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Abstract
An exact expression of the transmission probability through a finite graphene superlattice with
an arbitrary number of potential barriers n is derived in two cases of the periodic potential:
rectangular electric potential and δ-function magnetic potential. Obtained transmission
probabilities show two types of resonance energy: barrier-induced resonance energies
unchanged as n varies and well-induced resonance energies that have undergone the
(n − 1)-fold splitting as n increases. Supported by numerical calculations for various types of
graphene superlattices, these analytical findings are assumed to be equally applied to all of the
finite graphene superlattices regardless of their potential nature (electric or magnetic) and
potential barrier shapes.
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1. Introduction

Four decades ago, Tsu and Esaki first demonstrated
numerically that for a finite semiconductor superlattice with
n potential barriers the transmission probability shows the
(n − 1)-fold resonance splitting [1]. Then, this (n − 1)-
fold resonance splitting rule was analytically proved for
finite semiconductor superlattices with periodic potentials of
arbitrary profile [2, 3]. In the limit of large n, the resonance
energies split gradually as n increases, which would eventually
form the minibands that are responsible for privileged transport
properties of semiconductor superlattices such as the Bloch
oscillations or the Stark ladders phenomena [4].

The massless Dirac-like behavior of charge carriers in
graphene brings about unusual transport properties of not
only pristine graphene itself, but certainly of graphene-based
nanostructures [5, 6]. Therefore, graphene superlattices
(GSLs), i.e. graphene under periodic potentials, have been
extensively studied in a great number of works [7–15] for
periodic potentials of a different nature (electric [7–10] or
magnetic [11–15]) and different profiles (Kronig–Penney
[7, 10, 12, 15], cosine [8] or square [9]). These studies are

primarily focused on the behavior of the minibands induced
by an infinite periodic potential in the vicinity of the Dirac
point and the related transport properties. As for finite
GSLs, i.e. graphene-based multi-barrier structures, there are
only a few works, where the transmission probability and
the conductance are calculated for several values of barrier
number n [16–18]. In particular, calculating the transmission
probability for the two types of finite magnetic GSLs (with
different potential profiles and n � 5), Lu et al noticed
that the (n − 1)-fold resonance splitting identified in finite
semiconductor superlattices is applied to the finite magnetic
GSLs examined [19].

The purpose of this paper is to show that the (n − 1)-
fold resonance splitting mentioned is truly applied to all of
the finite GSLs, electric or magnetic, regardless of potential
profiles. To this end, using the transfer matrix approach,
we have derived an exact expression of the transmission
probability across a finite GSL with an arbitrary number of
barriers n in two cases of periodic potentials: rectangular
electric potential and δ-function magnetic potential. In both
cases, obtained transmission probabilities show two types
of resonance energy (RE): (i) the barrier-induced REs that
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are entirely determined by the single-barrier parameters and
completely insensitive to a change in the barrier number n

[n � 1] and (ii) the well-induced REs that undergo the (n−1)-
fold splitting as n increases. These REs could be developed
only in the energy ranges corresponding to the minibands in
the electronic band of the infinite GSL of the same barrier
structure. The analytical findings are fully supported by
numerical calculations performed for finite GSLs with periodic
potentials of a different nature and shape and, therefore, they
are assumed to be equally applied to all of the finite GSLs
regardless of potential nature and barrier shape. The most
impressive reflection of the resonance behavior of transmission
probability, including the (n − 1)-fold resonance splitting
could be found in the conductance which is numerically
demonstrated for two types of electric GSLs with rectangular
and triangular potential barriers.

The paper is organized as follows. Section 2 is devoted
to a systematic study of the transmission probability across
electric GSLs that includes (i) to derive an analytical expression
of the transmission probability across a finite electric GSL
with an arbitrary number of rectangular potential barriers,
(ii) to numerically calculate the transmission probability across
the finite electric GSLs with different numbers of triangular
potential barriers and (iii) to calculate the conductance of the
finite electric GSLs examined. Section 3 shows an analytical
expression of the transmission probability across a finite
magnetic GSL with an arbitrary number of δ-function potential
barriers. Results obtained in each section are discussed in
detail to identify the resonance spectrum showing the (n − 1)-
fold resonance splitting. The paper concludes with a brief
summary in section 4.

2. Electric graphene superlattices

This section is devoted to the finite/infinite GSLs with periodic
electric potentials (electric GSLs—EGSLs). We first derive
an analytical expression of the transmission probability, Tn,
for a finite EGSL with an arbitrary number of rectangular
potential barriers, n. The obtained expression shows a full
resonance spectrum of Tn, including the (n−1)-fold resonance
splitting discussed. Then, the resonance properties of Tn

found analytically are numerically recognized for one more
kind of finite EGSLs—the EGSL with triangular potential
barriers. The section concludes by showing the conductances
which simply reflect the resonance behavior of the transmission
probabilities calculated.

2.1. Analytical expression for EGSLs with rectangular
potential barriers

We consider a finite 1D EGSL with n rectangular barriers
grown along the x-direction as schematically illustrated in
figure 1. We are interested in the case where the low-energy
properties of charge carriers in the structure can be described
by the massless Dirac-like Hamiltonian

He = vF �σ p̂ + V (x), (1)

where vF ≈ 106 m s−1 is the Fermi velocity of carriers
in pristine graphene, �σ = (σx, σy) are the Pauli matrices,
p̂ = (px, py) is the in-plane momentum and V (x) describes
the periodic potential.

In the simplest case of a single rectangular barrier [n = 1],
solving the Hamiltonian of equation (1) immediately gives the
following expression for the transmission probability [20] (see
appendix):

T1 = [ 1 + sin2(kBdB)[kyU/h̄vFkWkB]2 ]−1, (2)

where U is the barrier height, dB is the barrier width, ky is the
y-component of the wave-vector (which is unaffected by the
1D potential V (x)) and kB(W) is the x-component of the wave-
vector inside (outside) the barrier region. Given an incident
energy E, the wave-numbers kB(W) are defined as

kλ =
√

[(E − η · U)/h̄vF]2 − k2
y ; η = 1 or 0

for λ = B or W, respectively. (3)

The ky-dependence of T1 in equation (2) expresses a
fundamental difference in transmission behavior between
graphene and conventional semiconductors. If ky = 0 the
transmission probability T1 is always equal to unity, regardless
of the barrier height as well as the barrier width. This is
the so-called Klein tunneling—a relativistic effect observed
in graphene.

On the other hand, given a non-zero value of ky , the
transmission probability T1 of equation (2) varies with the
incident energy E and reaches the maximum value of unity
at the energies which satisfy the equality sin(kBdB) = 0. This
equality with kB defined from equation (3) yields the REs of
the transmission probability T1 for a single rectangular barrier:

E
(±)
l = U ± h̄vF

√
k2
y + l2π2/d2

B; l − integers. (4)

For example, figure 1 presents the transmission probability T1

of equation (2) for the barrier with U = 8� and dB = 5 nm
at ky = 0.1 nm−1 (� ≡ h̄vF/2dB , so if dB = 5 nm then
� ≈ 66 meV). The arrows indicate the two REs, E

(−)
1 and

E
(+)
1 , determined from equation (4).

In the opposite limit of large n, an infinite periodic
potential produces minibands in the electronic band structure
of GSLs. Using the transfer (T) matrix method, it was shown
that the electronic band structure problem of infinite EGSLs
with rectangular potential barriers is effectively reduced to
solving the following transcendental equation for the Bloch
wave-number kx [10, 20]:

cos(kxd) = f, (5)

where

f = cos(kWdW) cos(kBdB) +
(U/h̄vF)

2 − (k2
W + k2

B)

2kWkB

× sin(kWdW) sin(kBdB), (6)

dW is the well width and d = dB +dW is the superlattice period.
Solutions of equation (5) directly give the electronic band

structure that consists of the minibands separated by the
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Figure 1. (a) Transmission probability T1 for a single rectangular
barrier of U = 8� ≡ 8(h̄vF/2dB) and dB = 5 nm is plotted versus
the incident energy E (for reference: � ≈ 66 meV if dB = 5 nm);
arrows indicate the REs, E

(−)

1 and E
(+)

1 , from equation (4); inset: the
rectangular potential model under study.
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Figure 2. (a) Cut of the band structure along the
(ky = 0.1 nm−1)-plane of the infinite EGSL with barrier parameters
given in figure 1 and dW = dB . (b) Transmission probability Tn of
equation (7) is plotted as a function of the incident energy E for
finite EGSLs with different numbers of rectangular barriers n (U
and dB = dW are the same as in (a)); arrow indicates the
barrier-induced RE E

(−)

1 which is completely insensitive to n
(energy in units of � ≡ h̄vF/2dB ).

band gaps. Figure 2(a) shows, for example, the cut of the
band structure along the (ky = 0.1 nm−1)-plane, calculated
numerically from equation (5) for the EGSL with the same
barrier parameters as in figure 1 and the well width dW = dB .
The solid lines describe the minibands which are separated
from each other by the band gaps. Furthermore, once the T-
matrix is known one can readily calculate the transmission
probability and then the transport characteristics such as the
conductance and the shot noise spectrum power [10].

For a finite EGSL with an arbitrary number of rectangular
barriers, n, similar to that realized for finite semiconductor
superlattices in [2], we are able to obtain an exact expression

of the transmission probability (see appendix):

Tn = [ 1 + Q2(kyU/h̄vFkWkB)2 sin2(kBdB) ]−1, (7)

where

Q = f n
+ − f n

−
2
√

f 2 − 1
(8)

with
f± = f ±

√
f 2 − 1, (9)

f defined in equation (6) and (the power) n being the number
of barriers.

The transmission probability expression of equation (7)
is valid for any finite n, including the case of no barrier,
n = 0, when Tn ≡ 1. Particularly, if n = 1, the factor Q

equals to unity [see equations (8) and (9)] and equation (7)
is then reduced to equation (2). Note that the two factors ky

and sin2(kBdB) are shown at the same place in both T1 of
equation (2) and Tn of equation (7). This implies that the single
barrier transmission properties related to these factors, i.e. the
Klein tunneling effect and the REs of equation (4), should be
equally reserved for all of the finite EGSLs, regardless of the
barrier number n. Due to the fact that, given ky , these REs
of equation (4) are determined by only the barrier shape (i.e.
U and dB), they will be hereafter called the barrier-induced
REs. However, it should be emphasized that while the barrier-
induced REs are reserved for finite EGSLs with an arbitrary
number of barriers, n, due to the factor Q2 in equation (7)
the whole resonance spectrum of a finite EGSL should depend
on n.

Actually, the factor Q2 in equation (7) carries all the
specific resonance features of the finite EGSLs studied.
Regarding the definition of Q in equation (8) we consider two
cases of the quantity f . Note here that for a given EGSL and a
given incident angle θ , ky = kW cos θ , this quantity is entirely
determined by the incident energy E.

In the case of f 2 > 1, the equation (5) for infinite
EGSLs has no real solution of kx . This implies a presence
of band gaps at the corresponding energies in the electronic
band of infinite EGSLs. On the other hand, in this case both
quantities f± of equation (9) are real and therefore Q2 is always
positive. The fact that there is nowhere for Q vanished in the
ranges of incident energy, corresponding to the condition of
f 2 > 1, means that all REs which might have emerged in
these energy ranges should be those associated with only the
factor sin2(kBdB), i.e. barrier-induced REs (see below).

In the opposite case of f 2 < 1, the quantities f± of
equation (9) become complex. To search for the Q-behavior
in this case, it is convenient to write f in the form f = cos ϕ

with 0 < ϕ < π . Then, from equations (8) and (9) we have

Q = sin nϕ

sin ϕ
; 0 < ϕ < π . (10)

The transmission probability Tn of equation (7) reaches
the maximum of unity at the energies making Q vanished.
Certainly, the quantity Q of equation (10) describes well the
particular cases of n = 0 and n = 1 discussed above. For
n = 2 (double-barrier structure) Q is vanished at the single
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energy, corresponding to ϕ = π/2. That is just the RE of
T2. Since this RE could be developed only in the presence
of the well, we will call it the well-induced RE. Increasing
the number of barriers/wells, while the barrier-induced REs of
equation (4) are firmly unchanged, the well–well correlations
cause the well-induced REs split. For a given n, clearly, there
are (n − 1) values of ϕ making Q of equation (10) vanished:
ϕ = (m/n)π with m = 1, 2, ..., n − 1. Each of these ϕ-
values determines a value of f and further, a RE. Thus, the
well-induced RE developed originally in the double-barrier
structure becomes split into (n − 1) sub-REs as the barrier
number n increases. This is just the (n − 1)-fold resonance
splitting claimed in [1, 2, 19]. Here, it should be noted that in
the considered case of f 2 < 1, the equation (5) has the real
solutions which describe minibands in the electronic band of an
infinite EGSL. So, we arrive at an important point: the well-
induced REs in Tn that can be developed only in the energy
ranges corresponding to the minibands in the electronic band
of the infinite EGSL with the same periodic potential undergo
the (n − 1)-fold splitting as n increases.

Concerning the location of barrier-induced REs, note that
the condition which determines these REs, sin2(kBdB) = 0,
converts the quantity f of equation (6) into f =
cos(kWdW) cos(kBdB) with f 2 < 1. This means that, like
well-induced REs, barrier-induced REs could be developed
only in the energy ranges corresponding to the minibands in
the electronic band of the related infinite EGSL.

Thus, equation (7) describes fully the transmission
properties of finite EGSLs with rectangular potential barriers.
It seems that there are two types of REs (where the transmission
becomes perfect): (i) barrier-induced REs that are entirely
determined by the single barrier parameters and are the same
for all finite EGSLs, regardless of barrier number n and
(ii) well-induced REs that undergo the (n−1)-fold splitting as n

increases. All of the REs could be developed only in the energy
ranges corresponding to the minibands in the band structure
of the related infinite EGSL. As a demonstration of these
statements we show in figure 2(b) the transmission probability
Tn of equation (7) plotted as a function of the incident energy
E for finite EGSLs with a different number of rectangular
barriers, n. Clearly, (i) all of the REs appeared in the energy
ranges corresponding to the minibands in figure 2(a), (ii) the
barrier-induced RE (E(−)

1 indicated by the arrow) is the same
for all finite EGSLs examined and (iii) the well-induced REs
undergo the (n − 1)-fold splitting as the barrier number n

increases (see the peaks in the energy ranges of ≈(1.5–3.5),
(4.5–6.5) and (7.8–9.8 �) in figure 2(b)). Note that the barrier-
induced REs may share the place with well-induced REs in a
narrow energy range, depending on ky (see the energy range of
(1.5–3.5 �) in figure 2(b)). Such a coexistence of both types
of REs might lead to a mistake in observing the (n − 1)-fold
resonance splitting effect.

2.2. Numerical demonstrations for EGSLs with triangular
potential barriers

For periodic potential barriers other than rectangular ones,
the Tn-expressions similar to equation (7) could be derived in
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Figure 3. Transmission probability Tn as a function of the incident
energy E: numerical calculations for finite EGSLs with different
numbers of triangular barriers n (U = 8� ≡ 8(h̄vF/d) and
d = 8 nm); arrow indicates the barrier-induced RE which is
insensitive to n (note: at this energy the transmission is imperfect
and the resonance peaks become lower as n increases). Inset: the
triangular potential barrier model under study.

the same way as the T-matrix method as realized above (see the
magnetic GSL in the next section as an example). Here, we
limit ourselves to presenting numerical calculations for one
more electric potential barrier model—the one-dimensional
triangular barriers illustrated in figure 3. In this model, for
a single lattice unit, 0 � x � d, the potential V (x) in the
Hamiltonian of equation (1) takes the form V (x) = (U/d)x,
where U and d are barrier height and superlattice period,
respectively. Note that in this potential model a multi-
barrier structure (finite EGSL) is characterized by the three
parameters: U , d and the barrier number n.

In general, the transmission probability across any multi-
barrier structure of periodic potentials can be numerically
calculated by means of the T-matrix as suggested in [21].
We have in this way calculated the transmission probability
Tn for finite EGSLs with a different number of triangular
barriers, n4. Results shown in figure 3 are for the barriers
of U = 8� and d = 8 nm at ky = 0.1 nm−1 (� ≡ h̄vF/d).
On the one hand, the resonance spectrum of Tn in this figure is
rather similar to that in figure 2(b). The (n − 1)-fold splitting
of well-induced REs is clearly recognized (see the peaks in
the energy ranges of ≈(1.6–3.2), (4.8–6.6) and (7.8–9.8 �)).
These energy ranges are believed to be corresponding to the
minibands in the electronic band of the infinite EGSL with the
same periodic potential (by checking the band structure similar
to figure 2(a)).

On the other hand, there is an important difference
between figure 3 (for triangular barriers) and figure 2(b) (for
rectangular barriers) in relation to the ‘barrier-induced’ REs.
At these energies, all of Tn are equal to unity in figure 2(b)
(perfect transmission), while figure 3 showsT1 < 1 and evenTn

4 In T-matrix numerical calculations the problem of instability may be
encountered in relation to the terms of exp(±ikd) when k is imaginary and d

is large (see appendix A). Such the numerical instability is not appeared in
the present calculations with parameters chosen appropriately.
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decreasing as n increases (enhanced imperfect transmission).
Such an imperfect transmission at the barrier-induced REs
observed in figure 3 is first related to a smoothness of the
triangular potential that partly prevents the Klein tunneling
across the barrier. In addition, this smooth potential effect
should be accumulated with increasing barrier number that
makes Tn decrease as n increases. Such Tn-behavior at the
barrier-induced REs identified in figure 3 for finite EGSLs
with triangular potential barriers should be observed in the
resonance spectrum of any finite EGSL with smooth potential
barriers.

It is worth mentioning that we have carried out numerical
calculations of Tn(E) for finite EGSLs in the potential models
other than those considered above. The obtained results are all
similar to figure 3 in supporting the presence of two types of
REs as deduced from equation (7). The (n−1)-fold resonance
splitting is the property of (only) the well-induced REs and
should be observed in the resonance spectrum of any finite
EGSL, regardless of the potential barrier profile.

2.3. Conductance

An accurate reflection of the resonance behavior of
transmission probability could be found in the conductance.
Given the transmission probability T (E, θ), the conductance
at zero temperature can be calculated within the Landauer
formalism:

G = G0

π/2∫
−π/2

T (E, θ) cos θdθ, (11)

where G0 = 4e2EFW/h̄2vF, EF is Fermi energy and W is
the sample size along the y-direction. Using equation (11)
the conductance G has been calculated for two types of finite
EGSLs with Tn given in figures 2 (rectangular barriers) and
3 (triangular barriers). The obtained results are presented in
figure 4.

In both figures 4(a) and (b) all three curves of different n

reach their highest peaks at the energy close to the barrier-
induced RE (≈1.6 � in (a) and ≈1.1 � in (b)). For the
rectangular barriers in figure 4(a) all three peaks at this energy
are equal in height, independent of the barrier number n. For
the triangular barriers in figure 4(b), however, in consistency
with the transmission probabilities in figure 3 these peaks are
lowered as n increases.

Importantly, beyond the highest peak at the barrier-
induced RE the peaks in G(E)-curves at higher energies in
both figures 4(a) and (b) reflect well the (n−1)-fold resonance
splitting found in the transmission probability (again, due to
a smoothness of triangular barriers this splitting is less clear
in figure 4(b) compared to figure 4(a) for sharp barriers of
rectangular profile).

3. Magnetic graphene superlattices

Now, we consider the GSLs with periodic magnetic potential
barriers (magnetic GSLs—MGSLs). The (n − 1)-fold
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Figure 4. Conductance G (in units of G0) is plotted as a function of
the incident energy E (in units of �) for the finite EGSLs with
different numbers of rectangular potential barriers (a) (Tn given in
figure 2) or triangular potential barriers (b) (Tn given in figure 3).
The G(E)-dependence adequately reflects the resonance behavior of
Tn(E).

resonance splitting was numerically demonstrated for two
types of MGSLs with step and sinusoidal barriers [19].
Actually, there is a close relation in electronic properties
between corresponding EGSLs and MGSLs [22]. So,
certainly, it is possible to derive analytical expressions of the
transmission probability for the finite MGSLs in the same way
as that realized above for the EGSLs.

Indeed, for definition, we consider the case of δ-function
magnetic barriers as schematically illustrated in figure 5. The
magnetic field is assumed to be uniform in the y-direction and
staggered as periodic δ-function barriers of alternative signs in
the x-direction, so for a single lattice unit the field profile has
the form

�B = B0[δ(x + dB/2) − δ(x − dB/2)] ẑ,

where B0 is the barrier strength and dB is the barrier width.
The corresponding vector potential �A in the Landau gauge is

�A(x) = B0lB	(dB/2 − |x|) ŷ,

where 	(x) is the Heaviside step function and lB =√
h̄c/eB0 is the magnetic length. Due to a richness

of fundamental electronic properties and a simplicity of
mathematical treatment the infinite MGSLs with these δ-
function barriers have been extensively studied [11, 15, 17].
The possibility of realizing multiple δ-function magnetic
barriers in experiments has been discussed in detail in [17].

In the case of MGSLs with the vector potential �A, instead
of He of equation (1) we have to deal with the Hamiltonian of
the form

Hm = vF �σ(p̂ + e �A),

where e is the elementary charge. It seems that the
transmission probability Tn for the finite MGSLs described
by this Hamiltonian can be derived in exactly the same way as

5
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Figure 5. (a) Cut of the band structure along the
(ky = 0.1 nm−1)-plane of the infinite MGSL with A0 = 0.4,
dB = dW = 5 nm. (b) Transmission probability Tn of equation (14)
is plotted as a function of the incident energy E for finite MGSLs
with different numbers of δ-function barriers n (A0 = 0.4,
dB = dW = 5 nm); arrow indicates the barrier-induced RE E

(+)

1
which is insensitive to n. Inset: the δ-function magnetic potential
barrier model under study.

that realized above for EGSLs. So, it is reasonable to mention
only the differences between the two problems.

The transmission probability for a single δ-function
magnetic barrier takes the form

T1 = [ 1 + sin2(kBdB)[eA0E/h̄2vFkWkB]2 ]−1, (12)

where

kλ =
√

(E/h̄vF)2 − (ky + η · eA0/h̄)2 ; η = 1 or 0

for λ = B or W, respectively.

These expressions are respectively in place of equations (3) and
(4) in the case of EGSLs. Note that different from equation (3)
there is no ky-factor in the second term in T1 of equation (12).
So, the transmission probability through a single δ-function
magnetic barrier might be finite even at ky = 0 (The ky-
dependence of T1 (12) is numerically demonstrated in [17]).

The transmission probability T1 of equation (12) shows
the REs

E
(±)
l = ±h̄vF

√
(ky + eA0/h̄)2 + l2π2/d2

B; l − integers,

which are similar to REs of equation (4) determined entirely
by the single barrier parameters (barrier-induced REs).

The transcendental equation of equation (5) is equally
applied for the δ-function magnetic barriers, but the quantity
f of equation (6) is now replaced by

f = cos(kWdW) cos(kBdB) − (eA0/h̄)2 + (k2
W + k2

B)

2kWkB

× sin(kWdW) sin(kBdB). (13)

The only difference between the two quantities f in equa-
tion (6) (for electric rectangular barriers) and equation (13)

0.5 0.6 0.7

T
ra

ns
m

is
si

on
 P

ro
ba

bi
lit

y 
T

 n (
E

)

E (Γ)
0.6 0.8 1 1.2

E (Γ)

k
y
 = −0.6

k
y
 = −0.5

k
y
 = −0.4

k
y
 = −0.3

k
y
 = −0.2

n=14

n=12

n=10

n=8

n=6

n=4

n=2

(a) (b)

Figure 6. (a) The (n − 1)-fold resonance splitting is demonstrated
in more detail in a narrow energy range from figure 5, but n is now
up to 15. (b) To demonstrate the ky-dependence of the resonance
spectrum of transmission probability: T3(E) for the same finite
MGSL with δ-function potential barriers
(A0 = 0.8, dB = dW = 5 nm and n = 3) in the same energy range,
but at different ky-values in units of nm−1 (given in the figure).

(for δ-function magnetic barriers) is that the product kyU in
equation (6) is replaced by eA0E/h̄ in equation (13).

Furthermore, the transmission probability through a finite
MGSL with an arbitrary number of δ-function barriers can be
obtained in the form

Tn = [ 1 + Q2(eA0E/h̄2vFkWkB)2 sin2(kBdB) ]−1. (14)

The rest of the expressions of Q and f±, equations (8) and (9),
are the same for both EGSL and MGSL problems under study.

It is important to note that while the transmission
probabilities Tn of equations (7) and (14) are very different
in the ky-dependence, all the factors related to the REs in
these two Tn-expressions are exactly the same (i.e. sin2(kBdB)

and Q2). So, everything we have stated about the resonance
spectrum of finite EGSLs in the previous section, including the
(n − 1)-fold splitting of the well-induced REs, is undoubtedly
reserved for the finite MGSLs considered.

As a demonstration, we present in figure 5(b) the
transmission probability Tn of equation (14) plotted versus the
incident energy E for finite MGSLs with different numbers
of δ-function barriers (A0 = 0.4 and dB = dW = 5 nm).
Figure 5(a) shows the miniband structure of the corresponding
infinite MGSL. Clearly, like figures 2 and 3 for finite EGSLs,
figure 5(b) shows (i) the barrier-induced REs E

(+)
1 (indicated

by the arrow) that are the same (≈0.8 �) for all the MGSLs
with different n and (ii) the well-induced REs that undergo the
(n − 1)-fold splitting. These REs are all emerged in the range
of energy corresponding to minibands in figure 5(a).

In order to see the resonance spectrum in a large range of
energy all the figures 2, 3 and 5 are limited to some small values
of n. In addition, figure 6(a) is focused on showing in more
detail the (n − 1)-fold resonance splitting in a narrow energy
range, ≈0.5–0.7 �, separated from figure 5. In this narrow
energy range it is possible to distinguish the well-induced
resonance peaks even if n is relatively large. Figure 6(a) is
a typical demonstration of the (n− 1)-fold resonance splitting
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in which we are interested. Similar pictures could certainly be
set in other energy ranges and for various types of MGSLs as
well as EGSLs.

Finally, we would like to note that besides the structural
parameters U , dB , dW and n, the resonance spectrum of a
finite GSL depends on the ky-value. This can be seen, for
example, in figure 6(b), where the transmission probabilities
are shown in the same energy range for the same finite MGSL
with A0 = 0.8, dB = dW = 5 nm and n = 3, but at different
values of ky . This figure obviously demonstrates a strong
and unsystematic ky-dependence of the position as well as the
half-width of resonance peaks. Due to this ky-dependence, an
appropriate ky-value should be chosen to gain a clear picture
of the (n − 1)-fold resonance splitting.

4. Conclusions

We have systematically studied the resonance spectrum of the
transmission probability through finite EGSLs and MGSLs
with different potential barrier shapes. For the finite EGSL
with rectangular potential barriers and the finite MGSL with δ-
function potential barriers the transmission probability Tn(E)

has been derived analytically. The obtained Tn(E)-expressions
show two types of REs, barrier-induced and well-induced. The
barrier-induced REs are entirely determined by the single-
barrier parameters (given ky) and remain unchanged as the
barrier number n varies [n � 1]. The well-induced REs
undergo the (n − 1)-fold splitting as the barrier number n

increases. These REs of Tn all emerged in the energy range
corresponding to the minibands in the electronic band of the
related infinite GSL.

The analytical findings are fully supported by numerical
calculations carried out for finite EGSLs/MGSLs with different
potential barrier shapes. So, it is reasonable to assume that they
should be equally applied to all of the finite GSLs, regardless
of potential nature (electric or magnetic) and potential barrier
shape. Although the (n − 1)-fold resonance splitting found in
the present work is the same as that claimed before in [1, 3, 19],
it is worth emphasizing that this splitting is only associated
with the well-induced REs. Actually, a typical reflection of the
resonance behavior of transmission probabilities Tn, including
the (n−1)-fold splitting of the well-induced REs, can be found
in the conductance.

In fact, the GLSs considered in the present work are
the single-layer graphene-based superlattices. For the finite
bilayer-graphene-based superlattices we are only able to cal-
culate Tn numerically. Remarkably, numerical calculations
performed for two potential models, the electric potential stud-
ied in [23] and the magnetic potential studied in [24], show
seemingly the (n − 1)-fold resonance splitting similar to that
presented above for single-layer graphene superlattices.
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Appendix

Since the transmission probability T can be exactly expressed
in terms of T -matrix elements,

T = 1 − |T21|2
|T22|2 , (A.1)

to find T for a structure we should calculate the corresponding
T -matrix.

(a) Transmission probability T1 of equation (2). In the
case of constant potential, V (x) = Vn = constant, the
wavefunctions of the Hamiltonian of equation (1) can be
found in the form 
(x, y) = MnRn(x)Cn exp(ikyy) [21],
where

Mn =
(

1 1
h̄vF(kn+iky)

E−Vn

h̄vF(−kn+iky)

E−Vn

)
, (A.2)

Rn = diag
[
eiknx, e−iknx

]
, (A.3)

kn =
√

[(E − Vn)/h̄vF]2 − k2
y and Cn = (An, Bn)

T being

the wavefunction amplitude.
So, in solving the Hamiltonian of equation (1) for the
single rectangular potential defined as

V (x) =
{

U if x0 � x � x0 + dB,

0 otherwise,

the continuity of the wavefunctions at x = x0 and x =
x0 + dB reads:

MWRW(x0)C1 = MBRB(x0)C2

MBRB(x0 + dB)C2 = MWRW(x0 + dB)C3.

Here, C1, C2 and C3 are respectively the amplitudes of
wavefunctions in the left, inside and the right of the
barrier; MW(B) and RW(B) are respectively defined in
equations (A.2) and (A.3) for Vn = 0(U).
From the T -matrix relation, C3 = T C1, the T -matrix for
the single barrier considered can be obtained as

T (x0) = R−1
W (x0 + dB)M−1

W MBRB(dB)M−1
B MWRW(x0).

Regarding the expression of equation (A.1), this T -matrix
immediately gives the transmission probability T1 of
equation (2). Here, note that T1 doesn’t depend on x0

as it should.
The matrix T (x0) has an important property

T (x0) = R−1
W (x0)T (0)RW(x0), (A.4)

which is useful for calculating the T -matrix for a multi-
barrier structure.

(b) Transmission probability Tn of equation (7). For a finite
EGSL with n rectangular barriers the potential V (x) in the
Hamiltonian of equation (1) has the form

V (x) =
{

U if (j − 1)d � x � (j − 1)d + dB,

0 otherwise,
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where j is an integer, 1 � j � n, U , dB and d are defined
above.
Actually, the T -matrix for this multi-barrier potential can
be calculated as

Tn = T (nd)...T (2d)T (d)T (0). (A.5)

Using equation (A.4), we writeTn = R−n
W (d)[RW(d)T (0)]n,

where the matrix P(d) ≡ RW(d)T (0) is often called a
characteristic matrix. It could be shown that [17]

[P(d)]n =
(

p11Qn − Qn−1 p12Qn,

p21Qn p22Qn − Qn−1

)
,

where Qn is given in equation (8) and pij (i, j = 1, 2) are
components of the matrix P(d).

Using the Tn-matrix of equation (A.5), some lengthy,
but elementary algebraic calculations give the transmission
probability of equation (7).
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