,−3,−1)R

+ (1, 1)(−−)(6,−1, 1)R + (1, 1)(−−)(−6, 1,−1)R

+ (1, 1)(−+)(0,−5, 1)R + (1, 1)(−+)(0, 5,−1)R,

32(−P̂2)L = (3, 2)(−+)(1,−1, 1)L +
(
3, 2

)(−+)
(−1, 1,−1)L

+
(
3, 1

)(++)
(−4,−1, 1)L + (3, 1)(++)(4, 1,−1)L
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+
(
3, 1

)(+−)
(2, 3, 1)L + (3, 1)(+−)(−2,−3,−1)L

+ (1, 2)(−−)(−3, 3, 1)L + (1, 2)(−−)(3,−3,−1)L

+ (1, 1)(++)(6,−1, 1)L + (1, 1)(++)(−6, 1,−1)L

+ (1, 1)(+−)(0,−5, 1)L + (1, 1)(+−)(0, 5,−1)L,

32(−P̂2)R = (3, 2)(++)(1,−1, 1)R +
(
3, 2

)(++)
(−1, 1,−1)R

+
(
3, 1

)(−+)
(−4,−1, 1)R + (3, 1)(−+)(4, 1,−1)R

+
(
3, 1

)(−+)
(2, 3, 1)R + (3, 1)(−+)(−2,−3,−1)R

+ (1, 2)(+−)(−3, 3, 1)R + (1, 2)(+−)(3,−3,−1)R

+ (1, 1)(−+)(6,−1, 1)R + (1, 1)(−+)(−6, 1,−1)R

+ (1, 1)(−−)(0,−5, 1)R + (1, 1)(−−)(0, 5,−1)R,

(3.7)

where L(R)means the left-handedness (right-handedness) of fermions in 4D spacetime, and
the underlined parts correspond to the components which satisfy constraint equations (2.23).
Note the relative sign for parity assignment of P1 between left-handed fermion and right-
handed fermion and that of P̂2 between 32(P̂2) and 32(−P̂2). The difference between 32(P̂2)

and 32(−P̂2) is allowed because of the bilinear form of the fermion sector. We thus find that
the massless fermion components in 4D spacetime are one generation of SM-fermions with
right-handed neutrino: {(3, 2)(1,−1, 1)L, (3, 1)(4, 1,−1)R, (3, 1)(−2,−3,−1)R, (1, 2)(−3, 3, 1)L,
(1, 1)(−6, 1,−1)R, (1, 1)(0, 5,−1)R}.

3.1.2. The Higgs Sector of the Model

We analyze the Higgs-sector of our model. The Higgs-sector LHiggs is the last two terms
of(2.22)

LHiggs = − 1
2g2

Tr
[
D′
μΦ1(x)D′μΦ1(x) +D′

μΦ2(x)D′μΦ2(x)
]

− 1
2g2R2

Tr[(Φ3 + [Φ1(x),Φ2(x)])(Φ3 + [Φ1(x),Φ2(x)])],

(3.8)

where the first term of RHS is the kinetic term of Higgs and the second term gives the Higgs
potential. We rewrite the Higgs-sector in terms of genuine Higgs field in order to analyze it.
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We first note that the Φis are written as

Φi = iφi = iφai Qa, (3.9)

where Qas are generators of gauge group SO(12), since Φis are originated from gauge fields
Aα = iAa

αQa; for the gauge group generator we assume the normalization Tr(QaQb) = −2δab.
Note that we assumed the −iΦ3 as the generator of U(1)I embedded in SO(12),

−iΦ3 = QI. (3.10)

We change the notation of the scalar fields according to (2.29) such that,

φ+ =
1
2
(
φ1 + iφ2

)
, φ− =

1
2
(
φ1 − iφ2

)
, (3.11)

in order to express solutions of the constraint equations (2.21) clearly. The constraint
equations (2.21) then rewritten as

[
QI, φ+

]
= φ+,

[
QI, φ−

]
= −φ−. (3.12)

The kinetic term LKE and potential V (φ) term are rewritten in terms of φ+ and φ−:

LKE = − 1
g2

Tr
[
D′
μφ+(x)D′μφ−(x)

]
, (3.13)

V = − 1
2g2R2

Tr
[
Q2
I − 4QI

[
φ+, φ−

]
+ 4

[
φ+, φ−

][
φ+, φ−

]]
, (3.14)

where covariant derivative D′
μ is D

′
μφ± = ∂μφ± − [Aμ, φ±].

Next, we change the notation of SO(12) generators Qa according to decomposition
(3.5) such that

QG =
{
Qi,Qα,QY ,Q,QI,Qax(−500), Qax(500)

Qax(140), Q
ax(−1−40), Qa(4−40), Qa(−440)

Qa(−22−2), Qa(2−22), Qa(−222), Qa(2−2−2)

Qx(322), Q
x(−3−2−2), Qx(32−2), Qx(−3−22)

Q(640), Q(−6−40)
}
,

(3.15)
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Table 1: Commutation relations of Qx(−3−22), Qx(32−2), Qα, QY , Q, and QI .

[Qx(−3−22), Qy(32−2)] = −
√

3
10
δxyQY + −

√
1
5
δxyQ + δxyQI +

1√
2
(σ∗

α)
x
yQα

[Qα,Qx] = − 1√
2
(σα)

y

x

Qy , [Qα,Q
x] =

1√
2
(σ∗

α)
x
yQ

y ,

[Qx,Qy] = 0 , [QY ,Q
x] = −

√
3
10
Qx,

[Q,Qx] = −
√

1
5
Qx, [QI,Q

x] = Qx,

where the order of generators corresponds to (3.5), index i = 1–8 corresponds to SU(3)
adjoint rep, index α = 1–3 corresponds to SU(2) adjoint rep, index a = 1–3 corresponds to
SU(3)-triplet, and index x = 1, 2 corresponds to SU(2)-doublet. We write φ± in terms of the
genuine Higgs field φx which belongs to (1, 2)(3, 2,−2), such that

φ+ = φxQx(−3−22) ,

φ− = φxQx(32−2),
(3.16)

where φx = (φx)
†. We also write gauge field Aμ(x) in terms of Qs in (3.38) as

Aμ(x) = i
(
Ai
μQi +Aα

μQα + BμQY + CμQ + EμQI

)
. (3.17)

We need commutation relations of Qx(−3−22), Qx(32−2), Qα, QY , Q, and QI in order to analyze
the Higgs sector; we summarized them in Table 1.

Finally, we obtain the Higgs sector with genuine Higgs field by substituting (3.16)–
(3.17) into (3.13) and (3.14) and rescaling the fields φ → (g/

√
2)φ and Aμ → (g/R)Aμ, and

the couplings (
√
2/R)g = g2 and

√
6/(5R2)g = gY ,

LHiggs =
∣∣Dμφx

∣∣2 − V (φ), (3.18)

where the covariant derivative Dμφx and potential V (φ) are

Dμφx = ∂μφx + ig2
1
2
(σα)

y
xAαμφy + igY

1
2
Bμφx + i

√
1
5
gCμφx − igEμφx, (3.19)

V = − 2
R2
φxφx +

3g2

2R2

(
φxφx

)2
, (3.20)

respectively. Notice that we omitted the constant term in the Higgs potential. We note that the
SU(2)L ×U(1)Y part of the Higgs sector has the same form as the SM Higgs sector. Therefore
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we obtain the electroweak symmetry breaking SU(2)L × U(1)Y → U(1)EM. The Higgs field
φx acquires vacuum expectation value (VEV) as

〈
φ
〉

=
1√
2

(
0

v

)
,

v =
√

4
3
1
g
,

(3.21)

andW boson massmW and Higgs massmH are given in terms of radius R

mW = g2
v

2
=
√

2
3
1
R
,

mH =
√
3
gv

R
=
√
4
1
R
.

(3.22)

The ratio betweenmW andmH is predicted

mH

mW
=
√
6. (3.23)

We thus findmH ∼196GeV in this model. The Weinberg angle is given by

sin2θW =
g2
Y

g2
2 + g

2
Y

=
3
8
, (3.24)

which is same as SU(5) GUT case. The prediction for the Weinberg angle at tree level is not
consistent with the electroweak measurements. One should also take into account quantum
corrections including contributions from the KK modes. It is, however, beyond the scope of
this paper.

In principle, one-loop power divergences in the Higgs potential would reappear since
the operator linear in Fab is allowed, where {a, b} denote extraspatial components [40]. Such
an operator would have the form

Fαθφ(x), (3.25)

where α corresponds to the index of the U(1) generator remaining in 4D. This operator is
potentially dangerous since its coefficient can be divergent. We can readily avoid this by
requiring parity invariance on S2/Z2 as in the T2/Z2 case [41].
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First, consider the parity transformation θ → π−θ. The parity conditions for the fields
are defined as

Aμ

(
x, θ, φ

) −→ Aμ

(
x, π − θ, φ),

Aθ

(
x, θ, φ

) −→ −Aθ

(
x, π − θ, φ),

Aφ

(
x, θ, φ

) −→ Aφ(x, π)
(
x, π − θ, φ),

Ψ
(
x, θ, φ

) −→ ±Γ4Ψ(
x, π − θ, φ),

(3.26)

where Γ4 = γ5 ⊗σ1. It is easy to see that the action in 6D, (2.4), is invariant under such a parity
transformation.

Secondly, we check the consistency between the orbifold boundary conditions
on S2/Z2, (2.10)–(2.12), and the parity conditions, (3.26). By performing the parity
transformation on both sides of the orbifold boundary conditions, (2.10)–(2.12), we obtain

Aμ

(
x, θ,−φ) = P1Aμ

(
x, π − θ, φ)P1,

−Aθ

(
x, θ,−φ) = P1Aθ

(
x, π − θ, φ)P1,

Aφ

(
x, θ,−φ) = −P1Aφ

(
x, π − θ, φ)P1,

±Γ4Ψ(
x, θ,−φ) = ±γ5P1

(±Γ4)Ψ(
x, π − θ, φ),

Aμ

(
x, π − θ, φ + 2π

)
= P̂2Aμ

(
x, π − θ, φ)P2,

−Aθ

(
x, π − θ, φ + 2π

)
= P̂2Aθ

(
x, π − θ, φ)P2,

Aφ

(
x, π − θ, φ + 2π

)
= −P̂2Aφ

(
x, π − θ, φ)P2,

±Γ4Ψ(
x, π − θ, φ + 2π

)
= ±γ5P̂2

(±Γ4)Ψ(
x, π − θ, φ).

(3.27)

Since (2.10)–(2.12) hold for any θ and φ and Γ4 commutes with γ5, we find that the orbifold
boundary conditions still hold under the parity transformation with the identification of θ =
π − θ′. In other words, the orbifold boundary conditions, (2.10)–(2.12), are parity invariant.

Finally, we find that under the parity, the operator Fαθφ transforms to −Fαθφ. Therefore,
this operator is forbidden by parity invariance of the action. An explicit calculation of one-
loop corrections to the Higgs potential to show that this operator vanishes, however, is be-
yond the scope of this paper.

3.2. The E6 Model without Symmetry Condition

Here we show amodel based on a gauge groupG = E6 with a representation 27 for a fermion,
under the scheme without symmetry condition [22].
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3.2.1. Gauge Group Reduction

We consider the following gauge group reduction

E6 ⊃ SO(10) ×U(1)I

⊃ SU(5) ×U(1)X ×U(1)I

⊃ SU(3) × SU(2) ×U(1)Y ×U(1)X ×U(1)I .

(3.28)

The background gauge field in (2.35) is chosen to belong to the U(1)I group. This choice is
needed in order to obtain chiral SM fermions in 4D spacetime to be discussed later. There
are two other symmetry reduction schemes. One can prove that the results in those two
schemes are effectively the same as the one considered here once we require the correct U(1)
combinations for the hypercharge and the background field.

We then impose the parity assignments with respect to the fixed points, (2.10)–(2.15).
The parity assignments for the fundamental representation of E6 is chosen to be

27 = (1, 2)(−3,−2,−2)(+,+) + (1, 2)(3, 2,−2)(−,−) + (1, 2)(−3, 3, 1)(+,−)

+ (1, 1)(6,−1, 1)(+,+) + (1, 1)(0,−5, 1)(−,−) + (1, 1)(0, 0, 4)(−,+)

+ (3, 2)(1,−1, 1)(−,+) + (3, 1)(−2, 2,−2)(+,−) +
(
3, 1

)
(−4,−1, 1)(+,+)

+
(
3, 1

)
(2, 3, 1)(+,+) +

(
3, 1

)
(2,−2,−2)(−,+),

(3.29)

where, for example, (+,−) means that the parities under P1 and P2 are (even, odd). By the
requirement of consistency, we find that the components of Aμ in the adjoint representation
have the parities under Aμ → P1AμP1 (P2AμP2) as follows:

78|Aμ
= (8, 1)(0, 0, 0)(+,+) + (1, 3)(0, 0, 0)(+,+)

+ (1, 1)(0, 0, 0)(+,+) + (1, 1)(0, 0, 0)(+,+) + (1, 1)(0, 0, 0)(+,+)

+ (3, 2)(−5, 0, 0)(−,+) +
(
3, 2

)
(5, 0, 0)(−,+)

+ (3, 2)(1, 4, 0)(+,−) +
(
3, 2

)
(−1,−4, 0)(+,−)

+ (3, 1)(4,−4, 0)(−,−) +
(
3, 1

)
(−4, 4, 0)(−,−)

+ (1, 1)(−6,−4, 0)(−,−) + (1, 1)(6, 4, 0)(−,−)

+ (3, 2)(1,−1,−3)(+,+) +
(
3, 2

)
(−1, 1, 3)(+,+)

+ (3, 1)(4, 1, 3)(−,+) +
(
3, 1

)
(−4,−1,−3)(−,+)

+ (3, 1)(−2,−3, 3)(+,−) +
(
3, 1

)
(2, 3,−3)(+,−)
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+ (1, 2)(−3, 3,−3)(−,−) + (1, 2)(3,−3, 3)(−,−)

+ (1, 1)(−6, 1, 3)(−,+) + (1, 1)(6,−1,−3)(−,+)

+ (1, 1)(0,−5,−3)(+,−) + (1, 1)(0, 5, 3)(+,−),

(3.30)

where the underlined components correspond to the adjoint representations of SU(3) ×
SU(2) × U(1)Y × U(1)X × U(1)I , respectively. We note that the components with parity
(+,+) can have massless zero modes in 4D spacetime. Such components include the adjoint
representations of SU(3) × SU(2) × U(1)3, (3, 2)(1,−1,−3) and its conjugate. The latter
components seem problematic. Yet they do not appear in the low-energy spectrum due
to nonzero U(1)I charge. The zero modes of these components will get masses from the
background field as in (2.41).

3.2.2. Scalar Field Contents in 4D Spacetime

With the parity assignments with respect to the fixed points, (2.11) and (2.14), we have for
the Aθ and Aφ fields

78|Aθ,φ
= (8, 1)(0, 0, 0)(−,−) + (1, 3)(0, 0, 0)(−,−)

+ (1, 1)(0, 0, 0)(−,−) + (1, 1)(0, 0, 0)(−,−) + (1, 1)(0, 0, 0)(−,−)

+ (3, 2)(−5, 0, 0)(+,−) +
(
3, 2

)
(5, 0, 0)(+,−)

+ (3, 2)(1, 4, 0)(−,+) +
(
3, 2

)
(−1,−4, 0)(−,+)

+ (3, 1)(4,−4, 0)(+,+) +
(
3, 1

)
(−4, 4, 0)(+,+)

+ (1, 1)(−6,−4, 0)(+,+) + (1, 1)(6, 4, 0)(+,+)

+ (3, 2)(1,−1,−3)(−,−) +
(
3, 2

)
(−1, 1, 3)(−,−)

+ (3, 1)(4, 1, 3)(+,−) +
(
3, 1

)
(−4,−1,−3)(+,−)

+ (3, 1)(−2,−3, 3)(−,+) +
(
3, 1

)
(2, 3,−3)(−,+)

+ (1, 2)(−3, 3,−3)(+,+) + (1, 2)(3,−3, 3)(+,+)

+ (1, 1)(−6, 1, 3)(+,−) + (1, 1)(6,−1,−3)(+,−)

+ (1, 1)(0,−5,−3)(−,+) + (1, 1)(0, 5, 3)(−,+).

(3.31)

Components with (+,−) or (−,+) parity do not have KKmodes since they are odd under φ →
φ+2π and the KKmodes of gauge field are specified by integer angular momentum quantum
numbers � and m on the two spheres. In the S1/Z2 case, the translation group on S1 is U(1)
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and any quantum number is allowed. After orbifolding, we obtain the quantum numbers
allowed by parity and they can be nonintegers. On the other hand, the translation group
on S2 is SU(2) and only integer quantum numbers are allowed because they correspond
to quantized angular momenta. We then concentrate on the components which have either
(+,+) or (−,−) parity and nonzero U(1)I charges as the candidate for the Higgs field.
These include {(1, 2)(3,−3, 3) + h.c.} and {(3, 2)(1,−1,−3) + h.c.} with parities (+,+) and
(−,−), respectively. The representations (1, 2)(−3, 3,−3) and (1, 2)(3,−3, 3) have the correct
quantum numbers for the SM Higgs doublet. Therefore, we identify the (1, 1) mode of these
components as the SM Higgs fields in 4D spacetime.

3.2.3. Chiral Fermion Contents in 4D Spacetime

In our model, we choose the fermions as the Weyl fermions Ψ− belonging to the 27
representation of E6. The 27 representation is decomposed as in (3.29) under the group
reduction, (3.28). In this decomposition, we find that our choice of the background gauge
field of U(1)I is suitable for obtaining massless fermions since all such components have
U(1)I charge 1. In the fundemantal representation, the U(1)I generator is

QI =
1
6
diag(−2,−2,−2,−2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1,−2,−2,−2, 1, 1, 1, 1, 1, 1,−2,−2,−2),

(3.32)

according to the decomposition equation (3.29). By identifying Q = 3QI , we readily obtain
the condition

QΨ− =
1
2
Ψ−. (3.33)

Therefore, the chiral fermions ψL in 4D spacetime have zero modes.
Next, we consider the parity assignments for the fermions with respect to the fixed

points of S2/Z2. The boundary conditions are given by (2.12) and (2.15). It turns out that
four 27 fermion copies with different boundary conditions are needed in order to obtain an
entire generation of massless SM fermions. They are denoted by Ψ(1,2,3,4) with the following
parity assignments:

Ψ(i)
±
(
x, π − θ,−φ) = ξγ5P1Ψ

(i)
±
(
x, θ, φ

)
,

Ψ(i)
±
(
x, π − θ, 2π − φ) = ηγ5P2Ψ

(i)
±
(
x, θ, φ

)
,

(3.34)
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where γ5 is the chirality operator, and (ξ, η) = (+,+), (−,−), (+,−) and (−,+) for i = 1, 2, 3, 4,
respectively. From these fermions we find that ψ1,2,3,4 have the parity assignments

27
ψ
(1)
L

= (1, 2)(−3,−2,−2)(−,−) + (1, 2)(3, 2,−2)(+,+) + (1, 2)(−3, 3, 1)(−,+)

+ (1, 1)(6,−1, 1)(−,−) + (1, 1)(0,−5, 1)(+,+) + (1, 1)(0, 0, 4)(+,−)

+ (3, 2)(1,−1, 1)(+,−) + (3, 1)(−2, 2,−2)(−,+) +
(
3, 1

)
(−4,−1, 1)(−,−)

+
(
3, 1

)
(2, 3, 1)(−,−) +

(
3, 1

)
(2,−2,−2)(+,−),

27
ψ
(2)
L

= (1, 2)(−3,−2,−2)(+,+) + (1, 2)(3, 2,−2)(−,−) + (1, 2)(−3, 3, 1)(+,−)

+ (1, 1)(6,−1, 1)(+,+) + (1, 1)(0,−5, 1)(−,−) + (1, 1)(0, 0, 4)(−,+)

+ (3, 2)(1,−1, 1)(−,+) + (3, 1)(−2, 2,−2)(+,−) +
(
3, 1

)
(−4,−1, 1)(+,+)

+
(
3, 1

)
(2, 3, 1)(+,+) +

(
3, 1

)
(2,−2,−2)(−,+),

27
ψ
(3)
L

= (1, 2)(−3,−2,−2)(−,+) + (1, 2)(3, 2,−2)(+,−) + (1, 2)(−3, 3, 1)(−,−)

+ (1, 1)(6,−1, 1)(−,+) + (1, 1)(0,−5, 1)(+,−) + (1, 1)(0, 0, 4)(+,+)

+ (3, 2)(1,−1, 1)(+,+) + (3, 1)(−2, 2,−2)(−,−) +
(
3, 1

)
(−4,−1, 1)(−,+)

+
(
3, 1

)
(2, 3, 1)(−,+) +

(
3, 1

)
(2,−2,−2)(+,+),

27
ψ
(4)
L

= (1, 2)(−3,−2,−2)(+,−) + (1, 2)(3, 2,−2)(−,+) + (1, 2)(−3, 3, 1)(+,+)

+ (1, 1)(6,−1, 1)(+,−) + (1, 1)(0,−5, 1)(−,+) + (1, 1)(0, 0, 4)(−,−)

+ (3, 2)(1,−1, 1)(−,−) + (3, 1)(−2, 2,−2)(+,+) +
(
3, 1

)
(−4,−1, 1)(+,−)

+
(
3, 1

)
(2, 3, 1)(+,−) +

(
3, 1

)
(2,−2,−2)(−,−),

(3.35)

where the underlined components have even parities and U(1)I charge 1. One can readily
identify one generation of SM fermions, including a right-handed neutrino, as the zeromodes
of these components.

A long-standing problem in the gauge-Higgs unification framework is the Yukawa
couplings of the Higgs boson to the matter fields. Here we discuss about the Yukawa
couplings in our model. As mentioned before, the SM Higgs is the (� = 1, |m| = 1) KK
mode of the extraspatial component of the gauge field, the Yukawa term at tree level has the
following form:

LYukawa ⊃ ψ00
L Φ11ψ�1R + ψ�1L Φ11ψ00

R + h.c., (3.36)
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where ψ�ms are the fermionic KKmodes with the (l = 0,m = 0)modes appearing as the chiral
fermions and Φ11 denotes the SM Higgs field. We here identify the left-handed fermionic
zero modes as SU(2) doublets and the right-handed fermionic zero modes as SU(2) singlets,
as in the SM. Therefore, the (�, |m| = 1) modes and the (� = 0, |m| = 0) modes mix after
spontaneous symmetry breaking. One needs to diagonalize the mass terms to obtain physical
eigenstates. The Yukawa couplings in ourmodel are thusmore complicated than other gauge-
Higgs unification models in the sense that there is mixing between KK modes including the
zero modes without a bulk mass term or fixed point localized term. However, similar mixing
occurs in models on warped 5D spacetime or even in models with a flat metric if one takes
into account the bulk mass term or fixed point localized term. In such cases, diagonalization
is necessary.

The difficulty of obtaining a realistic fermion mass spectrum comes from the fact
that the Yukawa couplings arise from gauge interactions. However, one can overcome the
difficulty by introducing SM fermions localized at an orbifold fixed point and additional
massive bulk fermions. The realistic Yukawa couplings would be obtained from nonlocal
interactions of the fixed point localized fermions involving Wilson lines after integrating out
the massive bulk fermions [41–43]. Another possible solution is to consider fermions in 6D
spacetime belonging to a higher dimensional representation of the original E6 gauge group,
rendering more than one generation of SM fermions. In that case, mixing among generations
will be obtained from gauge interactions and is given by Clebsch-Gordan coefficients. We
expect that realistic Yukawa couplings could be obtained using these methods. A detailed
analysis of this issue is beyond the scope of the paper and left for a future work.

3.2.4. Higgs Potential of the Model

Here we analyze the Higgs potential for the E6 model. To further simplify the Higgs potential,
we need to find out the algebra of the gauge group generators. Note that the E6 generators
are chosen according to the decomposition of the adjoint representation given in (3.30)

{
Qi,Qα,QY ,QX,QI,

Qax(−5,0,0), Qax(5,0,0), Qax(1,4,0), Q
ax(−1,−4,0),

Qa(4,−4,0), Qa(−4,4,0), Q(−6,−4,0), Q(6,4,0),

Qax(1,−1,−3), Qax(−1,1,3), Qa(4,1,3), Q
a(−4,−1,−3),

Qa(−2,−3,3), Qa(2,3,−3), Qx(3,−3,3), Qx(−3,3,−3),

Q(−6,1,3), Q(6,−1,−3), Q(0,−5,−3), Q(0,5,3)
}
,

(3.37)

where the generators are listed in the corresponding order of the terms in (3.30) and the
indices

i = 1, . . . , 8 : SU(3) adj rep index =⇒ Qi : SU(3) generators, (3.38)

α = 1, 2, 3 : SU(2) adj rep index =⇒ Qα : SU(2) generators, (3.39)

QX,Y,I : U(1)X,Y,I generators, (3.40)
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Table 2: Commutation relations of Qα, QX,Y,I , Qx(3,−3,3) and Qx(−3,3,−3), where σi are the Pauli matrices.

[Qx(3,−3,3), Qy(−3,3,−3)] =
1
2
δ
y
xQI − 1

2

√
3
5
δ
y
xQX +

1√
10
δ
y
xQY +

1√
6
(σα)

y
xQα

[Qα,Qx(3,−3,3)] =
1√
6
(σα)

y
xQy(3,−3,3), [Qα,Q

x(−3,3,−3)] = − 1√
6
(σ∗

α)
y
xQ

y(−3,3,−3),

[Qx(3,−3,3), Qy(3,−3,3)] = 0, [QI,Qx(3,−3,3)] =
1
2
Qx(3,−3,3),

[QX,Qx(3,−3,3)] = −1
2

√
3
5
Qx(3,−3,3), [QY ,Qx(3,−3,3)] =

1√
10
Qx(3,−3,3),

x = 1, 2 : SU(2) doublet index, (3.41)

a = 1, 2, 3 : SU(3) color index. (3.42)

Here we take the normalization for generators, Tr[QQ†] = 2 which is taken from [24]. The
Higgs fields are in the representations of (1, 2)(3,−3, 3) and (1, 2)(−3, 3,−3). We write

Φ(x) = φxQx(3,−3,3)
(
Φ†(x) = φxQx(−3,3,−3)). (3.43)

Likewise, the gauge field Aμ(x) in terms of the Q’s in (3.38) is

Aμ(x) = Ai
μQi +Aα

μQα + BμQY + CμQX + EμQI. (3.44)

The commutation relations between the generators Qα, QX,Y,I , Qx(3,−3,3), and Qx(−3,3,−3) are
summarized in Table 2.

Finally, we obtain the Lagrangian associated with the Higgs field by applying (3.43)
and (3.44) to (2.54) and (2.55) and carrying out the trace. Furthermore, to obtain the canonical
form of kinetic terms, the Higgs field, the gauge field, and the gauge coupling need to be
rescaled in the following way:

φ −→ g√
2
φ,

Aμ −→ g

R
Aμ,

g√
6πR2

= g2,

(3.45)

where g2 denotes the SU(2) gauge coupling. The Higgs sector is then given by

LHiggs =
∣∣Dμφ

∣∣2 − V (φ), (3.46)
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where

Dμφ =

⎡
⎣∂μ + ig2σα2 Aαμ + ig

1√
40πR2

Bμ − ig 12

√
3

20πR2
Cμ + ig

1

2
√
4πR2

Eμ

⎤
⎦φ, (3.47)

V = − χ

8R2
φ†φ +

3g2

40πR2

(
φ†φ

)2
, (3.48)

where χ = 7 + 9μ1 + 9μ2. The numerical values μ1,2 are given by μ1 = 1 − (3/2) ln 2 and
μ2 = (3/4)(1 − 2 ln 2) as in Section 2.3.4. We have omitted the constant term in the Higgs
potential. Comparing the potential derived above with the standard form μ2φ†φ + λ(φ†φ)2 in
the SM, we see that the model has a tree-level μ2 term that is negative and proportional to
R−2. The negative contribution to the squared mass term comes from the interaction between
background gauge field and φ as seen in Section 2.3.4. Moreover, the quartic coupling
λ = 3g2/(40πR2) is related to the 6D gauge coupling g and grants perturbative calculations
because it is about 0.16, using the value of R to be extracted in the next section. Therefore,
the order parameter in this model is controlled by a single parameter R, the compactification
scale.

In fact, the (1, 1) mode of the {(3, 2)(1,−1,−3) + h.c.} representation also has a
negative squared mass term because it has the same QI charge as the {(1, 2)(3,−3, 3) + h.c.}
representation. Therefore, it would induce not only electroweak symmetry breaking but also
color symmetry breaking. This undesirable feature can be cured by adding brane terms

α

R2sin2θ
FaθφF

aθφδ
(
θ − π

2

)[
δ
(
φ
)
+ δ

(
φ − π)], (3.49)

where a denotes the group index of the {(3, 2)(1,−1,−3) + h.c.} representation. These
brane terms preserve the Z′

2 symmetry which corresponds to the symmetry under the
transformation (φ → φ + π). With an appropriate choice of the dimensionless constant α,
the squared mass of the (1, 1) can be lifted to become positive and sufficiently large. We need
to forbid a similar brane term for the SU(2) doublet component, and it can be achieved by
imposing some additional discrete symmetry. However, here we simply assume that such a
brane term for the SU(2) doublet component does not exist.

Due to a negative mass term, the Higgs potential in (3.48) can induce the spontaneous
symmetry breakdown: SU(2) × U(1)Y → U(1)EM in the SM. The Higgs field acquires a
vacuum expectation value (VEV):

〈
φ
〉
=

1√
2

(
0

v

)
with v =

√
5πχ
3

1
g

� 4.6
g
. (3.50)
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One immediately finds that theW boson mass:

mW =
g2
2
v =

1
6

√
5χ
2

1
R

� 0.53
R

, (3.51)

from which the compactification scale R−1 � 152GeV is inferred. Moreover, the Higgs boson
mass at the tree level is

mH =

√
3

20π
gv

R
= 3

√
2
5
mW =

√
χ

2
1
R
, (3.52)

which is about 152GeV, numerically very close to the compactification scale. Since the
hypercharge of the Higgs field is 1/2, the U(1)Y gauge coupling is derived from (3.47) as

gY =
g√

10πR2
. (3.53)

The Weinberg angle is thus given by

sin2θW =
g2
Y

g2
2 + g

2
Y

=
3
8
, (3.54)

and the Z boson mass

mZ =
mW

cos θW
= mW

√
8
5
, (3.55)

both at the tree level. These relations are the same as the SU(5) GUT at the unification scale.
This is not surprising because this part only depends on the group structure. Again, this
Weinberg angle is not consistent with experimental measurements, and we need to take into
account quantum corrections.

We can repeat the discussion in Section 3.1.2 about the one-loop power divergence in
the Higgs potential associated with the linear operator Fab. The operator Fα

θφ
transform to

−Fαθφ under the parity transformation θ → π − θ. Hence, this operator is forbidden by parity
invariance of the action. In this case, we check the consistency between the orbifold boundary
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conditions on S2/Z2, (2.13)–(2.15), and the parity conditions, (3.26). By performing the parity
transformation on both sides of the orbifold boundary conditions, (2.13)–(2.15), we obtain

Aμ

(
x, θ,−φ) = P1Aμ

(
x, π − θ, φ)P1,

−Aθ

(
x, θ,−φ) = P1Aθ

(
x, π − θ, φ)P1,

Aφ

(
x, θ,−φ) = −P1Aφ

(
x, π − θ, φ)P1,

±Γ4Ψ(
x, θ,−φ) = ±γ5P1

(
±Γ4

)
Ψ
(
x, π − θ, φ),

Aμ

(
x, θ, 2π − φ) = P2Aμ

(
x, π − θ, φ)P2,

−Aθ

(
x, θ, 2π − φ) = P2Aθ

(
x, π − θ, φ)P2,

Aφ

(
x, θ, 2π − φ) = −P2Aφ

(
x, π − θ, φ)P2,

±Γ4Ψ(
x, θ, 2π − φ) = ±γ5P2

(
±Γ4

)
Ψ
(
x, π − θ, φ).

(3.56)

Since (2.13)–(2.15) hold for any θ and φ and Γ4 commutes with γ5, we find that the orbifold
boundary conditions still hold under the parity transformation with the identification of θ =
π − θ′. In other words, the orbifold boundary conditions, (2.13)–(2.15), are parity invariant.

3.2.5. KK Mode Spectrum of Each Field

Since we did not impose symmetry condition, we have KKmodes for each field in this model.
Here we show KK mass spectrum under the existence of background field for our E6 model.
The masses are basically controlled by the compactification radius R of the two spheres. They
receive two kinds of contributions: one arising from the angular momentum in the S2 space
and the other coming from the interactions with the background field.

The KK masses for fermions have been given in [35, 36, 38]. We give them in terms of
our notation here:

MKK
�m

(
ψL

)
=

1
R

√
�(� + 1) − 4q2 − 1

4
, (3.57)

where q is proportional to the U(1)I charge of a fermion and determined by the action of
Q = 3QI on fermions as QΨ = qΨ = 3qIΨ. Note that the mass does not depend on the
quantum number m. The lightest KK mass, corresponding to � = 1 and qI = 1/6, is about
214GeV at the tree level. The range of � is

2q ± 1
2

≤ � (
+ : for ψR(L) in Ψ+(−), − : for ψL(R) in Ψ−(+)

)
. (3.58)

We thus can have zero mode for QΨ = ±(1/2)Ψ, where this condition is given in (2.43).
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For the 4D gauge field Aμ, its kinetic term, and KK mass term are obtained from the
terms:

L =
∫
dΩTr

[
−1
4
Fμν +

1
2R2

FμθF
μ
θ +

1

2R2sin2θ
FμφF

μ
φ

]
. (3.59)

Taking terms quadratic in Aμ, we get

Lquad =
∫
dΩTr

[
−1
4
(
∂μAν − ∂νAμ

)
(∂μAν − ∂νAμ) +

1
2R2

∂θAμ∂θA
μ

+
1

2R2sin2θ
∂φAμ∂φA

μ − 1
2R2

[
Aμ, Ã

B
φ

][
Aμ, ÃB

φ

]]
,

(3.60)

where ÃB
φ is the background gauge field given in (2.35). The KK expansion of Aμ is

Aμ =
∑
�m

A�m
μ (x)Y±

�m

(
θ, φ

)
, (3.61)

where Y±
�m(θ, φ) are the linear combinations of spherical harmonics satisfying the boundary

condition Y±
�m

(π − θ,−φ) = ±Y±
�m

(θ, φ). Their explicit forms are [35]

Y+
�m

(
θ, φ

) ≡ (i)�+m√
2

[
Y�m

(
θ, φ

)
+ (−1)�Y�−m

(
θ, φ

)]
for m/= 0,

Y−
�m

(
θ, φ

) ≡ (i)�+m+1

√
2

[
Y�m

(
θ, φ

) − (−1)�Y�−m
(
θ, φ

)]
for m/= 0,

Y
+(−)
�0 (θ) ≡

⎧⎨
⎩
Y�0(θ) for m = 0, � = even (odd)

0 for m = 0, � = odd (even).

(3.62)

Note that we do not have KK mode functions that are odd under φ → φ + 2π since the
KK modes are specified by the integer angular momentum quantum numbers � and m of
gauge fieldAM on the two spheres. Thus, the components ofAμ andAθ,φ with (+,−) or (−,+)
parities do not have corresponding KK modes. Applying the KK expansion and integrating
about dΩ, we obtain the kinetic and KK mass terms for the KK modes of Aμ

LM = −1
2

[
∂μA

�m
ν (x) − ∂νA�m

μ (x)
][
∂μA�mν(x) − ∂νA�mμ(x)

]

+
�(� + 1)
R2

A�m
μ (x)A�mμ(x)

+
9q2I
R2

[∫
dΩ

(cos θ ± 1)2

sin2θ

(
Y∓
�m

)2]
A�m
μ (x)A�mμ(x),

(3.63)
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where we have used Tr[QiQ
i] = 2 and [Aμ(x), QI] = qI(Ai

μ(x)Qi −Aiμ(x)Qi). Therefore, the
KK masses of Aμ are

MKK
�m

(
Aμ

)
=

1
R

√
�(� + 1) +

(
mB
�m

)2
, (3.64)

(
mB
�m

)2
= 9q2I

∫
dΩ

(cos θ ± 1)2

sin2θ

(
Y∓
�m

)2
, (3.65)

wheremB
�m

corresponds to the contribution from the background gauge field. Note that (3.64)
agrees with (2.41) when � = 0. Also, since the SM gauge bosons have qI = 0, their KK masses
are simply

√
�(� + 1)/R at the tree level.

The kinetic and KKmass terms ofAθ andAφ are obtained from the terms in the higher
dimensional gauge sector

L =
1

2g2

∫
dΩ

{(
Tr
[(
∂μAθ − i

[
Aμ,Aθ

])2] + Tr
[(
∂μÃφ − i

[
Aμ, Ãφ

])2
])

− 1
R2

Tr

[(
1

sin θ
∂θ
(
sin θÃφ + sin θÃB

φ

)
− 1
sin θ

∂φAθ − i
[
Aθ, Ãφ + ÃB

φ

])2
]}

.

(3.66)

The first line on the right-hand side of (3.66) corresponds to the kinetic terms, and the second
line corresponds to the potential term. Applying the background gauge field (2.35), the
potential becomes

LV = − 1
2g2R2

∫
dΩTr

[(
1

sin θ
∂θ
(
sin θÃφ

)
+Q − 1

sin θ
∂φAθ − i

[
Aθ, Ãφ + ÃB

φ

])2
]
. (3.67)

For Aθ and Aφ, we use the following KK expansions to obtain the KK mass terms,

Aθ

(
x, θ, φ

)
=

∑
�m(/= 0)

−1√
�(� + 1)

[
Φ�m

1 (x)∂θY±
�m

(
θ, φ

)
+ Φ�m

2 (x)
1

sin θ
∂φY

±
�m

(
θ, φ

)]
,

Aφ

(
x, θ, φ

)
=

∑
�m(/= 0)

1√
�(� + 1)

[
Φ�m

2 (x)∂θY±
�m

(
θ, φ

) −Φ�m
1 (x)

1
sin θ

∂φY
±
�m

(
θ, φ

)]
,

(3.68)

where the factor of 1/
√
�(� + 1) is needed for normalization. These particular forms are

convenient in giving diagonalized KK mass terms [35]. Applying the KK expansions equa-
tions (3.68), we obtain the kinetic term

LK =
1

2g2

∑
�m(/= 0)

Tr
[
∂μΦ�m

1 (x)∂μΦ�m
1 (x) + ∂μΦ�m

2 (x)∂μΦ�m
2 (x)

]
, (3.69)
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where only terms quadratic in ∂μΦ are retained. The potential term is

LV = − 1
2g2R2

∑
{�m}(/= 0)

∫
dΩTr

[(
Φ�m

2√
�(� + 1)

1
sin θ

∂θ
(
sin θ∂θY±

�m

)
+Q +

Φ�m
2√

�(� + 1)

1

sin2θ
∂2φY

±
�m

− i√
�(� + 1)�′(�′ + 1)

[
−Φ�m

1 ∂θY
±
�m −Φ�m

2
1

sin θ
∂φY

±
�m ,

Φ�′m′
2 ∂θY

±
�′m′ −Φ�′m′

1
1

sin θ
∂φY

±
�′m′

+
√
�′(�′ + 1)AB

φ

])2
]
.

(3.70)

Note that these terms are not diagonal in (�,m) in general. Using the relation
(1/ sin θ)∂θ(sin θ∂θY�m) + (1/sin2θ)∂2φY�m = −�(� + 1)Y�m, the potential term is simplified
as

LV = − 1
2g2R2

×
∑

�m(/= 0)

∫
dΩTr

⎡
⎣
⎛
⎝ −

√
�(� + 1)Φ�m

2 Y±
�m +Q +

i√
�(� + 1)�′(�′ + 1)

[
Φ�m

1 ,Φ�′m′
2

]

×
(
∂θY

±
�m∂θY

±
�′m′ +

1

sin2θ
∂φY

±
�m∂φY

±
�′m′

)

+
i√

�(� + 1)

[
Φ�m

1 , ÃB
φ

]
∂θY

±
�m +

i√
�(� + 1)

[
Φ�m

2 , ÃB
φ

]∂φY±
�m

sin θ

)2
⎤
⎦.
(3.71)

To obtain the mass term, we focus on terms quadratic in Φ1,2:

LM = − 1
2g2R2

∫
dΩTr

⎡
⎣�(� + 1)

(
Φ�m

2

)2(
Y±
�m

)2

+
2iQ

�(� + 1)

[
Φ�m

1 ,Φ�m
2

](
∂θY

±
�m∂θY

±
�m +

1

sin2θ
∂φY

±
�m∂φY

±
�m

)

+ 2iÃB
φ

[
Φ�m

1 ,Φ�m
2

]
Y±
�m∂θY

±
�m − 1

�(� + 1)

[
Φ�m

1 , ÃB
φ

]2(
∂θY

±
�m

)2

− 1
�(� + 1)

[
Φ�m

2 , ÃB
φ

]2 (∂φY±
�m

)2
sin2θ

⎤
⎦.

(3.72)
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Here we take terms which are diagonal in (�,m) for simplicity. Note that we have dropped
the term proportional to [Φ1, Ã

B
φ][ Φ2, Ã

B
φ] because this term vanishes after turning the field

into the linear combinations of Φ and Φ†, (2.51) and (2.52):

Tr
[[
Φ1, Ã

B
φ

][
Φ1, Ã

B
φ

]]
−→ Tr

[[(
Φ +Φ†

)
, Q

][(
Φ −Φ†

)
, Q

]]

∝ Tr
[(

Φ −Φ†
)(

Φ +Φ†
)]

∝ Tr
[
ΦΦ†

]
− Tr

[
Φ†Φ

]
= 0.

(3.73)

Integrating the second term of (3.72) by part, we obtain

LM = − 1
2g2R2

⎛
⎝�(� + 1)Tr

[(
Φ�m

2

)2
]
+ 2iTr

[
Q
[
Φ�m

1 ,Φ�m
2

]]

− 2iTr
[
Q
[
Φ�m

1 ,Φ�m
2

]] ∫
dΩ

cos θ ∓ 1
sin θ

Y±
�m∂θY

±
�m

− 1
�(� + 1)

[
Φ�m

1 , Q
]2 ∫

dΩ
(cos θ ∓ 1)2

sin2θ

(
∂θY

±
�m

)2

− 1
�(� + 1)

[
Φ�m

2 , Q
]2 ∫

dΩ
(cos θ ∓ 1)

sin2θ

(
∂φY

±
�m

)2
sin2θ

⎞
⎠.

(3.74)

Therefore, the KK masses depend on the U(1)I charges of the scalar fields. Note that terms in
the second line to the last line of (3.74) are not diagonal in (�,m) in general.

For components with zero U(1)I charge, we write Φ1(2)(x) as φ1(2)(x)Q where Q is the
corresponding generator of E6 in (3.30)with zero U(1)I charge. Taking the trace, we have the
following kinetic and KK mass terms instead:

L =
∑

�m(/= 0)

(
∂μφ

�m
1 (x)∂μφ�m1 (x) + ∂μφ�m2 (x)∂μφ�m2 (x) + �(� + 1)φ�m2 (x)φ�m2 (x)

)
, (3.75)

where we have made the substitution φi → gφi. Note that φ1 is considered as a massless
Nambu-Goldstone (NG) boson in this case. For components with nonzero U(1)I charge, mass
terms are not diagonal for Φ1(2), and Φ1 does not correspond to the NG boson. In this case,
we need to diagonalize the mass terms and some linear combination ofΦ1(2) becomes the NG
boson mode.

For components with nonzero U(1)I charge, we use (2.51) and (2.52) and write Φ(x)
as φi(x)Qi whereQi is the corresponding generator of E6 in (3.30)with nonzero U(1)I charge.
The commutator between Q and Φ is

[Q,Φ] = 3[QI,Qi]φi = 3qIφi, (3.76)
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where we have used Q = 3QI as required to obtain chiral fermions in Section 3.2.3, and that
qI is a constant determined by the U(1)I charge of the corresponding component. Finally, the
Lagrangian becomes

L =
∑

�m(/= 0)

⎧⎨
⎩∂μφ

†
�m∂

μφ�m

− 1
4R2

⎡
⎣2�(� + 1)φ†

�m
φ�m − 12qIφ

†
�m
φ�m + 12qIφ

†
�m
φ�m

∫
dΩ

cos θ ∓ 1
sin θ

Y±
�m∂θY

±
�m

+
18q2I

�(� + 1)
φ†
�mφ�m

∫
dΩ

(cos θ ∓ 1)2

sin2θ

⎛
⎝(

∂θY
±
�m

)2 +
(
∂φY

±
�m

)2
sin2θ

⎞
⎠

⎤
⎦
⎫⎬
⎭,

(3.77)

where the subscript i is omitted for simplicity. The KK masses of the complex scalar field φ
are then

MKK
�m

(
φ
)
=

1
R

√
�(� + 1)

2
+
(
mB
�m

)2
,

(
mB
�m

)2
= −3qI + 3qI

∫
dΩ

cos θ ∓ 1
sin θ

Y±
�m∂θY

±
�m

+
9q2I

2�(� + 1)

∫
dΩ

(cos θ ∓ 1)2

sin2θ

(
∂θY

±
�m

)2

+
9q2I

2�(� + 1)

∫
dΩ

(cos θ ∓ 1)2

sin2θ

(
∂φY

±
�m

)2
sin2θ

.

(3.78)

The squared KK mass (MKK
�m

)2 is always positive except for the lowest mode (� = 1, m = 1).
In fact, the squared KK mass of the (1, 1) mode agrees with the coefficient of quadratic term
in the Higgs potential (3.48).

4. Summary and Discussions

We have reviewed a gauge theory defined on 6D spacetime with the S2/Z2 topology on the
extra space. Two scenarios are considered to construct a 4D theory from the 6D model. One
scenario based on the SO(12) gauge group requires a symmetry condition for the gauge field.
The other involves the E6 gauge group, but does not need the symmetry condition. Nontrivial
boundary conditions on the extra space are imposed in both scenarios.

We explicitly give the prescriptions to identify the gauge field and the scalar field
remaining in 4D spacetime after the dimensional reduction. We show that the SU(3)C ×
SU(2)L × U(1)Y × U(1)X × U(1)I gauge symmetry remains in 4D spacetime, and that the SM
Higgs doublet with a suitable potential for electroweak symmetry breaking can be derived
from the gauge sector in both models. The Higgs boson mass is also predicted in such
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models. Our tree-level prediction of the Higgs boson mass is 196GeV for the SO(12) model
and 152GeV for the E6 model. These mass values are in the range of 127–600GeV already
excluded at 95% CL by recent LHC data [44, 45]. However, the mass value will become
different once quantum corrections to the Higgs potential are taken into account. We expect
that the Higgs boson mass in our model will become smaller than the lower limit of the
exclusion region by quantum corrections. In particular, the E6 case gives a 152GeV Higgs
boson mass at tree level that is not far from the lower limit of the exclusion region at 95%CL.
However, a full analysis of the quantum corrections is beyond the scope of this paper and left
as a future work. Massless fermion modes are also successfully obtained as the SM fermions
by introducing appropriate field contents in 6D spacetime, with suitable parity assignments
on the S2/Z2 extra dimension and incorporating the background gauge field. We also discuss
about the massive KK modes of fermions for the scenario with the symmetry condition
and the KK modes of all fields for the one without the symmetry condition. The lightest
fermonic KK mode can serve as a dark matter candidate. In general, they may give rise to
rich phenomena in collider experiments and implications in cosmological studies.

To make our models more realistic, there are several challenges such as eliminating the
extra U(1) symmetries and constructing the realistic Yukawa couplings, which are the same
as other gauge-Higgs unification models. We, however, can get Kaluza-Klein modes in our
models. This suggests that we obtain the dark matter candidate in our model. Thus, it is very
important to study these models further such as dark matter physics and collider physics.
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The mixing among gauge bosons in the 3-3-1 models with the discrete symmetries is investigated.
To get tribimaximal neutrino mixing, we have to introduce sextets containing neutral scalar
components with lepton number L = 1, 2. Assignation of VEVs to these fields leads to the mixing of
the new gauge bosons and those in the standard model. The mixing in the charged gauge bosons
leads to the lepton number violating interactions of the W boson. The same situation happens in
the neutral gauge boson sector.

1. Introduction

The experimental evidences of nonzero neutrino masses and mixing [1] have shown that
the standard model of fundamental particles and interactions must be extended. Among
many extensions of the standard model known today, the models based on gauge symmetry
SU(3)C⊗SU(3)L⊗U(1)X (called 3-3-1models) [2–9] have interesting features. First, [SU(3)L]

3

anomaly cancelation requires that the number of SU(3)L fermion triplets must be equal to that
of antitriplets. If these multiplets are respectively enlarged from those of the standard model,
the fermion family number is deduced to be a multiple of the fundamental color number,
which is three, coinciding with the observation (see Frampton in [2]). In addition, one family
of quarks has to transform under SU(3)L differently from the other two. This can lead to an
explanation why the top quark is characteristically heavy (see, e.g., [10]). To complete the
fundamental representations for leptons, the right-handed neutrinos or neutral fermions can
be imposed which imply natural seesawmechanisms for the neutrino small masses [11]. The
3-3-1models can also provide a solution of electric charge quantization observed in the nature
[12–16].
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Table 1: Character table of S3, where χ stands for character of representation and C for class.

Class n h χ1 χ1′ χ2

C1 1 1 1 1 2
C2 2 3 1 1 −1
C3 3 2 1 −1 0

There are two typical versions of the 3-3-1 models concerning respective lepton
contents. In the minimal 3-3-1 model [2–4] the lepton triplets include ordinary leptons of
the standard model such as (νL, lL, lcR). The 3-3-1 model with right-handed neutrinos [5–9]
introduces right-handed neutrinos into the lepton sector, that is, (νL, lL, νcR) and lR. In the
framework of 3-3-1 models, to explain the smallness of neutrino masses and the tribimaximal
mixing [17–20]

UHPS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (1.1)

we should propose another variant of the lepton sector such as (νL, lL,Nc
R) and lR where

NR are neutral chiral fermions carrying no lepton number (called 3-3-1 model with neutral
fermions), and including discrete symmetries either A4 or S4 [21, 22]. The 3-3-1 model with
neutral fermions based on S3 flavor symmetry instead of A4, S4 has been studied in [23].

One of the most important ingredients is the sextets in which neutral scalar fields
carrying lepton number L = 1 or 2. Assignation of VEVs to these fields leads to the mixing
among new gauge bosons and that of the SM similarly in the economical 3-3-1 model [24–
26], and such mixing leads to the lepton violating interactions. In this work we will pay
attention to gauge bosons in the mentioned 3-3-1 models and give some phenomenological
consequences.

The rest of this work is follows. In Section 2 we give a review of the 3-3-1 model with
neutral fermions-based S3 flavor symmetry. The other models with A4 and S4 can be done
similarly, thus should be skip. Section 3 identifies gauge bosons and obtained the mixings
among the standard model gauge bosons and the new ones. Section 4 is devoted to charged
currents and give a constraint on the charged gauge boson mixing-angle. Finally we make
conclusions in Section 5.

2. Brief Review of the Model

Before looking into the model, we provide a sketch of S3 group theory [27, 28]. The S3 that
is a permutation group of three objects has six elements divided into three conjugacy classes.
It possesses three nonequivalent irreducible representations 1, 1′ of one dimension, and 2 of
two dimensions. Denoting n and h as the order of class and the order of elements within each
class, respectively, the character table is given by Table 1.
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We will work in the basis that 2 is complex (see, e.g. [27]). Decomposition rules are

1 ⊗ 1 = 1(11), 1′ ⊗ 1′ = 1(11), 1 ⊗ 1′ = 1′(11),

1 ⊗ 2 = 2(11, 12), 1′ ⊗ 2 = 2(11,−12),
2 ⊗ 2 = 1(12 + 21) ⊕ 1′(12 − 21) ⊕ 2(22, 11).

(2.1)

Here the first and second factors of the terms appearing in the parentheses indicate to the
multiplet components of the first and second representations given in l.h.s, respectively. In
this basis, the conjugation rules are given by

2∗(1∗, 2∗) = 2(2∗, 1∗), 1∗(1∗) = 1(1∗), 1′∗(1∗) = 1′(1∗). (2.2)

The lepton number in the 3-3-1 model with S3 symmetry [23] does not commute with
the gauge symmetry. It is thus better to work with a new lepton charge L related to the
lepton number L by diagonal matrices L = xT3 + yT8 + L. Applying L to the lepton triplet
with the notation that L(NR) = 0, the coefficients are defined as x = 0, y = 2/

√
3, and thus

L = (2/
√
3)T8 +L [29]. The leptons and quarks under [SU(3)L,U(1)X,U(1)L, S3] symmetries

correspondingly transform as follows:

ψ1L =
(
ν1L, l1L,N

c
1R

)T ∼
[
3,−1

3
,
2
3
, 1
]
, l1R ∼ [1,−1, 1, 1],
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c
αR
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3
, 2
]
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,
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3
, 0, 1
]
, d1R ∼

[
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3
, 0, 1
]
, UR ∼

[
1,

2
3
,−1, 1

]
,

QαL = (dαL,−uαL,DαL)T ∼
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1
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,
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2
3
, 0, 2
]
, dαR ∼
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3
, 0, 2
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, DαR ∼
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3
, 1, 2
]
,

(2.3)

where α = 2, 3 is a family index of the last two lepton and quark families, which are in order
defined as the components of 2 representations.

To generate masses for the charged leptons, we need two scalar multiplets:

φ =

⎛
⎜⎜⎝
φ+
1

φ0
2

φ+
3

⎞
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2
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]
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2
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]
, (2.4)
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with VEVs 〈φ〉 = (0, v, 0)T and 〈φ′〉 = (0, v′, 0)T . To generate masses for quarks, we addition-
ally acquire the following scalar multiplets:

χ =
(
χ0
1, χ

−
2 , χ

0
3

)T ∼
[
3,−1

3
,
2
3
, 1
]
,

η =
(
η01, η

−
2 , η

0
3

)T
∼
[
3,−1

3
,−1

3
, 1
]
,

η′ =
(
η

′0
1 , η

′−
2 , η

′0
3

)T ∼
[
3,−1

3
,−1

3
, 1′
]
.

(2.5)

Suppose that the VEVs of η, η′, and χ are u, u′ and w, where u = 〈η01〉, u′ = 〈η′0
1 〉, w = 〈χ0

3〉,
and 〈η03〉, 〈η

′0
3 〉, and 〈χ0

1〉 vanish. The exotic quarks get masses mU = f1w and mD1,2 = fw. In
addition,w has to be much larger than those of φ and η. Notice that the numbered subscripts
are the indices of SU(3)L.

Because of the L-symmetry, the couplings ψcLψLφ and ψcLψLφ
′ are suppressed. We

therefore propose a new SU(3)L antisextet instead coupling to ψcLψL responsible for neutrino
masses. The antisextet transforms as

s =

⎛
⎜⎜⎝
s011 s+12 s013

s+12 s++22 s+23

s013 s+23 s033

⎞
⎟⎟⎠ ∼

[
6∗,

2
3
,−4

3
, 2
]
, (2.6)

where the numbered subscripts are the SU(3)L indices. Henceforth the indices of S3 on scalar
fields will be kept and should be understood. The VEVs of s is set as (〈s1〉, 〈s2〉) under S3,
where

〈si〉 =

⎛
⎜⎜⎝
λi 0 vi

0 0 0

vi 0 Λi

⎞
⎟⎟⎠ (i = 1, 2). (2.7)

Due to the S3 symmetry, all these VEVs are equal to each others, that is, λ1 = λ2, v1 = v2 and
Λ1 = Λ2, which can be found from the potential minimization.

With the scalar multiplets as defined, the Yukawa lagrangian is given by

LY = h1ψ1Lφl1R + h
(
ψ2Ll2R + ψ3Ll3R

)
φ + h′

(
ψ3Ll3R − ψ2Ll2R

)
φ′

+ f1Q1LχUR + fQLχ
∗DR + hu1Q1Lηu1R + hdQLη

∗dR

+ h
′dQLη

′∗dR + hd1Q1Lφd1R + huQLφ
∗uR + h

′uQLφ
′∗uR

+
1
2
x
(
ψc2Lψ2Ls1 + ψ

c
3Lψ3Ls2

)
+
1
2
yψc1L

(
ψ2Ls2 + ψ3Ls1

)
+H.c.

(2.8)
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It is easily shown that the charged leptons and ordinary quarks get consistent masses [23].
However, this case does not lead to neutrino masses and mixing consistent with the experi-
mental data. The analysis in [21, 22] shows that (i) a “perturbation” is required:

λ1 
 λ2, v1 
 v2, Λ1 
 Λ2. (2.9)

A possibility to derive this is to impose another antisextet s′ but with the VEVs being very
smaller than those of s, respectively. Thus, in the followings the s′ should be skipped since
it does not contribute at the first order. Otherwise, the s′ contributions start from the second
order in similarity to those of s which are easily included. (ii) A scalar triplet ρ similar to φ′

must be imposed. The ρ is also skip for the same reason as s′, that is, its contribution is similar
to that of φ′. Let us emphasis that our conclusions remain unchanged if s′ and ρ present.

The hierarchies in the VEVs were given in [23]:

λ1, λ2 < u1, u2 < v, v
′, u, u′ < ω, Λ1, Λ2. (2.10)

In the following, the two limits are often taken into account: (i) the lepton-number violating
parameters tend to zero, that is, λ1,2, u1,2 → 0, and (ii) the large scales of SU(3)L symmetry
break down to that of the standard model approx infinity, that is, ω,Λ1,2 → ∞. Let us note
also that v, v′, u, and u′ are in the electroweak scale as well as the large scales all conserving
the lepton number.

3. Gauge Bosons

The covariant derivative of a general triplet Φ is given by

Dμ = ∂μ + igTaWaμ + igXT9XBμ

≡ ∂μ − iPμ,
(3.1)

where the gauge fields Wa and B transform as the adjoint representations of SU(3)L and
U(1)X , respectively, and the corresponding gauge coupling constants g and gX. The T9 =
diag(1, 1, 1)/

√
6 is chosen so that Tr(TaTb) = δab/2 with a, b = 1, 2, . . . , 9. The neutral gauge

bosons of the theory get masses from the triplet as follows:

LΦ
mass =

(
DH
μ 〈Φ〉

)+(
DHμ〈Φ〉

)
, (3.2)

where the subscriptH denotes diagonal part of the covariant derivative:

DH
μ = ∂μ + igT3W3

μ + igT8W
8
μ + igXT9XχBμ. (3.3)



6 Advances in High Energy Physics

The covariant derivative for an antisextet with the VEV part is [30]

Dμ〈si〉 = − ig
2

{
Aa
μλ

∗
a〈si〉 + 〈si〉Aa

μλ
∗T
a

}
+ igXT9XBμ〈s〉. (3.4)

Let us denote the antisextet in term of the SU(3)L indices by Γij . Then, the mass
Lagrangian due to the antisextet’s contribution is given by

LΓ
mass =

(
DH
μ 〈Γ〉ij

)+(
DHμ〈Γ〉ij

)
, (3.5)

Let us denote the following combinations:

W
′±
μ ≡ W1μ ∓ iW2μ√

2
,

Y
′∓
μ ≡ W6μ ∓ iW7μ√

2
,

X
′0
μ ≡ W4μ − iW5μ√

2

(3.6)

having defined charges under the generators of the SU(3)L group. For the sake of convenience
in further reading, we note thatW4 andW5 are pure real and imaginary parts of X

′0
μ and X

′0∗
μ ,

respectively:

W4μ =
1√
2

(
X

′0
μ +X

′0∗
μ

)
,

W5μ =
i√
2

(
X

′0
μ −X ′0∗

μ

)
.

(3.7)

Then Pμ is rewritten in a convenient form:

g

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W3μ +
1√
3
W8μ + t

√
2
3
XBμ

√
2W
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μ

√
2X

′0
μ

√
2W

′−
μ −W3μ +

1√
3
W8μ + t

√
2
3
XBμ

√
2Y

′−
μ

√
2X

′0∗
μ

√
2Y

′+
μ − 2√

3
W8μ + t

√
2
3
XBμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)

with t ≡ gX/g.
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The covariant derivative acting on the antisextet VEV is given by

Dμ〈si〉11 = −ig
⎛
⎝λiW3μ + λi

1√
3
W8μ − tλi

√
2
3
1
3
Bμ +

√
2 uiX0

μ

⎞
⎠,
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2

(
λiW
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μ

)
,
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2
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3
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√
2Λi X

0
μ +

√
2λi X0∗

μ

⎞
⎠,

Dμ〈si〉22 = 0,

Dμ〈si〉23 = − ig√
2

(
uiW

−
μ + ΛiY

−
μ

)
,

Dμ〈si〉33 = ig
⎛
⎝2Λi

1√
3
W8μ + tΛi

√
2
3
1
3
Bμ −

√
2uiX∗0

μ

⎞
⎠,

Dμ〈si〉12 = Dμ〈si〉21,
Dμ〈si〉13 = Dμ〈si〉31,
Dμ〈si〉23 = Dμ〈si〉32.

(3.9)

The masses of gauge bosons in this model are followed from

LGB
mass =

(
Dμ

〈
φ
〉)+

Dμ〈φ〉 + (Dμ

〈
φ′〉)+Dμ〈φ′〉 + (Dμ

〈
χ
〉)+

Dμ〈χ〉
+
(
Dμ

〈
η
〉)+

Dμ
〈
η
〉

+
(
Dμ

〈
η′
〉)+

Dμ
〈
η′
〉
+ Tr
[(
Dμ〈s1〉

)+
Dμ〈s1〉

]

+ Tr
[(
Dμ〈s2〉

)+
Dμ〈s2〉

]
.

(3.10)

In the following, we notice that 〈s1〉 = 〈s2〉; namely, u1 = u2, λ1 = λ2, and Λ1 = Λ2 are taken
into account.

From (3.10), the imaginary partW5 is decoupled with mass given by

M2
W5

=
g2

2

(
16u21 + 4λ21 − 8Λ1λ1 + 4Λ2

1 +ω
2 + u2 + u

′2
)
. (3.11)

In the limit λ1, u1 → 0,

M2
W5

=
g2

2

(
u2 + u

′2 +ω2 + 4Λ2
1

)
. (3.12)
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The charged gauge bosonsW and Y mix via

LCG
mass =

g2

4

(
W−

μ , Y
−
μ

)
M2

WY

(
W+

μ , Y
+
μ

)T
, (3.13)

where

M2
WY = 2

(
v2 + v

′2 + u2 + u
′2 + 4u21 + 4λ21 4(Λ1u1 + λ1u1)

4(Λ1u1 + λ1u1) v2 + v
′2 +ω2 + 4Λ2

1 + 4u21

)
. (3.14)

Diagonalizing this mass matrix, we get physical charged gauge bosons

W−
μ = cos θW

′−
μ + sin θY

′−
μ ,

Y−
μ = − sin θW

′−
μ + cos θY

′−
μ .

(3.15)

The mixing angle is given by

tan θ =
4(Λ1u1 + λ1u1)

ω2 + 4Λ2
1 − u2 − u′2 − 4λ21

∼ u1
Λ1

, (3.16)

provided that ω2 ∼ Λ2
1 � u2, u

′2, u21, λ
2
1. The mass eigenvalues are

M2
W =

g2

4

{
v2 + v

′2 + 2u2 + 2u
′2 +ω2 + 4λ21 + 4Λ2

1

−
[(
v2 + v

′2 −ω2
)2

+ 16λ41 + 16Λ4
1 + 128λ1Λ1u

2
1

+8Λ2
1

(
ω2 − v2 − v′2 + 8u21

)
− 8λ21

(
4Λ2

1ω
2 − v2 − v′2 − 8u21

)]1/2}
,

M2
Y =

g2

4

{
v2 + v

′2 + 2u2 + 2u
′2 +ω2 + 4λ21 + 4Λ2

1

+
[(
v2 + v

′2 −ω2
)2

+ 16λ41 + 16Λ4
1 + 128λ1Λ1u

2
1

+8Λ2
1

(
ω2 − v2 − v′2 + 8u21

)
− 8λ21

(
4Λ2

1ω
2 − v2 − v′2 − 8u21

)]1/2}
.

(3.17)

Note that, in the limit λ1, u1 → 0, the mixing angle tends to zero and the mass eigenvalues
are

M2
W =

g2

2

(
v2 + v

′2 + u2 + u
′2
)
,

M2
Y =

g2

2

(
v′2 + v2 +ω2 + 4Λ2

1

)
.

(3.18)



Advances in High Energy Physics 9

There is a mixing among the neutral gauge bosons W3,W8, B, and W4. The mass
Lagrangian in this case has the form

LNG
mass =

1
2
V TM2V,

V T ≡ (W3,W8, B,W4).
(3.19)

In the basis of these elements, the mass matrix is given by

M2 =
g2

4

⎛
⎜⎜⎜⎜⎜⎜⎝

M2
11 M2

12 M2
13 M2

14

M2
12 M2

22 M2
23 M2

24

M2
13 M2

23 M2
33 M2

34

M2
14 M2

24 M2
34 M2

44

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.20)

where

M2
11 = 2

(
4u21 + 8λ21 + u

2 + u′2 + v2 + v′2
)
,

M2
22 =

2
3

(
4u21 + 8λ21 + u

2 + u′2 + 32Λ2
1 + v

2 + v′2 + 4ω2
)
,

M2
33 =

4t2

27

(
16u21 + 8λ21 + u

2 + u
′2 + 8Λ2

1 + 4v2 + 4v′2 +ω2
)
,

M2
44 = 2

(
ω2 + u2 + u′2 + 16u21 + 4Λ2

1 + 4λ21 + 8Λ1λ1
)
,

M2
12 =

2√
3

(
−4u21 + 8λ21 + u

2 + u′2 − v2 − v′2
)
,

M2
13 = −2

3

√
2
3
t
(
8u21 + 8λ21 + u

2 + u
′2 + 2v2 + 2v

′2
)
,

M2
14 = 8(3u1λ1 + u1Λ1),

M2
23 =

2
√
2

9
t
(
8u21 + 8λ21 − u2 − u′2 + 16Λ2

1 + 2v2 + 2v′2 + 2ω2
)
,

M2
24 =

8√
3
(u1λ1 − 5u1Λ1),

M2
34 = −32

3

√
2
3
t(u1λ1 + u1Λ1).

(3.21)

This mass matrix contains one exact eigenvalue:

M2
γ = 0. (3.22)
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The associated eigenvector is

Aμ =
1√

18 + 4t2

⎛
⎜⎜⎜⎜⎜⎝

√
3t

−t
3
√
2

0

⎞
⎟⎟⎟⎟⎟⎠. (3.23)

Using continuation of the gauge coupling constant g of the SU(3)L at the spontaneous
symmetry breaking point, we have [2–9]

t =
3
√
2sW√

3 − 4s2W
. (3.24)

In order to diagonalize the mass matrix, we choose the base of (Aμ,Zμ, Z′
μ,W4μ), with

Zμ = cWW3μ − sW
⎛
⎝− tW√

3
W8μ +

√
1 − t2W

3
Bμ

⎞
⎠,

Z′
μ =

√
1 − t2W

3
W8μ +

tW√
3
Bμ.

(3.25)

The new base is changed from the old by unitary matrix:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sW cW 0 0

−cWtW√
3

sWtW√
3

√
1 − t2W

3
0

cW

√
1 − t2W

3
−sW
√
1 − t2W

3
tW√
3

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.26)

In this basis, the mass matrixM2 becomes

M
′2 = U+M2U =

g2

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 M
′2
22 M

′2
23 M

′2
24

0 M
′2
23 M

′2
33 M

′2
34

0 M
′2
24 M

′2
34 M

′2
44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.27)
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In the approximation λ21, u
2
1 � Λ2

1, we have

M
′2
22 = 2

(
u2 + u′2 + v2 + v′2

) 1
c2W

,

M
′2
23 =

−2
[
2s2W
(
u2 + u′2

)
−
(
v2 + v′2

)]√
α0

c2W
,

M
′2
24 =

8u1Λ1

cW
,

M
′2
33 =

2
(
u2 + u′2

)
c2Wα0

−
2
(
v2 + v′2

)
α0

c2W
+ 8ω2c2Wα0 + 64Λ2

1c
2
Wα0,

M
′2
34 =

−8x0u1Λ1

cW
√
α0

,

M
′2
44 = 2

(
ω2 + u2 + u

′2 + 4Λ1λ1 + 4Λ2
1

)
,

(3.28)

with

x0 =
(
4c2W + 1

)
,

α0 =
1(

4c2W − 1
) . (3.29)

It is noteworthy that in the limit u1 = 0, the elements M′
24 and M′

34 (or equivalently M14,
M24, M34 in the old base) vanish. In this case, the mixing betweenW4 and Z, Z′ disappears.

Three bosons gain masses via seesaw mechanism:

M2
Z = M

′2
22 −
(
Moff

)T(
M

′2
2X2

)−1
Moff,

M2
2X2 ≈M

′2
2X2,

(3.30)

where

Moff =

⎛
⎝M

′2
23

M
′2
24

⎞
⎠,

M
′2
2X2 =

⎛
⎝M

′2
33 M

′2
34

M
′2
34 M

′2
44

⎞
⎠.

(3.31)
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We have then

M2
Z =

g2

4

⎛
⎜⎝M

′2
22 −

(
M

′2
23

)2
M

′2
44 − 2M

′2
23M

′2
24M

′2
34 +
(
M

′2
24

)2
M

′2
33

M
′2
33M

′2
44 −
(
M

′2
34

)2
⎞
⎟⎠

=
g2

2c2W

(
u2 + u′2 + v2 + v′2

)
−ΔM2

22
,

(3.32)

where

ΔM2
22
=
g2

α20

[
32(2x0x1 + x3)u21Λ

2
1 + x

2
1x2
]

x2x3 − 32x20u
2
1Λ

2
1

,

x1 = c2W
(
u2 + u′2

)
−
(
v2 + v′2

)
,

x2 =
(
ω2 + u2 + u′2 + 4Λ1λ1 + 4Λ2

1

)
,

x3 = c2W
(
u2 + u′2

)
+ v2 + v′2 + 4c4Wω

2 + 32c4WΛ2
1.

(3.33)

The ρ parameter in the our model is given by

ρ = 1 + δtree + δloop, (3.34)

where δloop gets contribution from the oblique correction depending on the masses of top
quark and standard model Higgs boson [1]. The tree level correction δtree describes the new
physics as given by

δtree =
M2

W

c2WM
2
Z

− 1 

c2WΔM2

22

M2
W

. (3.35)

It is noted that ΔM2
22
/= 0 even if ω and Λ1 go to infinity. This is because the 33 components of

antisextets and the third components of scalar triplets can be integrated out. There leave the
standardmodel scalar doublets and triplets (the submultiplets of the 3-3-1model triplets and
antisextets). Such standard model scalar triplets imply δtree /= 0 to be given by

δtree 

8g2c2W

(
4c2W − 1

)2
u21

M2
W

/= 0. (3.36)

The δtree parameter has already been given in [1] as ρ0 − 1 from the global fit:

δtree = 0.0008+0.0017−0.0007. (3.37)
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Hence

0.8403GeV2 ≤ ΔM2
22
≤ 21.0065GeV2, (3.38)

or

0.239GeV ≤ u1 ≤ 1.197GeV, (3.39)

where we have used c2W = 0.769 andMW = 80.384 GeV.
Diagonalizing the mass matrixM2

2X2, we get new gauge bosons:

Z′
μ = cosφZ′′

μ + sinφW ′
4μ,

W4μ = − sinφZ′′
μ + cosφW ′

4μ.
(3.40)

The mixing angle is defined by

tanφ =
2M

′2
34

M
′2
44 −M

′2
33 +
√(

M
′2
44 −M

′2
33

)2 + 4
(
M

′2
34

)2 . (3.41)

Substituting (3.28) into (3.41), we get

tanφ =−2√α1u1Λ1

⎧⎪⎪⎨
⎪⎪⎩α2
(
u2 + u

′2
)
+ α3
(
v2 + v

′2
)
− 2α0w2 + 8λ1Λ1 − 8x0α0Λ2

1

+
[(
α2
(
u2+u

′2
)
+α3
(
v2+v

′2
)
−2α0w2+8λ1Λ1−8x0α0Λ2

1

)2
+4α1u21Λ

2
1

]1/2
⎫⎪⎪⎬
⎪⎪⎭

−1




√
4c2W − 1

cW

u1
Λ1

,

(3.42)

provided that ω2 ∼ Λ2
1 � u2, u

′2, v2, v
′2, u21, λ

2
1, where

α1 =
64x20α0
c2W

,

α2 =
−2 + 6c2W

c2W
α0,

α3 =
−2
c2W

α0.

(3.43)
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The physical mass eigenvalues are defined by

M2
Z′′,W ′

4μ
=
g2

4

M
′2
44 +M

′2
33 ∓
√(

M
′2
44 −M

′2
33

)2 + 4
(
M

′2
34

)2
2

=
g2

8

(
α4
(
u2 + u′2

)
− α3
(
v2 + v′2

)
+ α5w2 + 8λ1Λ1 + α6Λ2

1

±
√(

α2
(
u2 + u′2

)
+ α3(v2 + v

′2) − 2α0w2 + 8λ1Λ1 − 8x0α0Λ2
1

)2
+ 4α1u21Λ

2
1

)
(3.44)

with

α4 =
2 − 10c2W + 16c4W

c2W
α0,

α5 =
(
16c2W − 2

)
α0,

α6 = 8
(
12c2W − 1

)
α0.

(3.45)

In the limit λ1, u1 → 0, we have

M2
Z′′ =

g2
[
c22W

(
u2 + u

′2
)
+ v2 + v

′2 + 4c4Wω
2 + 32c4WΛ2

1

]
2c2W

α0,

M2
W ′

4
=
g2

2

(
u2 + u

′2 +ω2 + 4Λ2
1

)
.

(3.46)

Thus the W ′
4 and W5 components have the same mass. With this result, we should identify

the combination ofW ′
4 andW5

√
2X0

μ = W ′
4μ − iW5μ (3.47)

as physical neutral non-Hermitian gauge boson. The subscript 0 denotes neutrality of gauge
boson X. However, to get tribimaximal mixing, the previous limit is not valid [21, 22].
This means that neutrino tribimaximal mixing leads to the masses of X0 and X0† to be
different. Consequence of this fact is that there is CPT violation [1, 31] in the model under
consideration. We will return to this problem in the future work.

In the limit ω2 ∼ Λ2
1 � u2, u

′2, v2, v
′2, u21, λ

2
1 (or ω, Λ1 → ∞), the mixings between the

charged gauge bosons W − Y and the neutral ones W4 − Z′ are in the same order since from
(3.16) and (3.42) they are proportional to u1/Λ1. In addition, from (3.46), M2

Z′′ 
 2g2(ω2 +
16c2WΛ1

1) is bigger thanM
2
W4


 (g2/2)(ω2+4Λ2
1) (orM

2
X0). It is also verified that |M2

Y −M2
X0 | <

M2
W . In that limit, the masses of X0 and Y degenerate.
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Note that the formulas for masses and mixing of gauge bosons previously presented,
are common for the 3-3-1 models with more complicated Higgs sector such as with A4 or S4

discrete symmetries.

4. Charged Currents

The interaction among fermions with gauge bosons arises from part

iψγμD
μψ = kinematic terms +HCC +HNC. (4.1)

Similarly in the economical 3-3-1 model, despite neutrality, the gauge bosons X0 and
X0∗ belong to this section by their nature. Because of the mixing among the SMW boson and
the charged bilepton Y as well as among (X0 +X0∗)with (W3,W8, B), the new terms exist the
same as the economical 3-3-1 model [25, 26]:

HCC =
g√
2

(
J
μ−
W W+

μ + Jμ−Y Y+
μ + Jμ0∗X X0

μ +H.c.
)
, (4.2)

where

J
μ−
W = cθ

(
νiLγ

μeiL + uiLγμdiL
)
+ sθ
(
νciLγ

μeiL +ULγ
μd1L + uαLγμDαL

)
,

J
μ−
Y = cθ

(
νciLγ

μeiL +ULγ
μd1L + uαLγμDαL

)
− sθ
(
νiLγ

μeiL + uiLγμdiL
)
,

J
μ0∗
X =

(
1 − t22θ

)(
νiLγ

μνciL + u1Lγ
μUL −DαLγ

μdαL
)
− t22θ
(
νciLγ

μνiL +ULγ
μu1L − dαLγμDαL

)

+
t2θ√

1 + 4t22θ

(
νiγ

μνi + u1Lγμu1L −ULγ
μUL − dαLγμdαL +DαLγ

μDαL

)
.

(4.3)

All aforementioned interactions are lepton-number violating and weak (proportional
to sin θ or its square sin2θ). However, these couplings lead to lepton-number violations only
in the neutrino sector.

Let us consider some constraints on the parameters of the model; one of the ways to
do that is the consideration forW decay. In our model, theW boson has the following normal
main decay modes:

W− −→ lν̃l
(
l = e, μ, τ

)
,

↘ ucd, ucs, ucb, (u → c),
(4.4)

which are the same as in the SM and in the 331 with right-handed neutrinos. Beside the afore-
mentioned modes, there are additional ones which are lepton-number violating (ΔL = 2) the
model’s specific feature:

W− −→ l νl
(
l = e, μ, τ

)
. (4.5)
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Figure 1: The total decay width of W [GeV] is depicted as a function of sin(θ). The two horizontal lines
are the upper and lower limits, respectively.

The interaction that provides these modes is as follows:

�L =
g√
2
sθν

c
iLγ

μeiL, (4.6)

where νcL ≡ (NR)c is related to νL via the seesaw mechanism given by νcL = MDM
−1
R νL. Here

MR andMD are right-handed Majorana and Dirac mass matrices (due to the contribution of
s), respectively, which can be derived from the Yukawa Lagrangian above to yieldMDM

−1
R =

(u1/Λ1)diag(1, 1, 1). On the other hand, from (3.16) we have sθ 
 tan θ 
 u1/Λ1 if Λ1 is
largest among the VEVs. It is therefore that νcL 
 sθνL and

�L =
g√
2
s2θνiLγ

μeiL. (4.7)

The total decay width ofW is given by [25, 26]

ΓW = 1.039
αMW

2s2W

(
1 − s2θ

)
+
αMW

4s2W

(
1 − s2θ

)
+
αMW

4s2W
s4θ, (4.8)

where the first term is due to the quark productions (with αs = 0.1184 chosen for the QCD
radiative corrections), the second term comes from the normal modes with leptons, and the
last one is for the unnormal modes. Let us choose α(MZ) = 1/128, MW = 80.399GeV, and
ΓextW = 2.085 ± 0.042GeV [1]. The total decay width is plotted in Figure 1. From the figure, we
get an upper limit on the sin θ in the model:

sin θ ≤ 0.15, (4.9)

which is bigger than that given in [25, 26].
There are lepton number violating interactions in the neutral Gauge boson sector, we

refer interested reader to [25, 26].
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5. Conclusions

In this paper, we have investigated Gauge boson sector: their mixing andmasses. The vacuum
expectation values ui and λi are a source of lepton-number violations and a reason for the
mixing between the charged Gauge bosons—the standard model W and the singly-charged
bilepton Gauge bosons, as well as between neutral non-Hermitian X0 and neutral Gauge
bosons: the photon, the Z, and the new exotic Z′. The interesting new physics compared with
3-3-1 models is the neutrino physics. Due to lepton-number violating couplings, we have
many interesting consequences. We have shown that the neutrino tribimaximal mixing leads
to the CPT violation. This feature will be considered in the future publication.
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We study how leptogenesis can be implemented in the seesaw models with S4 flavor symmetry,
which lead to the tri-bimaximal neutrino mixing matrix. By considering renormalization group
evolution from a high-energy scale of flavor symmetry breaking (the GUT scale is assumed) to
the low-energy scale of relevant phenomena, the off-diagonal terms in a combination of Dirac
Yukawa-coupling matrix can be generated and the degeneracy of heavy right-handed neutrino
Majorana masses can be lifted. As a result, the flavored leptogenesis is successfully realized.
We also investigate how the effective light neutrino mass |〈mee〉| associated with neutrinoless
double beta decay can be predicted along with the neutrino mass hierarchies by imposing the
experimental data on the low-energy observables. We find a link between the leptogenesis and
the neutrinoless double beta decay characterized by |〈mee〉| through a high-energy CP phase φ,
which is correlated with the low-energy Majorana CP phases. It is shown that the predictions of
|〈mee〉| for some fixed parameters of the high-energy physics can be constrained by the current
observation of baryon asymmetry.

1. Introduction

The neutrino experimental data can provide an important clue for elucidating the origin of
observed hierarchies in the mass matrices of quarks and leptons. The recent experiments of
neutrino oscillation have gone into a new phase of precise determination of the mixing angles
and squared mass differences [1, 2], which indicate that the tri-bimaximal mixing (TBM) for
the three flavors of leptons
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can be regarded as the PMNS matrix UPMNS ≡ UTBPν [3–6], where Pν is a diagonal matrix of
CP phases. However, properties related to the leptonic CP violation have not been completely
known yet. The large mixing angles, which may be suggestive of a flavor symmetry, are
completely different from the quark mixing ones. Therefore, it is very important to find
a model that naturally leads to those mixing patterns of quarks and leptons with a good
accuracy. In recent years there have been a lot of efforts in searching for models which result
in the TBM pattern naturally and a fascinating way seems to be the use of some discrete non-
Abelian flavor groups added to the gauge groups of the standard model. There is a series
of proposals based on groups A4 [7–16], T ′ [17–21], and S4 [22–36]. The common feature of
these models is that they are naturally realized at a very-high-energy scale Λ and the groups
are spontaneously broken due to a set of scalar multiplets, the flavons.

In addition to the explanation of smallness of observed neutrino masses, the seesaw
mechanism [37–39] has another appearing feature so-called leptogenesis mechanism for
generation of observed baryon asymmetry of the Universe (BAU), through the decay
of heavy right-handed (RH) Majorana neutrinos [40–44]. If this BAU was made via the
leptogenesis, then the CP violation in leptonic sector is required. For the Majorana neutrinos
of three flavors there are one Dirac-type phase and two Majorana-type phases, one (or a
combination) of which in principle can be measured through neutrinoless double beta (0ν2β)
decays [45–48]. The exact TBM pattern forbids at low energy the CP violation in neutrino
oscillations, due to Ue3 = 0. Therefore, any observation of the leptonic CP violation, for
instance, in the 0ν2β decay, can strengthen our belief in the leptogenesis by demonstrating
that the CP is not a symmetry of leptons. It is interesting to explore this existence of the CP
violation due to the Majorana CP-violating phases by measuring |〈mee〉| and examine a link
between observable low-energy 0ν2β decay and the BAU. The authors in [35, 36] have shown
that the TBM pattern can be generated naturally in the framework of the seesaw mechanism
with SU(2)L ×U(1)Y × S4 symmetry. The textures of mass matrices as given in [35, 36] also
could not generate a lepton asymmetry which is essential for the baryogenesis. In this paper,
we investigate possibility of radiative leptogenesis when renormalization group (RG) effects
are taken into account. We will show that the leptogenesis can be linked to the 0ν2β decay
through the seesaw mechanism.

The rest of this work is organized as follows. In Section 2, we present the low-energy
observables in two variants of supersymmetric seesaw model based on flavor symmetry S4.
We especially focus on the effective neutrino mass governing the 0ν2β decay. In Section 3, we
study RG effects on the Yukawa couplings and heavy Majorana neutrino mass matrices so
that the leptogenesis becomes available. This leptogenesis in the two models due to the RG
effects is studied in detail in Section 4. Finally, Section 5 is devoted to our conclusions.
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Table 1: Transformation properties of the lepton sector and all the flavons of the BMM model where ω =
ei2π/3.

Field l ec μc τc νc hu,d θ ψ η Δ ϕ ξ′

S4 31 12 12 11 31 11 11 31 2 31 2 12
Z5 ω4 1 ω2 ω4 ω 1 1 ω2 ω2 ω3 ω3 1
U(1)FN 0 1 0 0 0 0 −1 0 0 0 0 0

2. Two S4 Models

In this sectionwe give a review of themain features of Bazzocchi-Merlo-Morisi (BMM)model
[35] and Ding model [36]. We simultaneously discuss the 0ν2β decay, leptogenesis, and phe-
nomenological difficulties associated with the models to be solved.

2.1. Bazzocchi-Merlo-Morisi Model

In this model the flavor symmetry is S4 accompanied with cyclic group Z5 and Froggatt-
Nielsen symmetry U(1)FN [49], that is, Gf = S4 × Z5 ×U(1)FN. The matter fields and flavons
are given in Table 1. The superpotential for the lepton sector reads

wl =
4∑
i=1

θ

Λ
ye,i

Λ3
ec(lXi)12hd+

yμ

Λ2
μc
(
lψη
)
12
hd+

yτ
Λ
τc
(
lψ
)
11
hd + h.c. + · · ·,

wν = x(νcl)11hu + xd
(
νcνcϕ

)
11
+ xt(νcνcΔ)11 + h.c. + · · ·,

(2.1)

where Xi = ψψη, ψηη,ΔΔξ′,Δϕξ′ and the dots denote higher-order contributions.
The VEV alignment of flavons is

〈
ψ
〉
=
(
0 1 0

)T
υψ, 〈Δ〉 =

(
1 1 1

)T
υΔ,〈

η
〉
=
(
0 1
)T
υη,

〈
ϕ
〉
=
(
1 1
)T
υϕ,

〈
ξ′
〉
= υξ′ ,

(2.2)

where all the VEVs are of the same order of magnitude and for this reason being param-
eterized as VEVs/Λ = u. The remaining VEV which originates from a different mechanism is
υθ, denoted by υθ/Λ = t. It is shown in [35] that u and t belong to a well-determined range
0.01 < u, t < 0.05.

The mass matrix for the charged leptons is given by

ml =

⎛
⎜⎝y

(1)
e u2t y

(2)
e u2t y

(2)
e u2t

0 yμu 0
0 0 yτ

⎞
⎟⎠uυd. (2.3)
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The Dirac and RH-Majorana neutrino mass matrices are, respectively, obtained as

md
ν =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠xυu,

MR = Beiα1

⎛
⎝ 2reiφ 1 − reiφ 1 − reiφ

1 − reiφ 1 + 2reiφ −reiφ
1 − reiφ −reiφ 1 + 2reiφ

⎞
⎠,

(2.4)

where B = 2|xd|υϕ, C = 2|xt|υΔ, and r = C/B are real and positive. The phases α1 and α2 are
the arguments of xd,t, and φ ≡ α2 − α1 being the only physical phase remained inMR. Notice
that theMR can be exactly diagonalized by the TBM matrix:

MD
R = V T

RMRVR = Diag.(M1,M2,M3),

M1 = B
∣∣∣3reiφ − 1

∣∣∣, M2 = 2B, M1 = B
∣∣∣3reiφ + 1

∣∣∣,
VR = UTBVP , VP = Diag.

(
eiγ1/2, 1, eiγ2/2

)
,

γ1,2 = − arg
(
3reiφ ∓ 1

)
.

(2.5)

Integrating out the heavy degrees of freedom, we get the effective light neutrino mass
matrix, which is given by the seesaw relation, meff = −(md

ν)
TM−1

R m
d
ν [37–39], and diagonal-

ized by the TBM matrix:

UT
νmeffUν = Diag.(m1, m2, m3)

= −Diag.

(
x2υ2

u

M1
,
x2υ2

u

M2
,
x2υ2

u

M3

)
,

Uν = UTBDiag.
(
e−iγ1/2, 1, e−iγ2/2

)
.

(2.6)

In order to find the lepton mixing matrix we need to diagonalize the charged-lepton
mass matrix:

mD
l = U†

lcmlUl = Diag.
(
yeu

2t, yμu, yτ
)
uυd, (2.7)

whereUl is unity matrix. Therefore we get

UPMNS = U
†
l
Uν ≡ Uν

= e−iγ1/2UTBDiag.
(
1, eiβ1 , eiβ2

)
,

(2.8)

where β1 = γ1/2 and β2 = (γ1 − γ2)/2 are Majorana CP violating phases. The phase factored
out to the left has no physical meaning, since it can be eliminated by a redefinition of the
charged lepton fields. The light neutrinomass eigenvalues are simply the inverse of the heavy
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Figure 1: Allowed parameter region by the 1σ experimental constraints (2.9) for the ratio r = C/B as a
function of cosφ. The blue (dark) and red (light) curves correspond to the IH and NH spectra.

neutrino ones, a part from a minus sign and the global factor frommd
ν , as can be seen in (2.6).

There are nine physical parameters consisting of the three light neutrino masses, three mixing
angles, and three CP-violating phases in general. The mixing angles are entirely fixed by the
Gf symmetry group, predicting TBM and in turn no Dirac CP-violating phase. The remaining
five physical parameters, β1, β2, m1, m2, and m3, are determined by the five real parameters
B,C, υu, x, and φ.

The light neutrino mass spectrum can have both normal or inverted hierarchy de-
pending on the sign of cosφ. If cosφ < 0, one has normal hierarchy (NH), whereas if cosφ > 0,
one has inverted hierarchy (IH). In order to see how this correlation in the allowed parameter
space is constrained, we consider the experimental data at 1σ [1, 2]:

∣∣∣Δm2
31

∣∣∣ = (2.29 − 2.52) × 10−3 eV2,

Δm2
21 = (7.45 − 7.88) × 10−5 eV2.

(2.9)

(Hereafter, we always use the experimental data at 1σ for our numerical calculations of low-
energy observables.) The correlations between r and cosφ for the NH spectrum (red (light)
plot) and IH one [blue (dark) plot) are, respectively, presented in Figure 1.

Because there is no Dirac CP-violating phase as mentioned, the only contribution from
the Majorana phases to the 0ν2β decay comes from β1. The effective neutrino mass governing
the 0ν2β decay is given by

|〈mee〉| = 1
3

∣∣∣2m1 +m2e
2iβ1
∣∣∣

=
m0

3
(
1 − 6r cosφ + 9r2

)√8.5 + 13.5r2 + 20.25r4 − 3r(13 + 12r2) cosφ + 9r2cos2φ,

(2.10)

where m0 = x2υ2
u/B. The behavior of |〈mee〉| is plotted in Figure 2 as a function of φ. The

horizontal line (0.2 eV) is the current lower bound sensitivity [50–53] while the dashed line
(10−2 eV) is a future sensitivity [54, 55].
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Figure 2: Prediction of the effective neutrino mass |〈mee〉| responsible for 0ν2β decay as a function of φ by
the 1σ experimental constraints (2.9). The blue (dark) and red (light) curves correspond to the IH and NH
spectra.
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Figure 3: The Majorana CP phase β1 as a function of φ plotted by the 1σ experimental constraints (2.9).
The blue (dark) and red (light) curves correspond to the IH and NH spectra.

Using (10) we can obtain the explicit relation between φ and β1:

sin 2β1 =
−3r sinφ

1 − 6r cosφ + 9r2
. (2.11)

Figure 3 represents this relation corresponding to the NH spectrum [red (light) plot] and IH
one [blue (dark) plot].

In a basis where the charged current is flavor diagonal and the heavy neutrino mass
matrixMR is diagonal and real, the Dirac mass matrixmd

ν gets modified to

md
ν −→ Yνυu = V T

Rm
d
ν, (2.12)
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Table 2: Representations of the matter fields of lepton sector and flavons under S4 × Z3 × Z4.

Field l ec μc τc νc hu,d ϕ χ ϑ η φ Δ
S4 31 11 12 11 31 11 31 32 12 2 31 12
Z3 ω ω2 ω2 ω2 1 1 1 1 1 ω2 ω2 ω2

Z4 1 i −1 −i 1 1 i i 1 1 1 −1

where υu = υ sin β, υ = 176GeV, and the coupling ofNi with leptons and scalar, Yν, is given
by

Yν = xeiγ1/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
3

−1√
6

−1√
6

e−iβ1√
3

e−iβ1√
3

e−iβ1√
3

0
e−iβ2√

2

−e−iβ2√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.13)

Concerned with the CP violation, we notice that the CP phase φ originating from md
ν

obviously takes part at the low-energy CP violation as the Majorana phases β1 and β2. On
the other hand, the leptogenesis is associated with both the Yukawa coupling Yν and its
combination:

H ≡ YνY †
ν = x2 ·Diag.(1, 1, 1). (2.14)

This directly indicates that all off-diagonal Hij vanish, so the CP asymmetry could not be
generated and neither leptogenesis. For the leptogenesis to be viable, the off-diagonal Hij have to
be generated.

2.2. Ding Model

Ding model, proposed in [36], possesses flavor symmetry group Gf = S4 × Z3 × Z4, where
the three factors play different roles. The S4 controls the mixing angles, the Z3 guarantees the
misalignment in flavor space between neutrino and charged-lepton eigenstates, and the Z4

is crucial to eliminating unwanted couplings and reproducing observed mass hierarchies. In
this framework the mass hierarchies are controlled by spontaneously breaking of the flavor
symmetry instead of the Froggatt-Nielsen mechanism [49]. The matter fields of lepton sector
and flavons under Gf are assigned as in Table 2.

The superpotential for the lepton sector reads

wl =
ye1

Λ3
ec
(
lϕ
)
11

(
ϕϕ
)
11
hd +

ye2

Λ3
ec
((
lϕ
)
2

(
ϕϕ
)
2

)
11
hd +

ye3

Λ3
ec
((
lϕ
)
31

(
ϕϕ
)
31

)
11
hd

+
ye4

Λ3
ec
((
lχ
)
2

(
χχ
)
2

)
11
hd

+
ye5

Λ3
ec
((
lχ
)
31

(
χχ
)
31

)
11
hd +

ye6

Λ3
ec
(
lϕ
)
11

(
χχ
)
11
hd +

ye7

Λ3
ec
((
lϕ
)
2

(
χχ
)
2

)
11
hd
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+
ye8

Λ3
ec
((
lϕ
)
31

(
χχ
)
31

)
11
hd

+
ye9

Λ3
ec
((
lχ
)
2

(
ϕϕ
)
2

)
11
hd +

ye10

Λ3
ec
((
lχ
)
31

(
ϕϕ
)
31

)
11
hd +

yμ

2Λ2
μc
(
l
(
ϕχ
)
32

)
12
hd

+
yτ
Λ
τc
(
lϕ
)
11
hd + · · ·,

wν =
yν1
Λ
(
(νcl)2η

)
11
hu +

yν2
Λ
(
(νcl)31φ

)
11
hu +

1
2
M(νcνc)11 + · · ·,

(2.15)

where the dots denote higher-order contributions.
The VEV alignment of flavons are assumed as follows:

〈
ϕ
〉
=
(
0, υϕ, 0

)
,
〈
χ
〉
=
(
0, υχ, 0

)
, 〈ϑ〉 = υϑ,〈

η
〉
=
(
υη, υη

)
,
〈
φ
〉
=
(
υφ, υφ, υφ

)
, 〈Δ〉 = υΔ.

(2.16)

The charged-lepton mass matrix is obtained by

ml = Diag.

(
ye
υ3
ϕ

Λ3
, yμ

υϕυχ

Λ2
, yτ

υϕ

Λ

)
υd, (2.17)

where all the components are assumed to be real. The neutrino sector gives rise to the follow-
ing Dirac and RH-Majorana mass matrices

md
ν = eiα1

⎛
⎝ 2beiφ a − beiφ a − beiφ
a − beiφ a + 2beiφ −beiφ
a − beiφ −beiφ a + 2beiφ

⎞
⎠υu,

MR =

⎛
⎝M 0 0

0 0 M
0 M 0

⎞
⎠,

(2.18)

where the quantityM is also supposed to be real and positive. The phase φ ≡ α2 − α1, where
α1, α2 are denoted as the arguments of yν1, yν2, respectively, is the only physical phase sur-
vived because the global phase α1 can be rotated away. The real and positive components a
and b are defined as

a =
∣∣yν1∣∣υηΛ , b =

∣∣yν2∣∣υφΛ . (2.19)

After seesawing, the effective light neutrino mass matrix is obtained from meff =
−(md

ν)
T
M−1

R m
d
ν , which can be diagonalized by the TBM matrix:

UT
νmeffUν = Diag.(m1, m2, m3), (2.20)
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where

m1 = m0

(
1 + 9r2 − 6r cosφ

)
,

m2 = 4m0,

m3 = m0

(
1 + 9r2 + 6r cosφ

)
,

(2.21)

withm0 = υ2
ua

2/M and r = b/a. The lepton mixing matrix is given by

UPMNS = Uν = e−iγ1/2UTBDiag.
(
1, eiβ1 , eiβ2

)
, (2.22)

where β1 = γ1/2, β2 = (γ1 − γ2)/2 are Majorana CP-violating phases with

γ1 = arg
{(

a − 3beiφ
)2}

,

γ2 = arg
{
−
(
a + 3beiφ

)2}
.

(2.23)

It is clear that the phase factored out to the left has no physical meaning. Moreover, the
mixing angles are entirely fixed by theGf symmetry, predicting TBM and in turn noDirac CP-
violating phase. There remain only five physical quantities, β1, β2,m1,m2, andm3, completely
determined by the five parametersM, υu, a, b, and φ.

There are two possible orderings in the masses of effective light neutrinos depending
on the sign of cosφ: the NH corresponding to cosφ > 0 while the IH to cosφ < 0, which cont-
rast with the previous model. The relation between r and cosφ for the NH spectrum (red
plot) and IH one (blue plot) is included in Figure 4. Similarly to the previous model, the con-
tribution to the 0ν2β decay entirely comes from theMajorana phase β1. The relevant effective-
neutrino mass is given by

|〈mee〉| = 1
3

∣∣∣2m1 +m2e
2iβ1
∣∣∣

= m0

√
1 − 4r cosφ + 2r2

(
2 + 3 cos 2φ

) − 12r3 cosφ + 9r4,
(2.24)

where m0 = a2υ2
u/M. The behavior of |〈mee〉| as a function of φ is plotted in Figure 5, where

the horizontal line and dashed line are the current lower bound and the future one as
mentioned. Moreover, the relation between φ and β1 can be obtained from (2.23) as

sin 2β1 =
6r sinφ

(
1 − 3r cosφ

)
1 − 6r cosφ + 9r2

, (2.25)

which is presented in Figure 6 corresponding to the NH ordering [red (light) plot] and IH
one [blue (dark) plot].
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(dark) and red (light) curves correspond to the IH and NH ordering.
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In a basis where the charged current is flavor diagonal, we diagonalizeMR in order to
go into the physical mass basis of the RH neutrinos:

V T
RMRVR = Diag.(M,M,−M), (2.26)

where

VR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0
1√
2

−1√
2

0
1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.27)

In this basis, the Dirac mass matrixmd
ν gets the form

md
ν −→ Yνυu = V T

Rm
d
ν, (2.28)

where υu = υ · sin β, υ = 176GeV and the coupling ofNi with leptons and scalar, Yν, is given
by

Yν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2beiφ a − beiφ a − beiφ
√
2
(
a − beiφ) a + beiφ√

2

a + beiφ√
2

0
−(a + 3beiφ

)
√
2

(
a + 3beiφ

)
√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.29)

Again, the CP phase φwhich comes frommd
ν also takes part at the low-energy CP violation as

theMajorana phases β1 and β2. On the other hand, the leptogenesis is associated with both the
Yukawa coupling Yν and its combination:

H ≡ YνY †
ν =

⎛
⎝ 2a2 + 6b2 − 4ab cosφ

√
2
(
a2 − 3b2 + 2ab cosφ

)
0√

2
(
a2 − 3b2 + 2ab cosφ

)
3a2 + 3b2 − 2ab cosφ 0

0 0 a2 + 9b2 + 6ab cosφ

⎞
⎠,

(2.30)

which directly indicates that all Im[Hij] vanish and in turn unflavored leptogenesis could not
take place.However, flavored leptogenesis can work if the degeneracy of the heavy Majorana neutrino
masses is lifted.
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3. Relevant RG Equations

In both models, the CP asymmetries due to the decay of heavy RH Majorana neutrinos at
leading order vanish; therefore the leptogenesis could not take place. The radiative effects due
to RG running from a high to low scale can naturally lead not only to a degenerate splitting
of heavy Majorana masses (for Ding model), but also to an enhancement in vanished off-
diagonal terms of H = YνY

†
ν (for BMM model), which are necessary ingredients for a suc-

cessful leptogenesis mechanism.
The radiative behavior of heavy RH-Majorana mass matrix MR is dictated by the

following RG equation [56–60]:

dMR

dt
= 2
[(

YνY
†
ν

)
MR +MR

(
YνY

†
ν

)T]
, (3.1)

where t = (1/16π2) ln(M/Λ′) and M is an arbitrary renormalization scale. The cutoff scale
Λ′ can be regarded as the Gf breaking scale Λ′ = Λ and assumed to be in order of the GUT
scale, Λ′ ∼ 1016 GeV.

The RG equation for the Dirac neutrino Yukawa coupling can be written as

dYν
dt

= Yν
[(

T − 3g2
2 −

3
5
g2
1

)
+ Y†

l
Yl + 3Y†

νYν
]
, (3.2)

where T = Tr(3Y †
uYu + Y†

νYν), Yu and Yl are the Yukawa couplings of up-type quarks and
charged leptons, and g2,1 are the SU(2)L and U(1)Y gauge coupling constants, respectively.

Let us first reformulate (3.1) in the basis whereMR is diagonal. SinceMR is symmetric,
it can be diagonalized by a unitary matrix VR as mentioned:

V T
RMRVR = Diag.(M1,M2,M3). (3.3)

As the structure of MR changes with the evolution of the scale, the VR depends on the scale
too. The RG evolution of VR(t) can be written as

d

dt
VR = VRA, (3.4)

where A is an anti-Hermitian matrix A† = −A due to the unitary of VR. Differentiating (3.3)
we obtain

dMiδij

dt
= AT

ijMj+MiAij+2
{
V T
R

[(
YνY

†
ν

)
MR +MR

(
YνY

†
ν

)T]
VR

}
ij
. (3.5)

Absorbing the unitary factor into the Dirac Yukawa coupling Yν ≡ V T
RYν, the real diagonal

part of (3.5) becomes

dMi

dt
= 4Mi

(
YνY

†
ν

)
ii
. (3.6)
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The RG equation for Yν in the basis of diagonal MR is given by

dYν
dt

= Yν
[(

T − 3g2
2 −

3
5
g2
1

)
+ Y†

l
Yl + 3Y †

ν Yν

]
+ATYν. (3.7)

Finally, we obtain the RG equation forH responsible for the leptogenesis:

dH

dt
= 2
(
T − 3g2

2 −
3
5
g2
1

)
H + 2Yν

(
Y†
l
Yl
)
Y †
ν

+ 6H2 +ATH +HA∗.
(3.8)

The heavyMajoranamass splitting generated through the relevant RG evolution is thus given
by

δ
ij

N = 4
(
Hii −Hjj

)
t, (3.9)

where H is defined in (2.30). Neglecting the RG evolution of Yν and its combination H =
YνY

†
ν , all the necessary components for the flavored leptogenesis in Ding model are available.

The flavored CP asymmetries εαi can be obtained from (2.29), (2.30), (3.9), and (4.3).
Notice however that in BMM model a nonvanishing CP asymmetry requires

Im[Hij(Yν)iα(Yν)
∗
jα]/= 0 with Yν defined in (2.13). Therefore, to have a viable radiative lep-

togenesis we need to induce a nonvanishing Hij(i /= j) at the leptogenesis scale. Indeed, this
is possible since the RG effects due to the τ-Yukawa coupling contribution imply at the
leading order yields [56–60]

Hij(t) = 2y2
τ(Yν)i3(Yν)

∗
j3 × t. (3.10)

The flavored CP asymmetries εαi can then be obtained from (2.13), (2.14), (3.10), and (4.1).

4. Radiatively Induced Flavored Leptogenesis

As already noticed, the leptogenesis cannot be realized in the S4 models at the leading order,
so this section is devoted to study the flavored leptogenesis with the effects of RG evolution.

The lepton asymmetries, which are produced by out-of-equilibrium decays of heavy
RH neutrinos in early Universe at temperatures above T ∼ (1 + tan2β) × 1012 GeV, do not
distinguish among lepton flavors, called conventional or unflavored leptogenesis. However,
if the scale of heavy RH neutrino masses is aboutM ≤ (1+ tan2β)× 1012 GeV, we need to take
into account lepton flavor effects, called flavored leptogenesis.

In this case, the CP asymmetry as generated by the decay of ith heavy RH neutrino far
from almost degenerate is given by [61–71]

εαi =
1

8πHii

∑
j /= i

Im
[
Hij(Yν)iα(Yν)

∗
jα

]
g

(
M2

j

M2
i

)
, (4.1)
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where Yν andH = YνY
†
ν are in the basis whereMR is real and diagonal. Here the loop function

g(M2
j /M

2
i ) is

g

(
M2

j

M2
i

)
≡ gij(x) =

√
x

[
2

1 − x − ln
1 + x
x

]
. (4.2)

This function depends strongly on the hierarchy of light neutrino masses.
For an almost degenerate heavy Majorana mass spectrum, the leptogenesis can be nat-

urally implemented through the resonant leptogenesis [72, 73]. In this case, the CP asym-
metry is generated by the ith heavy RH neutrino (Ni) when decaying into a lepton flavor
α (= e, μ, τ) and dominated by the one-loop self-energy contributions [74],

εαi =
∑
j /= i

Im
[
Hij(Yν)iα(Yν)

∗
jα

]
16πHiiδ

ij

N

⎛
⎝1 +

Γ2j

4Mjδ
ij2
N

⎞
⎠, (4.3)

where Γj = HjjMj/8π is the decay width of jth RH neutrino and δ
ij

N is mass splitting pa-
rameter defined as

δ
ij

N = 1 − Mj

Mi
. (4.4)

As reminded in the previous section, by properly taking into account the RG effects,
the nonzero flavored CP asymmetries εαi as given above can be obtained.

Once the initial values of εαi are fixed, the final result of BAU, ηB, can be given by solv-
ing a set of flavor-dependent Boltzmann equations including the decay, inverse decay, and
scattering processes as well as the nonperturbative sphaleron interaction. In order to estimate
the washout effects, we introduce parameters Kα

i which are the wash-out factors due to the
inverse decay of Majorana neutrino Ni into the lepton flavor α. The explicit form of Kα

i is
given by

Kα
i =

Γαi
H(Mi)

=
(
Y †
ν

)
αi
(Yν)iα

υ2
u

m∗Mi
, (4.5)

where Γαi is the partial decay width ofNi into the lepton flavors and Higgs scalars,H(Mi) �
(4π3g∗/45)

1/2
M2

i /MPl with the PlanckmassMPl = 1.22 × 1019 GeV and the effective number
of degrees of freedom g∗ � 228.75 is the Hubble parameter at temperature T = Mi, and the
equilibrium neutrinomassm∗ � 10−3. From (2.13), (2.29), and (4.5)we can obtain thewashout
parameters corresponding to the two models.

Each lepton asymmetry for a single flavor εαi is weighted differently by the corre-
sponding washout parameter Kα

i , appearing with a different weight in the final formula for
the baryon asymmetry [75, 76]:

ηB � −10−2
∑
Ni

[
εei κ

(
93
110

Ke
i

)
+ εμi κ

(
19
30
K
μ

i

)
+ ετi κ

(
19
30
Kτ
i

)]
, (4.6)
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provided that the scale of heavy RH neutrino masses is about M ≤ (1 + tan2β) × 109 GeV
where the μ and τ Yukawa couplings are in equilibrium and all the flavors are to be treated
separately. And

ηB � −10−2
∑
Ni

[
ε2i κ

(
541
761

K2
i

)
+ ετi κ

(
494
761

Kτ
i

)]
(4.7)

is given if (1+tan2β) ·109 GeV ≤Mi ≤ (1+tan2β) ·1012 GeVwhere only the τ Yukawa coupling
is in equilibrium and treated separately while the e and μ flavors are indistinguishable. Here
ε2i = ε

e
i + ε

μ

i , K
2
i = K

e
i +K

μ

i .
The wash-out factors are given by

καi �
(

8.25
Kα
i

+
(
Kα
i

0.2

)1.16)−1
. (4.8)

4.1. Bazzocchi-Merlo-Morisi Model

In this model, the RH neutrino masses are strongly hierarchical. For the NH case, the lightest
RH neutrino mass isM3, then the leptogenesis is governed by the decay ofM3 neutrino. The
explicit form of flavored CP asymmetries εα3 is given from (2.13), (2.14), (3.10), and (4.1):

εe3 � 0,

ε
μ

3 � ετ3 � y2
τx

2

24π

(
1
2
sin 2β2 · g31−sin 2

(
β1 − β2

) · g32
)
· t.

(4.9)

The corresponding washout parameters are

Ke
3 = 0, K

μ,τ

3 � 3
4
Ke

1 . (4.10)

For the IH case, the lightest RH neutrino is of M1, then the leptogenesis is governed
by the decay ofM1 neutrino. The flavored CP asymmetries εα1 are obtained as

εe1 �
−y2

τx
2

36π
sin 2β1 · g12 · t,

ε
μ

1 � y2
τx

2

24π

(
1
3
sin 2β1 · g12 − 1

2
sin 2β2 · g13

)
· t,

ετ1 � y2
τx

2

24π

(
1
3
sin 2β1 · g12 + 1

2
sin 2β2 · g13

)
· t,

(4.11)
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Figure 7: Prediction of ηB as a function of |〈mee〉| for the NH case (a) and IH case (b). The horizontal solid
and dashed lines correspond to the experimental central value and phenomenologically allowed region.

with corresponding washout parameters

Ke
1 � 2m0

3m∗
(
1 − 6r cosφ + 9r2

) ,
K
μ,τ

1 � 1
4
Ke

1 .

(4.12)

Applying (4.6), (4.7), and (4.8), the BAU for two cases are then obtained. Notice also
that in the NH case the leptogenesis has no contribution from the electron flavor decay chan-
nel which makes the scale of the heavy RH neutrino mass for a successful leptogenesis higher
than that of the IH case.

The prediction for ηB as a function of |〈mee〉| is shown in Figure 7 where we have used
B = 1013 GeV for the NH case, B = 1012 GeV for the IH case, and tan β = 30 as inputs. The hori-
zontal solid and dashed lines correspond to the central value of BAU experimental data
ηCMB
B = 6.1 × 10−10 [77–79] and phenomenologically allowed region 2 × 10−10 ≤ ηB ≤ 10−9,

respectively. As shown in Figure 7, the current observation of ηCMB
B can narrowly constrain

the value of |〈mee〉| for the NH and IH spectrum, respectively. Combining the results
presented in Figures 2 and 3 with those from the leptogenesis, we can pin down theMajorana
CP phase β1 via the parameter φ.

4.2. Ding Model

In this model, all the heavy RH neutrinos are exactly degenerate. By considering the RG ef-
fects, their masses get a tiny splitting (almost degenerate), which lead to a resonant lep-
togenesis as contributed from all these heavy RH neutrinos. However, if we neglect the RG
effects on theH matrix, the contribution ofN3 to lepton asymmetries εαi can be negligible due
toH13(31) = H23(32) = 0. (Actually, this is also correct if we take into account the RG effects on
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the H matrix since the radiative generation of H13(31),H23(32) is very small.) Combined with
(2.29), (2.30), (3.9), and (4.3), the flavor-dependent CP asymmetries εαi are obtained as

εe1 �
a2r sinφ

32π
(
1 − 2r cosφ + 3r2

)
t
, ε

μ

1 � ετ1 � −a2r sinφ
64π
(
1 − 2r cosφ + 3r2

)
t
,

εe2 �
−a2r sinφ

16π
(
3 − 2r cosφ + 3r2

)
t
, ε

μ

2 � ετ2 � a2r sinφ
32π
(
3 − 2r cosφ + 3r2

)
t
.

(4.13)

Here the mass slitting parameter δ12N which can be calculated from (2.30) and (3.9),

δ12N = −δ21N = −4a2
(
1 − 3r2 + 2r cosφ

)
, (4.14)

has been used. The explicit form of Kα
i is found as

Ke
1 � 4r2

m0

m∗
, m0 =

a2υ2
u

M
,

K
μ,τ

1 � m0

m∗

(
1 − 2r cosφ + r2

)
,

Ke
2 � 2m0

m∗

(
1 − 2r cosφ + r2

)
,

K
μ,τ

2 � m0

2m∗

(
1 + 2r cosφ + r2

)
.

(4.15)

With the help of (4.6), the BAU is obtained then.
The prediction for ηB as a function of |〈mee〉| is shown in Figure 8 where we have used

M = 103 GeV and tan β = 1. The horizontal solid and dashed lines correspond to the central
value of the BAU experiment result ηCMB

B = 6.1 × 10−10 [77–79] and phenomenologically
allowed region 2 × 10−10 ≤ ηB ≤ 10−9, respectively. As seen in Figure 8, the current obser-
vation of ηCMB

B can narrowly constrain the value of |〈mee〉| for the NH and IH spectrum, re-
spectively. Again, combining the results in Figures 5 and 6 with those from the leptogenesis,
we can pin down the Majorana CP phase β1 via the parameter φ.

5. Conclusions

We have studied the S4 models in the context of a supersymmetric seesaw model which
naturally lead to the TBM form for the leptonmixingmatrix. In BMMmodel, the combination
YνY

†
ν is proportional to unity whereas in Ding model the heavy RH Majorana masses are ex-

actly degenerate. This would forbid the desirable leptogenesis to occur in each model.
Therefore, for a viable leptogenesis the off-diagonal terms of YνY

†
ν in BMM model have to

be generated, while in Ding model the degeneracy of heavy RH Majorana masses has to be
lifted. We have shown that these can be easily achieved by the RG effects from a high-energy
scale to the low-energy scale which result in the successful leptogenesis.
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Figure 8: Prediction of ηB as a function of |〈mee〉| or the NH case (a) and IH case (b). The horizontal solid
and dashed lines correspond to the experimental central value and phenomenologically allowed region.

We have also studied implications to the low-energy observables such as the 0νββ
decay. It gives the definite predictions for 0ν2β decay parameter |〈mee〉|. Interestingly we
have found a link between the leptogenesis and amplitude of 0ν2β decay |〈mee〉| through a
high-energy CP phase φ. We have shown how the high-energy CP phase φ is correlated to
the low-energy Majorana CP phase and examined how the leptogenesis can be related with
the 0ν2β decay. It is pointed out that the predictions of |〈mee〉| for the NH and IH spectra
can be constrained by the current observation of the baryon asymmetry of the universe as
6.1 × 10−10.
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We present a detailed analysis of a class of extensions to the SM Gauge chiral symmetry SU(3)C ×
SU(3)L ×U(1)x (331 model), where the neutrino electroweak interaction with matter via charged
and neutral current is modified through new gauge bosons of themodel. We found the connections
between the nonstandard contributions on 331 model with nonstandard interactions. Through
limits of such interactions in cross-section experiments, we constrained the parameters of the
model, obtaining that the new energy scale of this theory should obey V > 1.3 TeV and the new
bosons of the model must have masses greater than 610GeV.

1. Introduction

Although the standard model (SM) is a good phenomenological theory, describing very well
all experimental results, it leaves several unanswered questions that suggest that the SM
might be an effective model at low energies, originating from a more fundamental theory.
Some of the unexplained aspects in the SM are the existence of three families and lepton
flavour violation observed in solar [1–5], atmospheric [6–11], and reactor [12–17] neutrino
experiments. These results demonstrate that new physics is required, being interpreted as a
sign of physics beyond the SM.

In principle neutrinos new interactions not described by Standard Model can arise in
extensions of the SM. We assume that the new physics which induces the nonstandard neu-
trino interactions (NSIs) [18–29] arises in some models enlarging the symmetry group where
the SM is embedded. Models with larger symmetries that may allow us to understand the
origin of the families have been proposed [30–34]. In somemodels, it is also possible to under-
stand the number of families from the cancellation of chiral anomalies, necessary to preserve
the renormalizability of the theory [35–37]. This is the case of the SU(3)C ⊗ SU(3)L ⊗U(1)X
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or 331 models, which are an immediate extension of the SM [38–46]. There are a great variety
of such models, which have generated new expectations and possibilities of solving several
problems of the SM.

Our goal is to investigate how NSI with matter can be induced by new physics gener-
ated by 331 models. Through the constraints from neutrino elastic scattering experiments on
this NSI parameters, we can constrain some values expected for 331 model parameters. We
find that the constraints on vacuum expectation values of the model, as well as for the mass
of the new bosons, are in full agreement with the limits found in the literature, which makes
this class of models a viable theory for a higher energy level.

The paper is organized as follows. In Section 2 we briefly review NSI and present
how new interactions can contribute to new matter effects, in addition to the SM electroweak
ones. In Section 3 we introduce a specific 331 model and we give the fermion gauge-boson
couplings. In Section 4 we calculate the interactions involving neutrinos and how these
interactions can be interpreted as new terms beyond SM. Finally, in Section 5 we summarize
our main results.

2. Nonstandard Neutrino Interactions

One convenient way to describe neutrino new interactions with matter in the electro-weak
(EW) broken phase are the so-called nonstandard neutrino interactions (NSIs), which is
a very widespread and convenient way of parameterizing the effects of new physics in
neutrino oscillations [18–29]. NSIs with first generation of leptons and quarks for four-
fermion operators are contained in the following Lagrangian density [18–22, 24, 25, 28]:

LNSI
eff = −2

√
2GF

∑
f,P

ε
fP

αβ

[
fγμPf

][
ναγ

μLνβ
]
, (2.1)

where GF is the Fermi constant, f = u, d, e, and P = L,R with 2L = (1 − γ5), 2R = (1 + γ5),
and the coefficients εfP

αβ
encode the deviation from standard interactions between neutrinos of

flavor α with component P -handed of fermions f , resulting in a neutrinos of flavor β. Then,
the neutrino oscillations in the presence of nonstandard matter effects can be described by an
effective Hamiltonian, parameterized as

H̃ =
1
2E

⎡
⎢⎣U

⎛
⎝0 0 0

0 Δm2
21 0

0 0 Δm2
31

⎞
⎠U† + a

⎛
⎜⎝1 + εee εeμ εeτ

ε∗eμ εμμ εμτ
ε∗eτ ε∗μτ εττ

⎞
⎟⎠

⎤
⎥⎦, (2.2)

where a =
√
2GFnf , E is the neutrino energy and εαβ =

∑
f,P ε

fP

αβ
nf/ne with ne and nf the

electrons and fermions f density in the medium, respectively. These parameters εαβ can be
found in solar [22, 47], atmospheric [20, 48], accelerator [18, 19, 22, 49], and cross-section
[18, 19, 21, 50, 51] neutrino data experiment.
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We focus on cross-section neutrino experiment, where at low energies the standard
differential cross-section for ναe → ναe scattering processes has the well-know form:

dσα
dT

=
2GFme

π

[(
gα1

)2 + (
gα2

)2(1 − T

Eν

)2

− gα1 gα2
meT

E2
ν

]
, (2.3)

whereme is the electron mass, Eν is the incident neutrino energy, and Te is the electron recoil
energy. The quantities gα1 and g

α
2 are related to the SMneutral current couplings of the electron

geL = −1/2 + sin2θW and geR = sin2θW , with sin2θW = 0, 23119. For νμ,τ neutrinos, which take
part only in neutral current interactions, we have gμ,τ1 = geL and g

μ,τ

2 = geR while for electron
neutrinos, which take part in both charge current (CC) and neutral current (NC) interactions,
ge1 = 1 + geL, g

e
2 = geR. In the presence of nonuniversal standard interaction, the cross-section

can be written in the same form of (2.3) but with gα1,2 replaced by the effective nonstandard
couplings g̃α1 = gα1 + εeLαα and g̃α2 = gα2 + εeRαα , leading to the following differential scattering
cross-section [19, 21, 50, 51]

dσα
dT

=
2GFme

π

{(
gα1 + εeLαα

)2
+
(
gα2 + εeRαα

)2
(
1 − Te

Eν

)2

−
(
gα1 + εeLαα

)(
gα2 + εeRαα

)meTe
Eν

}
.

(2.4)

3. 331 Model

The success of the standard model (SM) implies that any new theory should contain the
symmetry SU(3)C ⊗ SU(2)L ⊗U(1)Y (G321) in a low energy limit. Then, it is natural that one
possible modification of SM involves extensions of the representation content in matter and
Higgs sector, leading to extension of symmetry group G321 to groups SU(NC)C ⊗ SU(m)L ⊗
U(1)X with SU(NC)C ⊗ SU(m)L ⊗U(1)X ⊃ G321.

In early 90’s, Pisano and Pleitez [38, 39] and Frampton [40] suggested an extension of
the symmetry group SU(2)L ⊗U(1)Y of electroweak sector to a group SU(3)L ⊗U(1)X , that
is, with NC = m = 3. The 331 models present some interesting features; for instance, they
associate the number of families to internal consistence of the theory, preserving asymptotic
freedom.

In these models, the SM doublets are part of triplets. In quark sector three new quarks
are included to build the triplets, while in lepton sector we can use the right-handed neutrino
to such role [38, 40]. Another option is to invoke three new heavy leptons, charged or not,
depending on the choice of charge operator [41, 42]. In SM the electric charge operator is
constructed as a combination of diagonal generators of SU(2) ⊗ U(1)Y . Then, it is natural
to assume that this operator in SU(3)L ⊗ U(1)X is defined in the same way. The most
general charge operator in SU(3)L ⊗U(1)X is a linear superposition of diagonal generators of
symmetry groups, given by

Q ≡ aT3L + 2√
3
bT8L +XI3, (3.1)
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where the group generator is defined as TiL ≡ λiL/2 with λiL, i = 1, . . . , 8, being the Gell-Mann
matrices for SU(3)L, where the normalization chosen is Tr(λiLλjL) = 2δij and I3 = diag(1, 1, 1)
is the identity matrix, and a and b are two parameters to be determined. Then the charge
operator in (3.1) acts on the representations 3 and 3∗ of SU(3)L having the following form:

Q[3] = diag
[
a

2
+
b

3
+X, −a

2
+
b

3
+X, −2b

3
+X

]
, (3.2)

Q[3∗] = diag
[
−a
2
− b

3
+X, +

a

2
− b

3
+X, +

2b
3

+X
]
, (3.3)

where we have two free parameters to obtain the charge of fermions, a and b (X can be
determined by anomalies cancellation). However, a = 1 is necessary to obtain doublets of
isospins SU(2)⊗U(1)Y correctly incorporated in the model SU(3)L⊗U(1)X [41, 42, 45]. Then
we can vary b to create different models in 331 context, being a signature that differentiates
such models. For b = −3/2, we have the original 331 model [38, 39].

To have local gauge invariance, we have the following covariant derivative: Dμ = ∂μ −
i(g/2)λαWα

μ − igxXBμ and a total of 17 mediator bosons: one field Bμ associated with U(1)X ,
eight fields associated with SU(3)C, and another eight fields associated with SU(3)L, written
in the following form:

Wμ ≡Wα
μλα =

⎛
⎜⎜⎜⎜⎜⎜⎝

W3
μ +

1√
3
W8

μ

√
2W+

μ

√
2KQ1

μ

√
2W−

μ −W3
μ +

1√
3
W8

μ

√
2KQ2

μ

√
2K−Q1

μ

√
2K−Q2

μ − 2√
3
W8

μ

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.4)

where

W±
μ =

1√
2

(
W1μ ∓ iW2μ

)
, K±Q1

μ =
1√
2

(
W4μ ∓ iW5μ

)
, K±Q2

μ =
1√
2

(
W6μ ∓ iW7μ

)
. (3.5)

Therefore, charge operator in (3.2) applied over (3.4) leads to Q1 = 1/2 + b and Q2 =
(−1/2) + b. Then the mediator bosons will have integer electric charge only if b =
± 1/2,± 3/2,± 5/2, . . . ,± (2n+1)/2, n = 0, 1, 2, 3, . . .. A detailed analysis shows that if a and b
are associated with the fundamental representation 3, then −a and −b will be associated with
antisymmetric representation 3∗.

3.1. The Representation Content

There are many representations for the matter content [46], for instance, b = 3/2 [38]. But we
note that if we accommodate the doublets of SU(2)L in the superior components of triplets
and antitriplets of SU(3)L, and if we forbid exotic charges for the new fermions, we obtain
from (3.2) the constrain b = ±1/2 (assuming a = 1). Since a negative value of b can be
associated to the antitriplet, we obtain that b = 1/2 is a necessary and sufficient condition to
exclude exotic electric charges in fermion and boson sector [41].
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The fields left- and right-handed components transform under SU(3)L as triplets and
singlets, respectively. Therefore the theory is chiral and can present anomalies of Alder-Bell-
Jackiw [52, 53]. In a non-abelian theory, in the fermionic representation R, the divergent
anomaly is given by

Aabc ∝
∑
R

Tr
[{
TaL(R), TbL(R)

}
TcL(R) −

{
TaR(R), TbR(R)

}
TcR(R)

]
, (3.6)

where Ta(R) are the matrix representations for each group generator acting on the basis R
with helicity left or right. Therefore, to eliminate the pure anomaly [SU(3)L]

3, we should
have that Aabc ∝ ∑

R′ Tr[{TaL(R′), TbL(R′)}TcL(R′)] = 0. We use the fact that SU(3)L has two
fundamental representations, 3 and 3∗, then its generators should be associated to Ta and
Ta∗, respectively, that is,

∑
R′

Tr
[{
TaL

(R′), TbL(R′)}TcL(R′)] = ∑
R

Tr
[{
TaL(R), TbL(R)

}
TcL(R)

]

−
∑
R∗

Tr
[{
Ta∗L (R∗), Tb∗L (R∗)

}
Tc∗L (R∗)

]
,

(3.7)

but we know that the matrix representations for each group generator satisfies that Ta∗L (R∗) =
−TaL(R) [54]. So, we can see that for the anomalies to be canceled, the number of fields that
transform as triplets (first term in equation above) and antitriplets under SU(3)L has to be the
same; that is, two triplets quark families × 3 (color) = one antitriplet quark family × 3 (color)
+ 3 antitriplet lepton families. This implies that two families of quarks should transform
differently than the third family, as will be discussed in next paragraph.

Usually the third quark family is chosen to transform in a different way than the first
two families. But we will assume that the first family transform differently, to address the fact
that mu < md, mν� < m� while mc � ms and mt � mb. To state this in a clearer way, we
recall that in SM the SU(2)L doublets are (ν�, �)

T , (u, d)T , (c, s)T , (t, b)T , with � = e, μ, τ . We
can see that the first component of leptons doublets and first quark family is lighter than the
second component. But for the second and third quark families, the opposite occurs. Then we
use this idea to justify that first quark family transform as leptons.

3.2. Minimal 331 Model on Scalar Sector

Among the different possibilities of 331models, wewill present a detailed study on aminimal
model on scalar sector without exotic electric charges for quarks and with three new leptons



6 Advances in High Energy Physics

without charged [41] (b = 1/2), where the fermions present the following transformation
structure under SU(3)C ⊗ SU(3)L ⊗U(1)X :

ψ�L =
(
�−, ν�, N0

�

)T
L
∼
(
1, 3∗,−1

3

)
,

ν�R ∼ (1, 1, 0),

�−R ∼ (1, 1,−1),
N0

�R ∼ (1, 1, 0),

Q1L = (d, u,U1)
T
L ∼

(
3, 3∗,

1
3

)
,

uiR ∼
(
3, 1,

2
3

)
,

diR ∼
(
3, 1,−1

3

)
,

U1R ∼
(
3, 1,

2
3

)
,

QaL = (ua, da, Da)
T
L ∼ (3, 3, 0),

DaR ∼
(
3, 1,−1

3

)
,

(3.8)

where i = 1, 2, 3, � = e, μ, τ, a = 2, 3. We note that the leptons multiplets ψ�L consist of three
fields � = {e, μ, τ}, the corresponding neutrinos ν� = {νe, νμ, ντ}, and new neutral leptons
N0

�
= {N0

e ,N
0
μ,N

0
τ}. We can also see that the multiplet associated with the first quark family

Q1L consists of down and up quarks and a new quark with the same electric charge of quark
up (namedU1), while the multiplet associated with second (third) familyQaL consists of SM
quarks of second (third) family and a new quark with the same electric charge of down quark
(named D2 (D3)). The numbers on parenthesis refer to the transformation properties under
SU(3)C, SU(3)L, and U(1)X , respectively. With this choice, the anomalies are cancelled in a
nontrivial way [55], and asymptotic freedom is guaranteed [56–59].

3.2.1. Scalar Sector and the Yukawa Couplings

The scalar fields have to be coupled to fermions by the Yukawa terms, invariants under
SU(3)c ⊗ SU(3)L ⊗U(1)X . In lepton sector, these couplings can be written as

ψ�L�R ∼
(
1, 3,

1
3

)
⊗ (1, 1,−1) =

(
1, 3,−2

3

)
︸ ︷︷ ︸

ρ∗

,

ψ�Lν�R ∼
(
1, 3,

1
3

)
⊗ (1, 1, 0) =

(
1, 3,

1
3

)
︸ ︷︷ ︸

η

,

ψ�LN
0
�R ∼

(
1, 3,

1
3

)
⊗ (1, 1, 0) =

(
1, 3,

1
3

)
︸ ︷︷ ︸

χ

,

(3.9)
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and writing only three terms in quarks sector, for example,

Q1LuiR =
(
3∗, 3,−1

3

)
⊗
(
3, 1,

2
3

)
=
(
1, 3,

1
3

)
︸ ︷︷ ︸

χ

⊕
(
8, 3,

1
3

)
︸ ︷︷ ︸
Color Higgs

,

Q1LdiR =
(
3∗, 3,−1

3

)
⊗
(
3, 1,−1

3

)
=
(
1, 3,−2

3

)
︸ ︷︷ ︸

ρ∗

⊕ . . . ,

QaLdiR = (3∗, 3∗, 0) ⊗
(
3, 1,−1

3

)
=
(
1, 3∗,−1

3

)
︸ ︷︷ ︸

η∗

⊕ . . . , . . . .

(3.10)

As usual in these class ofmodels, we impose colorless Higgs (i.e., selecting only themultiplets
that transform as singlets under SU(3)C). We note that we need only three Higgs multiplets,
ρ, χ, and η, to couple the different fermionic fields and generate mass through spontaneous
symmetry breaking. In (3.9) and (3.10)we note that quantum numbers of triplets χ and η are
the same, which leads us to consider models with two or three Higgs triplets. We will adopt
the first option, two Higgs triplets, due to the simpler scalar sector in comparison with the
scenario with three triplets [41–44].

3.3. Model with Two Higgs Triplets

For the models with two Higgs triplets, we obtain (note that in this model we assumed Φ1 =
χ, η e Φ2 = ρ)

Φ1 =
(
φ−
1 , φ

′0
1 , φ

0
1

)T ∼
(
1, 3∗,−1

3

)
,

Φ2 =
(
φ0
2, φ

+
2 , φ

′+
2

)T ∼
(
1, 3∗,

2
3

)
.

(3.11)

Assuming the following choice to the Higgs triplets vacuum expectation value (VEV) [41]
〈Φ1〉0 = (0, ϑ1, V )T and 〈Φ2〉0 = (ϑ2, 0, 0)

T , we associate V with the mass of the new fermions,
which lead us to assume V � ϑ1, ϑ2. We expand the scalar VEVs in the following way:

φ0
1 = V +

H0
φ1

+ iA0
φ1√

2
, φ

′0
1 = ϑ1 +

H
′0
φ1

+ iA
′0
φ1√

2
, φ0

2 = ϑ2 +
H0

φ2
+ iA0

φ2√
2

. (3.12)

The real (imaginary) partHφi(Aφi) is usually called CP-even (CP-odd) scalar field. The most
general potential can be written as

V (Φ1,Φ2) = μ2
1Φ

†
1Φ1 + μ2

2Φ
†
2Φ2 + λ1

(
Φ†

1Φ1

)2
+ λ2

(
Φ†

2Φ2

)2

+ λ3
(
Φ†

1Φ1

)(
Φ†

2Φ2

)
+ λ4

(
Φ†

1Φ2

)(
Φ†

2Φ1

)
.

(3.13)
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Demanding that in the displaced potential V (Φ1,Φ2) the linear terms on the field should be
absent, we have, in tree-level approximation, the following constraints:

μ2
1 + 2λ1

(
ϑ2
1 + V

2
)
+ λ3ϑ2

2 = 0,

μ2
2 + λ3

(
ϑ2
1 + V

2
)
+ 2λ2ϑ2

2 = 0.
(3.14)

The analysis of such equations shows that they are related to a minimum in scalar potential
with the value Vmin = −ϑ4

2λ2 − (ϑ2
1 + V 2)[(ϑ2

1 + V 2)λ1 + ϑ2
2λ3]. Then, replacing (3.12) and

(3.14) in (3.13), we can calculate the mass matrix in (H0
φ1
,H0

φ2
,H

′0
φ1
) basis through the relation

M2
ij = 2(∂2V (Φ1,Φ2)/∂H0

Φi
∂H0

Φj
), obtaining

M2
H = 2

⎛
⎝ 2λ1V 2 λ3ϑ2V 2λ1ϑ1V

λ3ϑ2V 2λ2ϑ2
2 λ3ϑ1ϑ2

2λ1ϑ1V λ3ϑ1ϑ2 2λ1ϑ2
1

⎞
⎠. (3.15)

Since (3.15) has vanishing determinant, we have one Goldstone boson G1 and two massive
neutral scalar fieldsH1 andH2 with masses (note that if λ23 = 4λ1λ2, we obtain two Goldstone
bosons, G1 and H2, and a massive scalar field H1 with mass M2

H1
= 4[λ1(ϑ2

1 + V
2) + λ2ϑ2

2],
where λ1λ2 > 0; then imposingM2

H1
> 0 leads to λ1 > 0 and λ2 > 0)

M2
H1,H2

= 2λ1
(
ϑ2
1 + V

2
)
+ 2λ2ϑ2

2

± 2
√[

λ1
(
ϑ2
1 + V

2
)
+ λ2ϑ2

2

]2 + ϑ2
2

(
ϑ2
1 + V

2
)(
λ23 − 4λ1λ2

)
,

(3.16)

where real values for λ’s produce positive mass to neutral scalar fields only if λ1 > 0 and
4λ1λ2 > λ23, which implies that λ2 > 0. A detailed analysis shows that when V (Φ1,Φ2) in
(3.13) is expanded around the most general vacuum, given by (3.12) and using constrains
in (3.14), we do not obtain pseudoscalar fields A0

Φi
. This allows us do identify three more

Goldstone bosons, G2 = A0
Φ1
, G3 = A0

Φ2
, and G4 = A

′0
Φ1
. For the mass spectrum in charged

scalar sector on (φ−
1 , φ

+
2 , φ

′+
2 ) basis, the mass matrix will be given by

M2
+ = 2λ4

⎛
⎝ ϑ2

2 ϑ1ϑ2 ϑ2V
ϑ1ϑ2 ϑ2

1 ϑ1V
ϑ2V ϑ1V V 2

⎞
⎠, (3.17)

with two eigenvalues equal to zero, equivalent to four Goldstone bosons G±
5 , G

±
6 and two

physical charged scalar fields with large masses given by λ4(ϑ2
1 +ϑ

2
2 +V

2), which leads to the
constrain λ4 > 0.

This analysis shows that, after symmetry breaking, the original twelve degrees of
freedom in scalar sector leads to eight Goldstone bosons (four electrically neutral and four
electrically charged), four physical scalar fields, two neutral (one of which being the SM
Higgs scalar), and two charged. Eight Goldstone bosons should be absorbed by eight gauge
fields as we will see in next section.
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3.3.1. Gauge Sector with Two Higgs Triplets

The gauge bosons interaction with matter in electroweak sector appears with the covariant
derivative for a matter field ϕ as

D
ϕ
μ = ∂μ − i

2
gWa

μλaL − igXXϕBμ = ∂μ − i

2
gMϕ

μ, (3.18)

where λaL, a = 1, . . . , 8 are Gell-Mann matrices of SU(3)L algebra and Xϕ is the charge of
abelian factor U(1)X of the multiplet ϕ in which Dμ acts. The matrix Mϕ

μ contains the gauge
bosons with electric charges q, defined by the generic charge operator in (3.1). For b = 1/2
the matrix Mϕ

μ will have the following form:

Mϕ
μ =

⎛
⎜⎜⎜⎜⎜⎜⎝

W3μ +
W8μ√

3
+ 2tXϕBμ

√
2W+

μ

√
2K+

μ

√
2W−

μ −W3μ +
W8μ√

3
+ 2tXϕBμ

√
2K0

μ

√
2K−

μ

√
2K

0
μ

−2W8μ√
3

+ 2tXϕBμ

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.19)

where t = gx/g and nonphysical gauge bosons on nondiagonal entries, W±
μ and K±

μ , are
defined in (3.5) with Q1 = 1, and

K0
μ =

1√
2

(
W6μ − iW7μ

)
, K

0
μ =

1√
2

(
W6μ + iW7μ

)
. (3.20)

Then for the 331 model we are considering (b = 1/2), we have two neutral gauge bosons, K0
μ

and K
0
μ, and four charged gauge bosons, W±

μ and K±
μ . The three physical neutral eigenstates

will be a linear combination of W3μ, W8μ, and Bμ. After breaking the symmetry with 〈Φi〉,
i = 1, 2, and using covariant derivative Dμ = ∂μ − (i/2)gMϕ

μ for the triplets Φi, we obtain the
following masses for the charged physical fields:

M2
W ′ =

1
2
g2ϑ2

2, M2
K′ =

1
2
g2
(
ϑ2
1 + ϑ

2
2 + V

2
)
, (3.21)

and the following physical eigenstates:

W
′±
μ =

1√
ϑ2
1 + V

2

(
−ϑ1K

±
μ + VW

±
μ

)
, K

′±
μ =

1√
ϑ2
1 + V

2

(
VK±

μ + ϑ1W
±
μ

)
. (3.22)
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The neutral sector in approximation (ϑi/V )n ≈ 0 for n > 2 leads to the following masses for
the neutral physical fields:

M2
photon = 0,

M2
K0
R

=
1
2
g2
(
V 2 + ϑ2

1

)
,

M2
Z ≈ 1

2
g2ϑ2

2

(
3g2 + 4g2

x

3g2 + g2
x

)
,

M2
Z′ ≈ 2

9

(
V 2 + ϑ2

1

)(
3g2 + g2

x

)
+
ϑ2
2

(
3g2 + 4g2

x

)2
18
(
3g2 + g2

x

) ,

M2
K0
I

=
1
2
g2
(
V 2 + ϑ2

1

)
.

(3.23)

We can see from (3.21) and (3.23) that we have one nonmassive boson, which we associate
with the photon, and four massive neutral fields, where the mass of one of them is
proportional to ϑ2 while the other three have masses proportional to V (new energy scale).
Therefore we can associate the field Z with SM Zμ and the fields Z′, K0

I , and K
′0
R with three

new neutral bosons. We note that (3.23) contains two same of the eigenvalues; thus, the
K0
I and K

′0
R components have the same mass, and this conclusion contradicts the previous

analysis in [41], but this is in agreement with [43, 44]. We also have four massive charged
fields, where two of them have masses proportional to ϑ2. Thus we can associate the fields
W

′±
μ to the SM fieldsW±

μ , while the fields K
′±
μ are new bosons. The eigenstates Bμ, W3μ, W8μ,

and Ko
Rμ can be related to the physical eigenstates Aμ, K

′0
Rμ, Z

0
μ, and Z

′0
μ by

⎛
⎜⎜⎜⎝

Bμ
W3μ

W8μ

Ko
Rμ

⎞
⎟⎟⎟⎠ = M−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aμ

K
′0
Rμ

Z0
μ

Z
′0
μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.24)

Assuming (ϑi/V )n ∼ 0 for n > 2, we obtain

M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
t
SW 0

1
t
T2
WCW + β1 − 1√

3
TW + β2

SW
−ϑ1

V
CW + β3 β4

1√
3
SW

√
3ϑ1

V
− 1√

3
TWSW + β5 −1

t
TW + β6

0 1 − β7 ϑ1

V
C−1
W

√
3ϑ1

tV
TW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.25)
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where, again, t = gx/g and

SW =

√
3gx√

3g2 + 4g2
x

, CW =
√
1 − S2

W, TW =
SW
CW

,

β1 = − ϑ2
2

4tV 2
T2
WC

−3
W , β2 = −

√
3ϑ2

2

4t2V 2
T3
WC

−2
W,

β3 = − ϑ2
1

2V 2
C−1
W, β4 = −

√
3
(
2C2

Wϑ
2
1 + ϑ

2
2

)
4tV 2

TWC
−2
W,

β5 =
6C4

Wϑ
2
1 −

(
3 − 4S2

W

)
ϑ2
2

4
√
3V 2C5

W

, β6 =

(
6C4

Wϑ
2
1 + S

2
Wϑ

2
2

)
4tV 2C4

W

TW,

β7 = −2ϑ
2
2

V 2
.

(3.26)

We note that all βi are of order O((ϑi/V )2). So, assuming ϑi ∼ O(10−1) TeV, for a new energy
scale of order V ∼ 10 TeV, all the βi’s are negligible.

3.3.2. Charged and Neutral Currents

The interaction between gauge bosons and fermions in flavor basis is given by the following
Lagrangian density:

Lf = Riγμ
(
∂μ + igxBμXR

)
R + Liγμ

(
∂μ + igxBμXL +

ig

2
λaW

a
μ

)
L, (3.27)

where R represents any right-handed singlet and L any left-handed triplet. We can write
Lf = Llep +LQ1 +LQa , and in lepton sector, we obtain

Llep = Lkin
lep +LCC

lep +LNC
lep , (3.28)

where

Lkin
lep = Riγμ∂μR + Liγμ∂μL, (3.29)

LCC
lep = − g√

2
�Lγ

μν�LW
+
μ − g√

2
�Lγ

μN0
�LK

+
μ + h.c., (3.30)

LNC
lep =

gx
3

[
�Lγ

μ� + ν�Lγμν�L +N0
�Lγ

μN0
�L

]
Bμ + gx�Rγμ�RBμ

− g

2
√
3

[
�Lγ

μ�L + ν�Lγμν�L − 2tN0
�L
γμN0

�L

]
W8μ −

g√
2
ν�Lγ

μN0
�LK

0μ

− g

2

[
�Lγ

μ�L − ν�Lγμν�L
]
W3μ −

g√
2
N0

�Lγ
μν�LK

0
μ.

(3.31)
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In quark sector we have that for the first family triplet X = 1/3, and for the singlets d, u, and
U1, we have X = −1/3, 2/3 and 2/3, respectively. Then we have

Lkin
Q1

= Q1Riγ
μ∂μQ1R +Q1Liγ

μ∂μQ1L,

LCC
Q1

= − g√
2
dLγ

μuLW
+
μ − g√

2
dLγ

μU1LK
+
μ + h.c.,

(3.32)

LNC
Q1

=
gx
3

(
dRγ

μdR − 2uRγμuR − 2U1Rγ
μU1R

)
Bμ +

g

2
uLγ

μuLW3μ

− gx
3

(
dLγ

μdL + uLγμuL +U1Lγ
μU1L

)
Bμ −

g

2
dLγ

μdLW3μ −
g√
2
U1Lγ

μuLK
0
μ

− g

2
√
3

(
dLγ

μdL + uLγμuL − 2U1Lγ
μU1L

)
W8μ −

g√
2
uLγ

μU1LK
0
μ.

(3.33)

For second and third families we know that X = 0 for the triplets and X = 2/3, −1/3
and −1/3, for the singlets u2,3, d2,3, D2,3, respectively, where u2 = c, u3 = t, d2 = s, d3 = b.
Then we obtain for a = 2, 3

Lkin
Qa

= QaRiγ
μ∂μQaR +QaLiγ

μ∂μQaL,

LCC
Qa

= − g√
2
uaLγ

μdaLW
+
μ − g√

2
uaLγ

μDaLK
+
μ + h.c.,

LNC
Qa

=
gx
3

[
−2uaRγμuaR + daRγμdaR +DaRγ

μDaR

]
Bμ

− g

2
√
3

[
uaLγ

μuaL + daLγμdaL − 4DaLγ
μDaL

]
W8μ −

g√
2
daLγ

μDaLK
0
μ

− g

2

[
uaLγ

μuaL − daLγμdaL
]
W3μ −

g√
2
DaLγ

μdaLK
0
μ.

(3.34)

4. Neutrinos Interactions with Matter in 331 Model

It is well known that neutrino oscillation phenomenon in a material medium, as the sun,
earth, or in a supernova, can be quite different from the oscillation that occurs in vacuum,
since the interactions in the mediummodify the dispersion relations of the particles traveling
through it [60]. From the macroscopic point of view, the modifications of neutrino dispersion
relations can be represented in terms of a refractive index or an effective potential. And
according to [60, 61], the effective potential can be calculated from the amplitudes of coherent
elastic scattering in relativistic limit.

In the present 331 model, the coherent scattering will be induced by neutral currents,
NC, mediated by bosons Z

′0
μ , Z

0
μ, andK

′0
Rμ and by charged currents, CC, mediated by bosons

W
′±
μ andK

′±
μ . Following [61], we calculate in next sections the neutrino effective potentials in

coherent scattering.
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4.1. Charged Currents

The first term of (3.30) shows that the interaction of charged leptons with neutrinos occurs
only through the gauge bosons W±

μ ; then, by (3.22) we obtain that the interaction through
charged bosons is given by

− g√
2
�Lγ

μν�LW
+
μ = − Vg

√
2
√
ϑ2
1 + V

2
�Lγ

μν�LW
′±
μ − gϑ1

√
2
√
ϑ2
1 + V

2
�Lγ

μν�LK
′±
μ . (4.1)

The amplitude for the neutrino elastic scattering with charged leptons in tree level through
CC is given by (note from (4.1) that only left-handed leptons interact with neutrinos, as in
SM)

Lcc
int = −

⎛
⎜⎝− Vg

√
2
√
ϑ2
1 + V

2

⎞
⎟⎠

2

�L
(
p1
)
γμν�L

(
p2
) −igμλ(
p2 − p1

)2 −M2
W

ν�L
(
p3
)
γλ�L

(
p4
)

−

⎛
⎜⎝− gϑ1

√
2
√
ϑ2
1 + V

2

⎞
⎟⎠

2

�L
(
p1
)
γμν�L

(
p2
) −igμλ(
p2 − p1

)2 −M2
K

ν�L
(
p3
)
γλ�L

(
p4
)
.

(4.2)

For low energiesM2
W ′ , M

2
K′ � (p2 − p1)2, the effective Lagrangian is given by

Lcc
eff ≈ − g2

2
(
ϑ2
1 + V

2
)
(

V 2

M2
W ′

+
ϑ2
1

M2
K′

)[
�L

(
p1
)
γμ�L

(
p4
)][

ν�L
(
p3
)
γμν�L

(
p2
)]
, (4.3)

where we used the Fierz transformation [62] to go from (4.2) to (4.3). Replacing (3.21) in
(4.3), we obtain

−Lcc
eff ≈

[
1
ϑ2
2

− ϑ2
1

V 2ϑ2
2

+

(
ϑ2
1

V 4

)
K′

+O
(

1
V 4

)]〈
�γμ

(
1 − γ5

)
2

�

〉{
ν�L

(
p
)
γμν�L

(
p
)}
, (4.4)

where we used ( )K′ to denote the term that appears from the new charged boson. We can
see that for a new energy scale V � ϑ1 the term that comes from the new boson does not
contribute to the process, as expected, since the new charged boson K

′±
μ has a mass of the

order of the new energy scale of the theory (see (3.21)).
Now, since usual matter has only leptons from first family, we will restrain our

calculations to the neutrino interactions with first family standard model particles. The term
〈 〉 in (4.4) can be calculated following [61], where we have the correspondence 〈eγμγ5e〉 ∼
spin, 〈eγie〉 ∼ velocity, and 〈eγ0e〉 ∼ ne, where ne is the electronic density. Assuming
nonpolarized medium and vanishing average velocity, we obtain that (4.4) can be written
as

Lcc
eff ≈ −

[
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

+

(
ϑ2
1

2V 4

)
K′

+O
(
V −4

)]
neνeLγ

0νeL. (4.5)
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The modifications on electronic neutrino dispersion relations can be represented by the
following effective potential:

V e
CC ≈ 1

2ϑ2
2

ne −
ϑ2
1

2V 2ϑ2
2

ne +

(
ϑ2
1

2V 4

)
K′
ne +O

(
V −4

)
. (4.6)

Disregarding the term ( )K′ since we are assuming V � ϑi, and remembering that in
Section 3.3.1 we associated bosonW ′ with SM bosonW , we can easily associate

√
2GF ≈ 1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

. (4.7)

We note that (4.7) gives limits for the VEV of one of the Higgs triplets. Under assumption
ϑ1, ϑ2 � V , we can write GF ≈ (1/2

√
2ϑ2

2)(1 − ϑ2
1/V

2), from which we can see that the
maximum value of ϑ2

2 is achieved when we consider (ϑ2
1/V

2) → 0, in which replacing GF =
1.16637(1) × 10−5 Gev−2 leads to

ϑ2 � 174.105GeV. (4.8)

4.2. Neutral Current

The Lagrangian for neutrino elastic scattering with fermions f = e, u, d through NC is given
by

−LNC
int = f

(
p1
)
γμ
(
g
f

z′L + g
f

z′R

)
f
(
p2
) −igμλ(
p2 − p1

)2 −M2
z′

ν�L
(
p3
)
γλgνz′ν�L

(
p4
)

+ f
(
p1
)
γμ
(
g
f

zL + g
f

zR

)
f
(
p2
) −igμλ(
p2 − p1

)2 −M2
z

ν�L
(
p3
)
γλgνzν�L

(
p4
)

+ f
(
p1
)
γμ
(
g
f

k′L + g
f

k′R

)
f
(
p2
) −igμλ(
p2 − p1

)2 −M2
k′

ν�L
(
p3
)
γλgνk′ν�L

(
p2
)
.

(4.9)

For low energies, we have that M2
k′ ,M

2
z,M

2
z′ � (p2 − p1)2 with p3 = p4 = p and (4.9), and

following the same procedure of Section 4.1, we obtain

LNC
eff ≈ −

∑
P=L,R

(
g
f

z′P
Gνz′

M2
z′
+ gfzP

Gνz

M2
z

+ gf
k′P
Gνk′

M2
k′

)
1
2
nfν�Lγ0ν�L. (4.10)



Advances in High Energy Physics 15

4.2.1. Leptons Sector

From (3.31) and (3.24), we obtain that for the known neutral leptons

gx
3
ν�Lγ

μν�LBμ = ν�Lγμν�L
[
−g
3
SWAμ +

(
g

3
T2
WCW +

gx
3
β1

)
Z0
μ

−gx
3

(
1√
3
TW − β2

)
Z

′0
μ

]
,

(4.11)

g

2
ν�Lγ

μν�LW
μ

3 = ν�Lγμν�L

[
g

2
SWAμ −

gϑ1

2V
K

′0
Rμ +

g
(
CW + β3

)
2

Z0
μ +

gβ4
2
Z

′0
μ

]
, (4.12)

−g
2
√
3
ν�Lγ

μν�LW
μ

8 = ν�Lγμν�L

[
−g
6
SWAμ −

gϑ1

2V
K

′0
Rμ +

(
g

6
S2
W

CW
− gβ5

2
√
3

)
Z0
μ

+
g

2
√
3

(
1
t
TW − β6

)
Z

′0
μ

]
.

(4.13)

By (4.11), (4.12), and (4.13), we obtain that vertex interactions with neutrinos can be written
as

ν�Lγ
μν�LAμ ∝ 0, (4.14)

ν�Lγ
μν�LK

′0
Rμ ∝ −gϑ1

V
≡ GνK′ , (4.15)

ν�Lγ
μν�LZ

0
μ ∝ 1

2
gC−1

W + η1 ≡ GνZ, (4.16)

ν�Lγ
μν�LZ

′0
μ ∝

(
3g − 2gxt

6
√
3t

)
TW + η2 ≡ GνZ′ , (4.17)

where

η1 =
−4gtC2

Wϑ
2
1 + gx

(
1 − 2S2

W

)
ϑ2
2

8tV 2C5
W

,

η2 =
gt
(
1 − 4C2

W

)
ϑ2
1

2
√
3V 2CWSW

−
(−gt3 + 2gt3C2

W + 8gt3C4
W + 6gxS4

W

)
ϑ2
2

24
√
3t2V 2C5

WSW
.

(4.18)
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We note from (4.14) that neutrinos do not interact electrically, as expected. For charged
leptons, from (3.31) and (3.24), we obtain

gx
3
�Lγ

μ�LBμ = �Lγμ�L
[−g
3
SWAμ +

(
g

3
T2
WCW +

gx
3
β1

)
Z0
μ

−gx
3

(
1√
3
TW − β2

)
Z

′0
μ

]
,

−g
2
�Lγ

μ�LW
μ

3 = �Lγμ�L

[
−g
2
SWAμ +

gϑ1

2V
K

′0
Rμ −

g
(
CW + β3

)
2

Z0
μ −

gβ4
2
Z

′0
μ

]
,

−g
2
√
3
�Lγ

μ�LW
μ

8 = �Lγμ�L

[
−g
6
SWAμ −

gϑ1

2V
K

′0
Rμ +

(
g

6
S2
W

CW
− gβ5

2
√
3

)
Z0
μ

+
g

2
√
3

(
1
t
TW − β6

)
Z

′0
μ

]
,

gx�Rγ
μ�RBμ = �Rγμ�R

[
− gSWAμ +

(
gT2

WCW + gxβ1
)
Z0
μ

−gx
(

1√
3
TW − β2

)
Z

′0
μ

]
,

(4.19)

and therefore

�γμ�Aμ ∝ −gSW, (4.20)

�Lγ
μ�LK

′0
Rμ ∝ 0 ≡ g�k′L = g�k′R, (4.21)

�Lγ
μ�LZ

0
μ ∝ 1

2
g
(
−1 + T2

W

)
CW + η3 ≡ g�zL,

�Rγ
μ�RZ

0
μ ∝ gT2

WCW + η5 ≡ g�zR,

�Lγ
μ�LZ

′0
μ ∝ 1

6
√
3t

(
3g − 2tgx

)
TW + η4 ≡ g�z′L,

(4.22)

�Rγ
μ�RZ

′0
μ ∝ − gx√

3
TW + η6 ≡ g�z′R, (4.23)

where

η3 =

(−1 + 2C2
W

)
gxϑ

2
2

8tV 2C5
W

,

η4 =

(
gt3

(
1 + 2C2

W

)2 − 12gt3S2
WC

2
W − 6gxS4

W

)
24
√
3t2V 2C5

WSW
,

η5 = − gxϑ
2
2

4tV 2C3
W

T2
W,

η6 = −
√
3gxϑ2

2

4t2V 2C2
W

T3
W,

(4.24)



Advances in High Energy Physics 17

and, again, t = gx/g. We note that by (4.20) we can make the association gSW = |e|. Then for
f = e, (4.15)–(4.17) and (4.21)–(4.23) lead to

LNC
eff−e ≈ −

∑
P=L,R

1
2

(
gez′P

Gνz′

M2
z′
+ gezP

Gνz

M2
z

+ gek′P
Gνk′

M2
k′

)
neν�Lγ0ν�L

≈ −
{[

T4
W

144t2g2
xV 2

(
3g − 2tgx

)2 + T2
W

8V 2

(
1 − T2

W

)

+
1
2

(
1

2ϑ2
2

− ϑ2
1

2V2ϑ2
2

)(
1 − 2C2

W

)]
L

+

[
T4
W

(
2tgx − 3g

)
24tgxV 2

− T4
W

4V 2
+

(
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

)
S2
W

]
R

}
neν�Lγ0ν�L.

(4.25)

Since intermediate neutral bosons in (4.9) do not distinguish between different lepton flavors,
the interaction through NC with electron is described by the following effective potential:

V e
NC = V μ

NC = V τ
NC = V �

NC,

= V �L
NC + V �R

NC,
(4.26)

where

V �L
NC =

[
T4
W

144t2g2
xV 2

(
3g − 2tgx

)2 + T2
W

8V 2

(
1 − T2

W

)

+
1
2

(
1

2ϑ2
2

− ϑ2
1

V 2ϑ2
2

)(
1 − 2C2

W

)]
ne,

V�R
NC =

[
T4
W

(
2tgx − 3g

)
24tgxV 2

− T4
W

4V 2
+

(
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

)
S2
W

]
ne,

(4.27)

and index � refers to neutrino flavor. We note that the potential through CC comes from
interactions of electron neutrinos with left-handed electrons, while the effective potential
through NC comes from left- and right-handed electrons.

Considering both NC and CC, we can write the effective potential felt by neutrinos as
V � = V �L + V �R, where

V �L =

(
1

2ϑ2
2

− ϑ2
1

2V 2ϑ2
2

)
δe�ne + V �L

NC,

V �R = V �R
NC.

(4.28)

Comparing with SM expression for such potential:

V�
NC = −

√
2GF

(
1
2
− 2S2

W

)
ne, Ve

CC =
√
2GFne, (4.29)
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we can find that

V �L = V �L +

[
T4
W

144t2g2
xV 2

(
3g − 2tgx

)2 + T2
W

8V 2

(
1 − T2

W

)]
ne,

V �R = V �R
NC +

[
T4
W

(
2tgx − 3g

)
24tgxV 2

− T4
W

4V 2

]
ne,

(4.30)

where we adopt in what follow, the convention that V denotes SM-like part of the model;
thus, the new terms beyond SM [ ] can be associated with the parameters ε′s in NSI [63]. So,
in the approximation (ϑi/V )n ≈ 0, for n > 2, we obtain

εeL�� ≈
(
1 − 2S2

W

)
ϑ2
2

8V 2C4
W

, (4.31)

εeR�� ≈ −S
2
W

(
1 + 2S2

W

)
ϑ2
2

4V 2C4
W

. (4.32)

We note that on limit V → ∞, we recover SM. The NSIs are a subleading interaction, as
expected. By (4.31) and (4.32), we obtain εeR

��
≈ −2S2

Wε
eL
��

− (ϑ2
2/V

2)T4
W .

4.2.2. Quarks Sector

For the quarks of the first family, the Lagrangian density in (3.33) describes the interactions
with gauge bosons W3μ, W8μ, and Bμ; then, by (3.24) and (3.25) we obtain the following
interactions for up quarks:

−gx
3
uLγ

μuLBμ = uLγμuL
[
g

3
SWAμ −

gx
3

(
1
t
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)
Z0
μ

+
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(
1√
3
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)
Z

′0
μ

]
,

g

2
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μ
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gϑ1
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′0
Rμ +

g
(
CW + β3

)
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μ +
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]
,
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+
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2
√
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(
1√
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)
Z0
μ +
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2
√
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(
1
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]
,
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3
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μuRBμ = uRγμuR
[
2g
3
SWAμ −

2gx
3

(
1
t
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)
Z0
μ

+
2gx
3

(
1
t
TW − β6

)
Z
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μ

]
.

(4.33)
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The couplings quark-quark-boson for the first family are given by

uLγ
μuLAμ ∝ 2

3
gSW, (4.34)

uRγ
μuRAμ ∝ 2

3
gSW, (4.35)

uLγ
μuLK

′0
Rμ ∝ −gϑ1

V
≡ guk′L,

uRγ
μuRK

′0
Rμ ∝ 0 ≡ gu

k′R,

uLγ
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0
μ ∝ 1

6
g
(
3 − T2

W

)
CW + ζ1 ≡ guzL,

uRγ
μuRZ

0
μ ∝ −2

3
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WCW + ζ3 ≡ guzR,
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μ ∝ 1

6
√
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(
3g + 2tgx
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3
√
3
gxTW + ζ4 ≡ guz′R,

(4.36)

where

ζ1 =
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Wϑ
2
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(
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W
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√
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√
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(4.37)

We note that (4.34) and (4.35) reflect the fact that quarks interact electrically through photons
with coupling constant Qf sin θW , as in SM. The effective Lagrangian at low energies for
neutrino interaction with quarks up through neutral currents are given by (4.10) with f = u:

LNC
quark, u ≈ −1

2
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)
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]
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}
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(4.38)

where nu is the up quarks average density.
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SM predictions, using result of (4.7), can be written as

Vu
NC = VuL

NC + VuR
NC =

(
1

2ϑ2
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− ϑ2
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2V 2ϑ2
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)(
1
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nu, (4.39)

where
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NC =
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(4.40)

By comparison, we obtain

V uL
NC ≈ V uL

NC +
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(4.41)

Then we can say that εu
��

= εuL
��

+ εuR
��
, where
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(4.42)

Again, we obtain universal NSI, as for the electrons. We note that εuL�� = −(ϑ2
1/2V

2) +
(3ϑ2

2/8V
2C4

W) − 2εuR�� and in the limit V → ∞we recover SM.
For down quarks by (3.33) and (3.24), we obtain that
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,
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gx
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(4.44)
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(4.45)

Then by (4.10) for f = d, we obtain the following effective Lagrangian for NC:
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(4.46)
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and the effective potential felt by neutrinos when crossing a medium composed by a density
nd of down quarks is V d

NC = V dL
NC + V dR

NC, where
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Then we can easily see that in SM the NC effective potential for neutrinos in a d-quark
medium, using result of (4.7), will be given by
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(4.49)
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Then from (4.47)–(4.50), we obtain
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(4.51)

and neglecting terms of order (ϑi/V )n, for n > 2, we obtain that εd
��

= εdL
��

+ εdR
��
, where

εdL�� ≈ ϑ2
2
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, (4.52)
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2
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12V 2C4
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. (4.53)

Then we obtain εdL
��

≈ (ϑ2
2/8V

2 C4
W) + εdR

��
. Note that again in limit V → ∞ we recover the

SM.

5. Results

In last sections we saw that in 331 model we chose, all NSI parameters are universal and
diagonal and will not affect oscillation experiments. However, measurements of cross-section
will be sensitive to such parameters, through modifications on gαi [51]. We will now compare
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Table 1: Values for NSI in 331 model and experimental limits taken of the strongest constraints on these
parameters are given in [18, 19, 21, 22].

331 Model Exp. 90% C.L.
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εdR
��

≈ − S2
Wϑ

2
2

12V 2C4
W

−0.033
(
ϑ2
2

V 2

)
−0.008 < εdRμμ < 0.015

|εdRττ | < 6

our results with those obtained in cross-section measurements. We will assume sin2θW =
0.23149(13).

In Table 1 we can see that constrains in εeP
��

lead to V 2 > 4.7ϑ2
2., while the constrains in

εuR
��

lead to V 2 > 21.7ϑ2
2, and the constrains in εdP

��
(|εdLμμ | < 0.003) lead to V 2 > 60ϑ2

2. If ϑ2 has its
maximum value of 174.105 GeV, then V � 1.3TeV.We note also that by |εuLμμ | < 0.003 we obtain
|ϑ2

2−ϑ2
1| < 0.006V 2; then, for V ∼ 1.3TeV and ϑ2 = 174GeV, we obtain 142GeV< ϑ1 < 201GeV.

We therefore cannot predict any hierarchy to the VEV’s ϑ1 and ϑ2. Based on those results, we
obtain the following inferior limits for the new gauge bosons masses:

MKI =MZ′ > 610GeV,

MK′ > 613GeV,

MKR > 740GeV.

(5.1)

6. Conclusion

We presented in this work a procedure to show that models with extended gauge symmetries
SU(3)C × SU(3)L × U(1)X can lead to neutrino nonstandard interactions, respecting the
Standard Model Gauge symmetry SU(3)C × SU(2)L ×U(1)Y , without spoiling the available
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experimental data and reproducing the known phenomenology at low energies. We also have
shown that with an assumption about a mass hierarchy for the Higgs triplets VEV’s we could
qualitatively address the mass hierarchy problem in standard model. Finally we obtained
limits for the triplets VEV’s based on limits for NSI in cross-section experiments.

We believe that the class of model presented here is an interesting theoretical
possibility to look for new physics beyond SM. We restrained our work to a simple scenario,
but flavor-changing interactions can be naturally introduced in the model, leading to new
constraints on NSI.
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There are different models which are based on the gauge symmetry SU(3)C ⊗ SU(3)L ⊗ U(1)X
(331), and some of them include exotic particles, and others are constructed without any exotic
charges assigned to the fermionic spectrum. Each model build-up on 331 symmetry has its own
interesting properties according to the representations of the gauge group used for the fermionic
spectrum, that is, the main reason to explore and identify the possible sources of flavor changing
neutral currents and lepton flavor violation at tree level.

1. Introduction

The standard model (SM) [1–3] has been successful to describe leptons, quarks, and their
interactions. But in any case, the SM leaves open questions concerning to the electroweak
symmetry breaking sector of the model, as well as the particle content of the model: why
there are three generations of quarks and leptons? These questions, among others, are the
motivation to consider the SM as one important attempt to understand the elementary
particles of nature and their interactions but not to consider the SM as the ultimate theory of
nature. A common alternative to look for new physics beyond the SM is enlarging the gauge
symmetry group, one of these alternatives is the gauge symmetry SU(3)C × SU(3)L ×U(1)X
(331) [4–11]. There are many motivations for this new gauge symmetry group, one of them
is that there are some of models are based on 331 symmetry that explain why the family
number must be three. This result is obtained from the anomaly-free condition which is
satisfied when equal number of triplets and antitriplets (taking into account the SU(3)C) are
present and requiring the sum of all fermion charges to vanish, but even that each generation
is anomalous and the anomaly cancellation is given for three generations or multiply of three.
Other motivation is concerned with the feature that sin2θW in this model should be less than
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1/4, it is related to the ratio of the coupling constants g ′ and g ofU(1)X and SU(3)L,

(
g ′

g

)2

=
sin2θW

1 − 4 sin2θW
, (1.1)

in this model, there is an energy scale at which the perturbative character is lost, and the
energy scale is found using the condition sin2θW = 1/4 and it is order of ∼ 4TeV [12].

On the other hand, in the breaking symmetry of the 331 gauge symmetry to the gauge
group of the SM and then to the U(1)Q, some new bosons appear such as a new neutral Z′

boson which is heavier than the SM gauge bosons and in all the 331 models it can mediate
flavor changing process at tree level. In contrast, in the framework of the SM it is well known
that flavor changing neutral currents (FCNC) are strongly suppressed, because they appear
only at one loop level. Therefore, these FCNC processes can help to put stringent bounds on
the parameter space of these kind of models [13–20]. Our aim in this work is to review the
possible models that can be built on the basis of extended gauge symmetry 331 and identify
the different sources of FCNC in the quark sector as well as the lepton sector.

2. 331 Models

The gauge group to be consider is SU(3)C ⊗ SU(3)L ⊗U(1)X . Left-handed particles are into
SU(3)L triplets, there are the usual quarks and leptons plus new exotic particles, and the
anomaly-free condition constrains the allowed fermion representations (3 or 3∗) and the
quantum numbers. To describe the particle content of the model and to identify specific types
of 331 models is important and so is how defined the electric charge operator, which can be
written as a linear combination of the diagonal generators of the group

Q = T3 + βT8 +X, (2.1)

where β is a parameter that characterizes the specific particle structure. The parameter β can
be chosen β = ±√3 or β = ±1/√3, obtaining 331 models with exotic electric charges or 331
models without exotic electric charges, and by exotic charges we mean charges different from
those that appear in the SM framework.

Since each lepton family has three states, taking massless neutrinos, they can be
arranged into SU(3)L antitriplets ψTi = (l−i ,−νi, l+i ), where i is a family index. The first two
components corresponds to the ordinary electroweak doublet. This model corresponds to
β =

√
3 [4–11] for the charge operator in (2.1). Therefore each lepton family will be in the

(1, 3∗)0 representation of SU(3)C ⊗ SU(3)L ⊗ U(1)X . With these assumptions, there are no
new leptons in the 331 model, and all three lepton families are treated identically. In contrast,
one of the three quark families transform differently from the other two which is required to
anomaly cancellation. Anomaly cancellation requires that two families of quarks transform
as triplets (3, 3)−1/3, and the third one transforms as an antitriplet (3, 3∗)2/3. The right-handed
spectrum is put in singlets in the usual way (3∗, 1)−2/3,1/3,4/3 for the first two families and
(3∗, 1)−5/3,−2/3,1/3 for the third one. It is worth to notice that in general the assumption that one
quark family is transforming differently to the other two families is a general condition in the
framework of 331models, and it is generally assumed that the unique generation corresponds
to the third generation, and then, it could explain the heavy top quark mass.
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In the gauge sector, five new gauge bosons beyond the SM are found. The new gauge
bosons form a complex SU(2)L doublet of dileptons (Y++, Y+) with hypercharge 3 and a
singlet W8

μ. The gauge boson W8
μ mixes with the gauge boson X from the U(1)X to form

the hypercharge Bμ boson and a new neutral Z′
μ boson.

In order to break the symmetry spontaneously, four Higgs multiplets are necessary.
Three triplets in representations (1, 3)1, (1, 3)0, and (1, 3)−1 for the breaking of SU(2)×U(1) in
order to give masses to all quarks, and a sextet (1, 6)0 is required for the lepton masses [4–11].

In this first model [4–11], there are new sources of FCNC processes at tree level coming
from the new Z′ boson in the quark sector, because the families are treated differently. Also,
at one loop level appears new contributions coming from the charged bileptons and the
charged scalar sector [21–26]. In this model, there are FCNC in the lepton sector, and they
are mediated by the charged bileptons [21–26].

A possible variation of this original model is to consider a new lepton assignment
using a heavy lepton E+ instead of the ec and adding ec and E− as singlets [27]. With this
model, it is easy to generate small neutrino masses and lepton number violation can occur
and one property of thismodel version is that bileptons only couple standard to exotic leptons
[27].

On the other hand, it is possible to obtain models based on the gauge 331 symmetry
but without new exotic charges for the fermions. One version of that is the model proposed
by Özer [28], where it is introduced a right-handed neutrino. A systematic study of these
kind of models was done in [29, 30]. According to the β value in (2.1), it is possible to get
six different set of fermions and the fermion structure in order to avoid the quiral anomalies
producing different 331 models. The fermion sets are four lepton sets and two quark sets.

The first set of leptons is

L1 =

⎛
⎜⎜⎝

νi

e−i
E−
i

⎞
⎟⎟⎠ e+i E+

i

(1, 3)−2/3 (1, 1)1 (1, 1)1

(2.2)

using i = 1, 2, 3 as the family index and ei, di, and ui are the SM fermions and Ei,Di, and Ui

are the exotic ones.
The second set is

L2 =

⎛
⎜⎜⎝

e−i
νi

N0
i

⎞
⎟⎟⎠ e+i

(1, 3∗)−1/3 (1, 1)1,

(2.3)

where there is a neutral exotic particle. For the third leptonic set,

L3 =

⎛
⎜⎜⎝

e−i
νi

N0
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
E−
i

N0
2

N0
3

⎞
⎟⎟⎠

⎛
⎜⎜⎝
N0

4

E+
i

e+i

⎞
⎟⎟⎠

(1, 3∗)−1/3 (1, 3∗)−1/3 (1, 3∗)2/3,

(2.4)
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Table 1: Anomalies for the six fermion sets.

Anomalies L1 L2 L3 L4 Q1 Q2

SU(3)2cU(1)X 0 0 0 0 0 0
SU(3)2LU(1)X −2/3 −1/3 0 −1 1 0
grav2U(1)X 0 0 0 0 0 0
U(1)3X 10/9 8/9 6/9 12/9 −12/9 −6/9

where there is a charged exotic particle and four new exotic neutral ones. Finally, for the forth
set

L4 =

⎛
⎜⎜⎝

νi

e−i
E−
1i

⎞
⎟⎟⎠

⎛
⎜⎜⎝
E−
2i

N0
1

N0
2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
N0

3

E−
2i

E−
3i

⎞
⎟⎟⎠ e+i E+

1i E+
3i

(1, 3)−2/3 (1, 3)1/3 (1, 3)−2/3 (1, 1)1 (1, 1)1 (1, 1)1,

(2.5)

with three exotic charged particles and three neutral.
Now, the quark sets are

Q1 =

⎛
⎜⎜⎝
di

ui

Ui

⎞
⎟⎟⎠ di ui Ui

(3, 3∗)1/3 (3, 1)1/3 (3, 1)−2/3 (3, 1)−2/3,

(2.6)

Q2 =

⎛
⎜⎜⎝
ui

di

Di

⎞
⎟⎟⎠ ui di Di

(3, 3)0 (3, 1)−2/3 (3, 1)1/3 (3, 1)1/3.

(2.7)

The anomaly contribution for each set is presented in Table 1.
On the basis of Table 1, it is possible to build up many models asking for the anomaly

free condition. There are two one family models and eight three family models, referring to
how cancel out the anomalies if it is needed one family or the three families. There are two
one family models composed by the sets Q2 + L3 and Q1 + L4. These models were studied
in [29–31] and their relation with the grand unified theories established. For the three family
models, there are the combinations 3L2 +Q1 + 2Q2, 3L1 + 2Q1 +Q2, 2(Q2+L3) + (Q1+L4) and
2(Q1 + L4) + (Q2 + L3), and there are other two models particularly interesting, because they
treat the three family leptons completely different, they are the combinations L1 + L2 + L3 +
Q1 + 2Q2 and L1 + L2 + L4 + 2Q1 +Q2 [31, 32].

In the gauge sector, there are 17 gauge bosons, one gauge bosonBμ associated toU(1)X ,
eight gluons associated to S(3)c and eight gauge fields from the SU(3)L. The gauge bosons
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associated with SU(3)L transform according to the adjoint representation of the group, and
they can be written as

Wμ =Wa
μ

λa

2
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

W3
μ +

1√
3
W8

μ

√
2W+

μ

√
2K1μ

√
2W−

μ −W3
μ +

1√
3
W8

μ

√
2K2μ

√
2K1μ

√
2K2μ − 2√

3
W8

μ

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.8)

where λa are the Gell-Mann matrices, and the electric charges of K1 and K2 are given by
Q1 = 1/2 +

√
3β/2 and Q2 = 1/2 − √

3β/2, respectively.
In general, it is convenient to rotate the neutral gauge bosonsW3

μ,W
8
μ and Bμ into new

states Aμ, Zμ, and Z′
μ, given by

⎛
⎜⎜⎝
Aμ

Zμ

Z′
μ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
SW βSW CW

√
1 − β2T2

W

CW − βSWTW − SW
√
1 − β2T2

W

0 −
√
1 − β2T2

W βTW

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝
W3

μ

W8
μ

Bμ

⎞
⎟⎟⎠, (2.9)

where the angle θW is defined by TW = tan θW = g ′/
√
g2 + β2g ′2, g, g ′ being the coupling

constants associated to the groups SU(3)L andU(1)X , respectively, (SW = sin θW , etc.). In the
new basis, Aμ (the photon) is the gauge boson corresponding to the generator Q, while Zμ

can be identified with the SM Z boson. As in the SM, the extended electroweak symmetry is
spontaneously broken in 331 models by the presence of elementary scalars having nonzero
vacuum expectation values [33–37]. The symmetry breakdown follows a hierarchy

SU(3)L ⊗U(1)X
V−→ SU(2)L ⊗U(1)Y

v−→ U(1)Q, (2.10)

in which two VEV scales V and v, with V � v, are introduced. The photon is kept as the only
massless gauge boson, while the remaining neutral gauge bosons get mixed. In this way, Z
and Z′ turn out to be only approximate mass eigenstates.

3. FCNC in 331 Models

First of all, the extension of the gauge group which embedded the SM group implies a new
neutral gauge Z′ boson, which in general in all the 331 models presented generates FCNC at
tree-level. This fact is that because in 331 models it is not possible to accommodate all the SM
spectrum in multiplets with the same quantum numbers; therefore, the Z′ couplings are not
universal for all the fermions, and that is the origin of a new source of FCNC. Particularly,
to treat in a different manner the third generation, as is usually assumed, to the other two
generations produces FCNC contributions. This property is common to all the 331 models in
the quark sector. It is worth to mention that even in the left-handed couplings of the standard
fermions to the Z neutral boson appear FCNC at tree level through the mixing of Z − Z′ and
also coming from the mixing between the standard quarks and the exotic ones included in
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each case. Moreover, the mixing between neutral gauge bosons should take into account the
gauge bosons which transform according to the adjoint representation of the SU(3)L, some
noted K± and K0 gauge bosons for the charged sector and neutral sector (they are related to
K1,2). In order to notice these effects clearly, the Lagrangian for the new Z′ boson with a β
arbitrary is the following:

LZ′
= − g ′

2TW
Zμ′
[

2∑
m=1

D0
mγμ

(
PL√
3
+
T2
Wβ

3
(PL − 2PR)

)
D0
m

+D0
3γμ

(
− PL√

3
+
T2
Wβ

3
(PL − 2PR)

)
D0

3 +
2∑

m=1

U0
mγμ

(
PL√
3
+
T2
Wβ

3
(PL + 4PR)

)

×U0
m +U0

3γμ

(
− PL√

3
+
T2
Wβ

3
(PL + 4PR)

)
U0

3 + L0γμ

(
− PL√

3
− T2

Wβ(PL + 2PR)
)

× L0 + ν0γμ
(
− 1√

3
− T2

Wβ

)
PLν

0 +
2∑

m=1

J0mγμ

(
−2PL√

3
+ T2

W

(
1
3
+

3β√
3

))
J0m

+ J03γμ
(
−2PL√

3
+ T2

W

(
1
3
− 3β√

3

)
(PL − PR)

)
J03

+E0γμ

(
2PL√
3
+ T2

W

(
−1
3
− 3β√

3

)
× (−PL + PR)

)
E0

]
,

(3.1)

where D0 = (d0
1 d0

2 d0
3)
T , U0 = (u01 u02 u03)

T , L0 = (e01 e02 e03)
T , E0 = (E0

1 E0
2 E0

3)
T , and

the exotic quarks j0i with electric charges are given by qJ1 = QJ2 = 1/6 +
√
3β/2 and

qJ3 = 1/6 − √
3β/2. There is explicitly shown the no universal couplings between the quarks

Di,Ui and theZ′ boson, and it is because one family is in the 3 representation, while the other
two are in the 3∗ (or vice versa). As a consequence, the FCNCs arise once the fields Ui and
Di are rotated to the mass eigenstates. The number of extra fermions up-quark type or down-
quark type depends on the parameter β, for β = −1/√3 will have NU = 1 and ND = 2 and
for β = 1/

√
3 will have NU = 2 and ND = 1. Therefore, there is not only FCNC at tree level

through the Z′ boson, but also the usual Z boson due to the mix of these new exotic quarks
with the ordinary ones. To notice this, for the case of β = +1/

√
3, the following definitions

are useful UT
0 = (u01, u

0
2, u

0
3, T

0
1 , T

0
2 ), D

T
0 = (d0

1, d
0
2, d

0
3, B

0
1), E

T
0 = (e0, μ0, τ0, E0

1, E
0
2, E

0
3), and

NT
0 = (ν0e, ν

0
μ, ν

0
τ). Meanwhile, for the case β = −1/√3, the definitions areUT

0 = (u01, u
0
2, u

0
3, T

0
1 ),

DT
0 = (d0

1, d
0
2, d

0
3, B

0
1 , B

0
2), E

T
0 = (e0, μ0, τ0), andNT

0 = (ν0e, ν
0
μ, ν

0
τ , ,N

0
1 ,N

0
2 ,N

0
3). With this vector

notation, the Lagrangian for neutral currents is

LNC =
∑
Ψ

− gZμ

2CW

{
Ψ0γμε

(1)
Ψ(L)

PLΨ0 + Ψ0γμε
(1)
Ψ(R)

PRΨ0
}

− g ′Z
′μ

2
√
3SWCW

{
Ψ0γμε

(2)
Ψ(L)

PLΨ0 + Ψ0γμε
(2)
Ψ(R)

PRΨ0
}

− g√
2

{
Ψ0γμε

(3)
Ψ(L)

PLΨ0 ReKμ + iΨ0γμε
(4)
Ψ(L)

PLΨ0 ImKμ
}
,

(3.2)



Advances in High Energy Physics 7

where the sum is over U0, D0, E0, andN0. The couplings ε
(1,2)
Ψ(L,R)

depends on the parameter β.

With β = ±1/√3, the Z0 interaction is

ε
(1)
U(L)

=

(
C2
W − S2

W

3

)
1(3+N±

U)×(3+N±
U) −

(
0(3×3)

1(N±
U×N±

U)

)
,

ε
(1)
U(R)

= −
(

4S2
W

3

)
1(3+N±

U)×(3+N±
U),

ε
(1)
D(L)

=

(
−C2

W − S2
W

3

)
1(3+N±

D)×(3+N±
D) +

(
0(3×3)

1(N±
D×N±

D)

)
,

ε
(1)
D(R)

= +

(
2S2

W

3

)
1(3+N±

D)×(3+N±
D),

(3.3)

where the no universality of the left handed quarks is clear, while the right-handed couplings
drive for ε(1)U,D(R)

are universals.

In a similar way for the Z
′0 boson, the couplings are

ε
(2)
U(L)

=

(
C2
W ± S2

W

3

)
1(3+N±

U)×(3+N±
U) − 2C2

W

(
0(2×2)

1(N±
T+1)×(N±

T+1)

)

+
(
C2
W ∓ 2C2

W ± S2
W

)(0(3×3)

1(N±
U×N±

U)

)
,

ε
(2)
U(R)

= ±4S
2
W

3
1(3+N±

U)×(3+N±
U),

ε
(2)
D(L)

=

(
C2
W ± S2

W

3

)
1(3+N±

D)×(3+N±
D) − 2C2

W

(
0(2×2)

1(N±
D+1)×(N±

D+1)

)

+
(
C2
W ± 2C2

W ∓ S2
W

)(0(3×3)

1(N±
D×N±

D)

)
,

ε
(2)
D(R)

= ∓
(

2S2
W

3

)
1(3+N±

D)×(3+N±
D).

(3.4)

At this point, it is important to mention that the couplings in (3.2)–(3.4) are in the
interaction basis, thus to obtain the mass eigenstates, it is necessary to get the rotation
matrices which diagonalize the mass matrices in the Yukawa sector. Therefore, the mass
eigenstatesU and D are defined by

U0
L = V u

LUL, D0
L = V d

L DL, (3.5)
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with matrices VL of dimensions (3 +N±
U) × (3 +N±

U) and (3 +N±
D) × (3 +N±

D), respectively. It
is useful to write the matrices V u,d

L as

V u
L =

⎛
⎝ V u

0 (3×3) V u
X (3×N±

U)

V u
Y (N±

U×3)
VU(N±

U×N±
U)

⎞
⎠, V d

L =

⎛
⎝ V d

0 (3×3) V d
X (3×N±

D)

V d
Y (N±

D×3)
VD(N±

D×N±
D)

⎞
⎠, (3.6)

using submatrices in such a way that VCKM = V u†
0 V d

0 and in general the CKM matrix is not
unitary.

In addition, the models include new gauge bosons Kμ which coupled to the left
handed fermions, the couplings in (3.2) for the Kμ

2 boson when β = 1/
√
3 are

ε
(3)
U(L)

=

⎛
⎜⎜⎝

02×2 12×2

0

12×2 02×2

⎞
⎟⎟⎠, ε

(3)
D(L)

=

⎛
⎜⎜⎝

02×2

0 1

1 0

⎞
⎟⎟⎠,

ε
(3)
E(L)

=

(
13×3

13×3

)
, ε

(4)
U(L)

=

⎛
⎜⎜⎝

02×2 12×2

0

−12×2 02×2

⎞
⎟⎟⎠,

ε
(4)
D(L)

=

⎛
⎜⎜⎝

02×2

0 −1
1 0

⎞
⎟⎟⎠, ε

(4)
E(L)

=

(
13×3

−13×3

)
.

(3.7)

And when β = −1/√3 for the Kμ

1 boson, they are

ε
(3)
U(L)

=

⎛
⎜⎜⎝

02×2

0 1

1 0

⎞
⎟⎟⎠, ε

(3)
D(L)

=

⎛
⎜⎜⎝

02×2 −12×2
0

−12×2 02×2

⎞
⎟⎟⎠,

ε
(3)
N(L)

=

(
13×3

13×3

)
, ε

(4)
D(L)

=

⎛
⎜⎜⎝

02×2

0 1

−1 0

⎞
⎟⎟⎠,

ε
(4)
U(L)

=

⎛
⎜⎜⎝

02×2 12×2

0

−12×2 02×2

⎞
⎟⎟⎠, ε

(4)
N(L)

=

( −13×3
13×3

)
.

(3.8)

It is often assumed that the vacuum expectation values of the scalar fields are real, and
this assumption implies that there is not any spontaneous CP symmetry breaking. In that
case, the state Im K decouples and therefore turn into an exact mass eigenstate. However,
the bosons Zμ, Z

′μ and
√
2ReK mix, and it is possible to get the mass basis (Z1, Z2, and Z3)
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through an orthogonal matrix which depends on the vacuum expectation values of the Higgs
bosons,

⎛
⎜⎜⎝

Z

Z′
√
2ReK

⎞
⎟⎟⎠ = R

⎛
⎜⎜⎝
Z1

Z2

Z3

⎞
⎟⎟⎠, (3.9)

and therefore, the Lagrangian can be rewritten as

LNC = −
∑

Ψ=U,D

⎡
⎣QΨΨγμΨAμ +

3∑
j,k=1

gjΨγμ
(
E
(j)
ΨL
PL + E

(j)
ΨR
PR
)
ΨRjkZkμ

+ i
g

2
Ψγμ
(
E
(4)
ΨL
PL + E

(4)
ΨR
PR
)
Ψ
√
2 ImKμ

⎤
⎦,

(3.10)

where QΨ is the electric charge and the coupling constants gj are

g1 =
g

2CW
, g2 =

g ′

2
√
3SWCW

=
g

2
√
3CW

√
C2
W − β2S2

W

, g3 =
g

2
, (3.11)

and the matrices E(i)
ΨL,R

are given by

E
(i)
ΨL

= VΨ†
L ε

(i)
ΨL
VΨ
L , E

(i)
ΨR

= VΨ†
R ε

(i)
ΨR
VΨ
R = ε(i)ΨR

. (3.12)

Finally, about the sources of FCNC in the framework of the 331 models, they are
two models which are very interesting, because they have some special properties from
the phenomenological point of view. They are the models build up with the fermionic sets
L1 + L2 + L3 + Q1 + 2Q2 and L1 + L2 + L4 + 2Q1 + Q2. They not only differentiate the quark
generations, doing one family specially different, but they also do in the leptonic sector. These
models will have the usual FCNC at tree level in 331models in the quark sector through theZ′

boson but also they present FCNC in the leptonic sector through the scalar fields and through
the Z′ boson [32]. To notice the new sources of FCNC arising in these models, the neutral
current Lagrangian is going to be obtained. First of all, the spectrum should be specified


1L =

⎛
⎜⎜⎝
ν1

e−1
E−
1

⎞
⎟⎟⎠

L

, 
mL =

⎛
⎜⎜⎝
e−m

νm

N0
k

⎞
⎟⎟⎠

L

, 
5L =

⎛
⎜⎜⎝
E−
2

N0
3

N0
4

⎞
⎟⎟⎠

L

, 
4L =

⎛
⎜⎜⎝
N0

5

E+
2

e+3

⎞
⎟⎟⎠

L

, (3.13)
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where m = 2, 3, k = 1, 2 and note that one of the leptonic triplets is in the adjoint
representation respect to the other two then FCNC at tree level will arise through the Z′

boson. Using vector notation, the neutral current Lagrangian in this case is

LNC =
∑
Ψ

[
Aμ

{
Ψ0γμε

A
Ψ(L)

PLΨ0 + Ψ0γμε
A
Ψ(R)

PRΨ0
}

+
gZμ

2CW

{
Ψ0γμε

Z
Ψ(L)

PLΨ0 + Ψ0γμε
Z
Ψ(R)

PRΨ0
}

+
g ′Z

′μ

2
√
3SWCW

{
Ψ0γμε

Z′
Ψ(L)

PLΨ0 + Ψ0γμε
Z′
Ψ(R)

PRΨ0
}]
.

(3.14)

Defining the vector ET = (e−1 , e
−
2 , e

−
3 , E

−
1 , E

−
2 ), the couplings are

εAE(L)
= gSWI5 × 5, εAE(R)

= gSWI5 × 5,

εZE(L)
=

g

2CW
Diag

(
C2W,C2W,C2W,−2S2

W,C2W

)
,

εZE(R)
=

g

2CW
Diag

(
−2S2

W,−2S2
W,−2S2

W,−2S2
W,C2W

)
,

εZ
′

E(L)
=

g ′

2
√
3SWCW

Diag(1,−C2W,−C2W,−C2W,−C2W),

εZ
′

E(R)
=

g ′

2
√
3SWCW

Diag
(
2S2

W, 2S
2
W,−C2W, 2S2

W, 1
)
,

(3.15)

where C2W = cos(2θW), and it is worthwhile to point out that the right handed couplings
are not universal, and it is a new feature of this model. Usually, in the framework of the 331
models, only the left-handed couplings are not universal, but the right-handed are universal
as it was shown in (3.1).

For the neutral sector,NT = (ν01 , ν
0
2 , ν

0
3 ,N

0
1 ,N

0
2 ,N

0
3 ,N

0
4) is defined, and the left-handed

couplings are

εAN(L)
= 0, εZN(L)

=
g

2CW
Diag(1, 1, 1, 0, 0, 1, 0,−1),

εZN(L)
=

g ′

2
√
3SWCW

Diag
(
1,−C2W,−C2W, 2C2

W, 2C
2
W,−C2W, 2C2

W,−1
)
.

(3.16)

4. Summary

One of the most intriguing options to consider physics beyond the SM consists of extending
the gauge symmetry group to SU(3)C × SU(3)L ×U(1)X . There are many models which are
based on the 331 symmetry, and one intriguing feature of these models is the presence of
FCNC at tree level, but the source of that new interactions is not unique and depends on
how the model is built up. In the Pleitez-Frampton model, the first one proposed, it was
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established the presence of FCNC at tree level coming from the new Z′ boson and due to
the different assignment of the quark representation for one of the quark families; doing
the left-handed couplings between quarks and the Z′ boson not universal. On the other
hand, it is possible to build up models on the basis of 331 symmetry contrary to the Pleitez-
Frampton model without any exotic charges for the new particles in the spectrum. These
kind of models correspond to a β = ±1/√3 in the electric charge operator (2.1). These models
include new exotic up-quark type and down-quark type which are going to mix with the
standard quarks. In one version appears five up quark type and four down quark type, and
another version include four-up quark type and five-down quark type; also, these models
include extra charged leptons in one case and neutral leptons in the other one. The mixing
obtained is a source of FCNC at tree level when the quark fields are written in the mass basis.
There are also a new source of FCNC which is coming from the mixing in the gauge sector
between the bosons (A,Z,Z′, K). The mixing in this sector is usually reduced to the mixing
between Z and Z′. If we consider the mixing between the quarks and the mixing (Z,Z′), then
the FCNC interactions appear through the Z and the Z′ mediation. In the leptonic sector,
something similar is going to happen. Finally, there are models which not only treat different
the quark families but the leptonic families too. One of these models is presented and the
neutral current Lagrangian obtained, and one interesting new and additional feature is the
nonuniversal couplings in the right-handed sector through the Z and Z′ bosons. This new
contributions to the FCNC processes could help to relax the bounds obtained on the Z′ Boson
mass.
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We analyze the properties of electroweak chiral effective Lagrangian with an extended SU(2)R
gauge group. Right-handed SU(2)R gauge bosons affect electroweak observables by mixing with
electroweak gauge bosons WL,μ and Bμ. We discuss all possible mass mixing terms and calculate
the exact physical mass eigenvalues by diagonalization of mixing matrix without any approximate
assumptions. The contributions to oblique radiative corrections parameters STU from SU(2)R
fields are also presented.

1. Introduction

Although the standard model (SM) has been checked very successfully by more and more
high energy physics experiments, the as yet undiscovered Higgs, introduced as a basic scaler
field in SM, remains as the only unknown component of the electroweak symmetry-breaking
mechanism (EWSBM) unknown. That situation has prompted many extensions to SM [1–
3]. A new SU(1)R group, associated with an additional triplet of gauge bosons W ′± and
Z′, is often considered for different reasons as an extension to the gauge symmetry [4–6].
This extension often appears in superstring-inspired models as well as GUT models [7]. The
non-Abelian SU(2)R contains sufficient complexity to incorporate interesting issues related to
spontaneous parity violation (SPV) and precise electroweak observables, although remains
simple enough that phenomenology can be subjected to analysis. SU(2)R gauge bosons can
improve unitarity of not onlyWW but alsoWZ scattering processes and delay the breaking
scale of unitarity.

Many left-right symmetry models with symmetry group SU(2)R×SU(2)L×U(1) have
been used in studying EWSBM. The common feature of these models is the existence of
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multi-Higgs bosons that then raises phenomenological issues related tomulti-Higgs structure
dependencies. To obtain an universal physical analysis, we adopt the nonlinear realization
of the chiral Lagrangian to describe extended SU(2)R electroweak gauge models given the
symmetry breaking pattern SU(2)R × SU(2)L × U(1) → U(1)em. This chiral Lagrangian
has already been written down in [8]. The model is a generalization of the conventional
linearly realized models with multi-Higgs. Within the extended non-Abelian chiral effective
Lagrangian, multi-Higgs effects are parameterized by a set of coefficients that describes all
possible interactions among the gauge bosons and provides a model-independent platform
to investigate interesting physics [8].

In the paper, we focus on mass mixing effects in left-right chiral effective Lagrangian.
Mass mixings are main focus in the contribution of the right-handed gauge bosons to
electroweak observables at low-energy scales. The SU(2)R gauge triplet can be regarded as
a copy of the SU(2)L gauge triplet of SM, but with heavier masses. Right-handed charged
gauge bosons W±

R can mix with left-handed W±
L , and physical mass eigenstates of W ′± and

W± are eigenvalues of the charged mass matrix. Similarly, W3
R takes part in W3

R − W3
L − B

three-body mixing to form physical massive neutral bosons Z′, Z, and a massless photon.
The nonlinearly realized chiral effective Lagrangian provides us with all possible mass-
mixing channels that are allowed by left-right symmetry. Calculating these mixings, we
obtain a complete mass mixing contribution to the electroweak observables and a largest
parameter space for new physics. Oblique radiative corrections of SU(2)R bosons can be
obtained from the mass mixing rotation matrix, which indicates shifts to the SM with new
physics.

The paper is organized as follows. Section 2 reviews SU(2)R ×SU(2)L ×U(1) effective
theory with all possible mass mixing terms in the gauge eigenstates basis. Section 3 presents
calculations of the charged and neutral mass eigenvalues to obtain physical boson masses
estimates. We improved our diagonalization calculation program for the neutral bosons
sector in our paper [8] to yield a set of exact solutions for the rotation matrix and the mass
eigenvalues without making any approximating assumptions. Oblique radiative corrections
coming from the nonstandardmass mixing beyond SM are studied in Section 4. Furthermore,
two kinds of special cases are considered corresponding to conditionMWR � MWL case and
left-right symmetry. Finally, we give a short summary in Section 5.

2. Left-Right Symmetry Effective Lagrangian

LetWa
R,μ,W

a
L,μ, Bμ be electroweak gauge fields (a = 1, 2, 3) corresponding to the gauge group

SU(2)R, SU(2)L, and U(1), respectively, and UL,R be the two by two unitary unimodular
matrices corresponding to left- and right-handed Goldstone boson fields. Under SU(2)R ⊗
SU(2)L ⊗U(1) transformations, the gauge boson fields transform as

τa

2
Wa

i,μ −→ Ri
τa

2
Wa

i,μ(x)R
†
i −

i

gi
Ri∂μR

†
i ,

Bμ −→ Bμ − 1
g
∂μθ

0,

Ui −→ RiUiR
†
0

(2.1)
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with R0 = e(i/2)τ
3θ0(x) and Ri = e(i/2)τ

aθai (x) for i = R, L. The covariant derivative of the
Goldstone fields takes the form

DμUR = ∂μUR + igR
τa

2
Wa

R,μUR − igUL
τ3
2
Bμ,

DμUL = ∂μUL + igL
τa

2
Wa

L,μUL − igUL
τ3
2
Bμ.

(2.2)

For convenience in present discussion, we will discard conventional EWCL SU(2) covariant
building blocks [9–13] and introduceU(1) invariant building blocks (for i = L, R)

X
μ

i = U†
i (D

μUi),

Wi,μν = U
†
i giWi,μνUi,

Bμν = ∂μBν − ∂νBμ.

(2.3)

Here,

Wi,μν =Wa
i,μν

τa

2
= ∂μWa

i,ν

τa

2
− ∂νWa

i,μ

τa

2
+ igi

[
Wa

i,μ

τa

2
,Wb

i,ν

τb

2

]
. (2.4)

With the help of these building blocks, we can write a leading-order chiral Lagrangian as

LM = −1
4
f2
L

〈
XL,μX

μ

L

〉
− 1
4
f2
R

〈
XR,μX

μ

R

〉
+
1
2
κ̃fLfR

〈
X
μ

LX
μ

R

〉

+
1
4
βL,1f

2
L

〈
τ3XL,μ

〉2
+
1
4
βR,1f

2
L

〈
τ3XR,μ

〉2
+
1
4
β̃1fLfR

〈
τ3XL,μ

〉〈
τ3X

μ

R

〉
.

(2.5)

Here, 〈 〉 stands for the trace in flavor space. fL and fR are the scales for spontaneous symme-
try breaking in the electroweak sector and parity, respectively. The coefficient βL,R,1 generates
extra mass for the left-handed (right-handed) third component in breaking the SU(2)L,R
isospin symmetry. The coefficient κ parameterizes the mixing between the left- and right-
handed gauge bosons whereas the coefficient β̃1 controls the mixing between left-handedW3

L

and right-handedW3
R.

The neutral current interactions are

−LNC =W3
RμJ

μ

R +W3
LμJ

μ

L + BμJ
μ

0 (2.6)

whereas the charged current interactions are

−LCC = W+
RμJ

−,μ
R +W+

LμJ
−,μ
L + h.c. (2.7)
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Here,

J
±,μ
L,R =

gL,R√
2
ΨL,Rτ

±γμΨL,R. (2.8)

The kinetic part has the simple form

LK = −1
4
Wa

L,μνW
μν,a

L − 1
4
Wa

R,μνW
μν,a

R − 1
4
BμνB

μν + iΨiγμDμΨi. (2.9)

Adding Yukawa terms

LY = ΨLULMU†
RΨR + h.c., (2.10)

the total Lagrangian is the sum of all the above terms

L = LM +LK +LNC +LCC +LY . (2.11)

3. Diagonalization and Mass Eigenstates

In this section, we calculate the mass eigenvalues of the left-right symmetry effective
Lagrangian by rotating the mass mixing matrix from the gauge basis to the mass basis.

3.1. Charged Gauge Bosons

Taking the unitary gaugeUL = UR = 1, the charged gauge boson mass terms can be expressed
as

LCM =
1
4
f2
Lg

2
LW

+
L,μW

−
L,μ +

1
4
f2
Rg

2
RW

+
R,μW

−
R,μ

− 1
4
κ̃fLfRgLgR

(
W+

L,μW
−
R,μ +W

+
R,μW

−
L,μ

)
.

(3.1)

Here, we have used charged boson definitions W1
i,μ = (W+

i,μ +W
−
i,μ)/

√
2 and W2

i,μ = i(W+
i,μ −

W−
i,μ)/

√
2 for i = L, R.

We make an orthogonal rotation V forW±
L andW±

R

(
W±

R

W±
L

)
=

(
cos ξ sin ξ

− sin ξ cos ξ

)(
W ′±

W±

)
≡ V

(
W ′±

W±

)
(3.2)

to eliminate the cross-terms involvingWL andWR in (3.1) to keep the kinetic term diagonal.
The mixing angle ξ is expressed as

tan 2ξ =
2κ̃fLfRgLgR
f2
Lg

2
L − f2

Rg
2
R

. (3.3)
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After this rotation, the charged boson mass-squared matrix for the charged bosons
becomes

V TMCV = diag
(
M2

W ′ ,M
2
W

)
, (3.4)

and the heavy and light charged boson masses are

M2
W ′ =

1
8

[
f2
Lg

2
L + f

2
Rg

2
R +

√(
f2
Lg

2
L − f2

Rg
2
R

)2 + 4κ̃2f2
Lf

2
Rg

2
Lg

2
R

]


 1
4
f2
Rg

2
R

{
1 + κ̃2

f2
Lg

2
L

f2
Rg

2
R − f2

Lg
2
L

}
,

M2
W =

1
8

[
f2
Lg

2
L + f

2
Rg

2
R −

√(
f2
Lg

2
L − f2

Rg
2
R

)2 + 4κ̃2f2
Lf

2
Rg

2
Lg

2
R

]


 1
4
f2
Lg

2
L

{
1 − κ̃2 f2

Rg
2
R

f2
Rg

2
R − f2

Lg
2
L

}
.

(3.5)

We notice that the charged boson mixing angle ξ is controlled by the coefficient κ̃. W −W ′

mixing causes W couplings to the right-handed fermion with gWR = gL sin ξ/
√
2. gWR can

yield the contributions to b → sγ (see paper [14]) and must be restrained so that gWR /g
W
L <

4 × 10−3, which requires ξ < 4 × 10−3.

3.2. Neutral Gauge Bosons

Now, let us discuss the neutral boson sector. The neutral mass terms in our chiral Lagrangian
(2.5) can be readily separated out

LMn =
1
8
(
1 − 2βL,1

)
f2
L

(
gLW

3
L,μ − gBμ

)2
+
1
8
(
1 − 2βR,1

)
f2
R

(
gRW

3
R,μ − gBμ

)2

− 1
4

(
κ̃ + β̃1

)
fLfR

(
gLW

3
L,μ − gBμ

)(
gRW

3,μ
R − gBμ

)
.

(3.6)

It can be written in matrix form

LMn =
1
2
GT
μMnGμ (3.7)

with neutral gauge bosons Gμ ≡ (WR,μ,WL,μ, Bμ) and mass-squared matrix

Mn ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f2
Rg

2
R

4
−κfRfLgRgL

4
fRgRg0

(
κfL − fR

)
4

−κfRfLgRgL
4

f2
Lg

2
L

4
fLgLg0

(
κfR − fL

)
4

fRgRg0
(
κfL − fR

)
4

fLgLg0
(
κfR − fL

)
4

(
f2
R + f2

L − 2κfRfL
)
g2
0

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.8)
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Note that the βL,R,1 do not appear in the above mass-squared matrix because these can be
absorbed by a redefinition of VEV fL,R

fL,R −→ fL,R√
1 − 2βL,R,1

. (3.9)

For the sake of convenience, we will retain using the same notation for the redefined VEV
fL,R but keep in mind that this redefinition has been made. The new parameter κ in the above
formula is a combination of κ̃ and β̃1, namely, κ = κ̃ + β̃1. Taking into account the VEVs
re-definition, we have

κ =
κ̃ + β̃1√

1 − 2βL,1
√
1 − 2βR,1

. (3.10)

The physical masses of the neutral bosons are the eigenvalues of the matrix Mn. To obtain
the diagonalized eigenvalues, we define the mass eigenstates as Gμ = (Z′, Zμ,Aμ)T which are
related to Gμ by a special rotationU−1

Gμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G4gR

G1G4 −G2G3
− G2gL

G1G4 −G2G3

(G2 −G4)g0
G1G4 −G2G3

− G3gR

G1G4 −G2G3

G1gL

G1G4 −G2G3

(G3 −G1)g0
G1G4 −G2G3

gR

G5

λ1gL

G5

λ2g0

G5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Gμ (3.11)

≡ U−1Gμ (3.12)

with undetermined couplings Gi (i = 1, . . . , 5) and parameters λi (i = 1, 2). This complicated
rotation is motivated by the following simple relations: the rotationU relates

gRWR,μ − g0Bμ = G1Z′
μ +G2Zμ,

gLWL,μ − g0Bμ = G3Z′
μ +G4Zμ,

gRWR,μ + λ1gLWL,μ + λ2g0Bμ = G5Aμ

(3.13)

which diagonalizes the B − WL and B − WR mixings automatically while simultaneously
keeping the photon massless. To maintain a diagonal kinetic energy matrix, U must satisfy
six independent orthogonality conditions

UUT = 1. (3.14)
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Adding one mass diagonalization condition for the WR −WL mass mixing, there are seven
independent equations that determine five Gi (i = 1, . . . , 5) and two λi (i = 1, 2). Solving these
equations, we obtain

λ1 =
g2
R

g2
L

,

λ2 =
g2
R

g2
0

,

G1 =

(
κfRC − fL

)
fL(

fRC − κfL
)
fR
G3,

G2 = CG4,

G3 =

(
fRC − κfL

)
fR

√
g2
0(1 − C)2 + g2

R + C2g2
L

f2
RC

2 + f2
L − 2CκfRfL

,

G4 =
1

f2
RC

2 + f2
L − 2CκfRfL

(
f2
Rf

2
L

[
g2
R + C2g2

L + g
2
0(1 + C)

2
]
κ2

−2fRfL
[
f2
RC

(
g2
R + g2

0

)
+ f2

LC
(
g2
L + g

2
0

)
+ g2

0

(
f2
RC

2 + f2
L

)]
κ

+g2
Rf

4
RC

2 + g2
Lf

4
L + g

2
0

(
f2
RC + f2

L

)2)1/2
,

G5 = g2
R

√
1
g2
R

+
1
g2
L

+
1
g2
0

(3.15)

with a real C that satisfies the quadratic equation

(
κfRfL

(
g2
L + g

2
0

)
− f2

Rg
2
0

)
C2 +

[
f2
R

(
g2
R + g2

0

)
− f2

L

(
g2
L + g

2
0

)]
C + f2

Lg
2
0 − κfRfL

(
g2
R + g2

0

)
= 0.

(3.16)

The mass eigenvalues of the physical Z′ and Z then become

M2
Z′ =

(
UTMU

)
1,1
,

M2
Z =

(
UTMU

)
2,2
.

(3.17)

Up to now, we have obtained the exact rotation matrix elements without any approximate
assumption. The total rotation U in (3.12) can be expressed in terms of (3.11), (3.15), and
(3.16).
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4. Oblique Radiative Corrections

To clearly see the new physics correction, we can separate a standard electroweak rotation
from the total rotation in (3.12)

U ≡ U′Uem (4.1)

with the standard electroweak rotation

Uem =

⎛
⎜⎜⎝

1 0 0

0 cθ sθ

0 −sθ cθ

⎞
⎟⎟⎠. (4.2)

From (3.12) and (4.1), we can calculate the oblique radiative corrections coming from the
right-handed gauge bosons in light of Holdom’s work [15]

S =
4sθcθ
α

{(
s2θ − c2θ

)
U′

32 − 2cθsθ
(
U′

33 − 1
)
+ 2cθsθ

(
U′

22 − 1
)}
,

T =
2
α

{(
U′

22 − 1
) −ΔMZ

}
,

U = −8s
2
θ

α

{
cθsθU

′
32 + s

2
θ

(
U′

33 − 1
)
+ c2θ

(
U′

22 − 1
)}
,

(4.3)

where sθ and cθ are the respective sine and cosine of the standard Weinberg angle from SM,
and ΔMZ is the new physical shift in the Z mass ΔMZ = MZ −MZ |SM. Furthermore, we
calculate to leading order the results for two special conditions.

4.1. Case 1: fR � fL and gR � gL/0

This case corresponds to a SU(2)R breaking scale that is much higher than the electroweak
breaking scale andMWR � MWL . It is easy to calculate the U′ rotation from (4.1), (4.2), and
(3.15). We only list leading-order terms

U′
11 
 1,

U′
12 


cθsθr3

2
,

U′
13 
 r,
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U′
21 
 −κfR

fL

sθcθ
r

(
1 +

(
3 − c2

θ

)
r2

2

)
,

U′
22 
 1,

U′
23 
 −cθsθr

2

2
,

U′
31 
 r +

κfR

rfL

(
1 +

(
1 − 2c2

θ

)
r2

2

)
,

U′
32 


cθsθr2

2
,

U′
33 
 1

(4.4)

with coupling ratio r ≡ g0/gR. Obviously, in the limit of heavy MWR , gR � gL,0, this new
physics rotation matrix U′ becomes a unitary matrix. Indeed, it is a requirement of the SM
structure and a good self-checking condition of our calculation.

From (3.17), we can calculate the gauge boson mass eigenvalues

M2
Z′ =

(
UTMU

)
1,1


 f2
Rg

2
R

4

(
1 + r2

)(
1 − κ2

)
, (4.5)

M2
Z =

(
UTMU

)
2,2


 f2
L

(
g2
L + g

2
0

)
4

{
1 +

(
2
κfL
fR

− s2θ
)
r2
}
. (4.6)

From (4.5), the mass shift can be calculated

ΔMZ 
 −s
2
θ

2
r2. (4.7)

Using (4.3), the leading-order terms to the oblique radiative correction parameters are

αS 
 s2θc2θ
(
1 + 2s2θ

)
r2,

αT 
 s2θr2,

αU 
 4s6θr
2.

(4.8)

Adopting the new physics constraints S < 0.11, T < 0.14, U < 0.16 [16] and taking s2θ =
0.2311, α = 1/137, we can estimate the coupling ratio r < 0.05.
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4.2. Case 2: fR = fL and gR � gL/0

The conditions correspond to left-right symmetry. MWR � MWL requires gR � gL/0. Hence,
the leading-order terms to the matrix elements of U′ are

U′
11 
 1,

U′
12 
 −r

3cθ
(
c2θ + c

2
θs

2
θ + 1

)
sθ

+
rcθ

(
2 + s4θ

)
sθ

,

U′
13 
 r −

κr
(
2 + s4θ

)
2

,

U′
21 
 −r3sθcθ

(
3
2
− c2θ

)
+ sθcθr3κ,

U′
22 
 1

U′
23 
 −sθcθr2 +

{
s3
θ
cθ

2
− r2s3

θ
cθ
(
1 + 3c2

θ

)
4

}
κ,

U′
31 
 r + c2θs3θr3κ,

U′
32 


sθcθr
2

2
+

{
s3
θ
cθ

2
− r2cθ

4sθ

[
4 + 3s4θ

(
1 + c2θ

)]}
κ,

U′
33 
 1.

(4.9)

When taking r → 0 and κ → 0, matrix U′ becomes unitary. The leading order terms for the
gauge boson masses are

M2
Z′ =

(
UTMU

)
1,1


 f2g2
R

4

(
1 + r2

)
,

M2
Z =

(
UTMU

)
2,2


 f2(g2
L + g

2
0

)
4

(
1 − s2

θ
r2

2

)
.

(4.10)

The shift in mass of Z is

ΔMZ 
 −s
2
θ

4
r2. (4.11)
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In this case, the leading-order terms of the oblique radiative correction parameters are

αS 
 2r2s2θ
(
1 − 2s2θ

)
c2θ +

{
6
(
1 − 2c2θ

)
s4θ + r

2
(
4c2θ − 3

)(
3s2θ + 4

)}
c2θκ,

αT 
 s2
θ
r2

2
,

αU 
 4s6θr
2 + 2

{
2s2θ

(
1 − 3c2θs

2
θ

)
+ r2

(
2c2θ − 1

)(
3s4θ + 4

)}
s2θκ.

(4.12)

From T < 0.10, we can estimate coupling ratio r < 0.09 implying a lower limit for the Z′ mass
of about 0.8TeV.

5. A Short Summary

To summarize, we have reviewed nonlinearly realized electroweak chiral Lagrangian for the
gauge group SU(2)R × SU(2)L ×U(1) and diagonalized gauge eigenstates using all possible
mass mixing terms to obtain exact mass eigenstates and the rotation matrix. The oblique
radiative corrections from right-handed gauge bosons have been estimated to leading order.
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