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Non-Markovianity of a two-level system transversally coupled to multiple bosonic reservoirs

Zhong-Xiao Man,1 Nguyen Ba An,2,* and Yun-Jie Xia1

1Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University,
Qufu 273165, China

2Center for Theoretical Physics, Institute of Physics, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet,
Cau Giay, Hanoi, Vietnam

(Received 2 September 2014; published 1 December 2014)

Dynamics of a two-level open system transversally coupled to a single zero-temperature bosonic reservoir
may be Markovian or non-Markovian, depending on whether the system-reservoir coupling is weak or strong.
In this paper, we show that when the system is simultaneously coupled to N reservoirs its dynamics is always
non-Markovian, provided that N � Ncr, with Ncr a critical number depending on the reservoirs’ parameters.
Quantitatively, the non-Markovianity N is shown proportional to the number of contributed reservoirs. We
explain our results in terms of the pseudomode theory, finding out that when N � Ncr the pseudomodes of all
the reservoirs can always partially return information back to the system, no matter how strong the couplings
between the system and each individual reservoir.
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I. INTRODUCTION

Any realistic quantum system of interest should be treated
as an open system because of its unavoidable coupling to
various environments [1]. A thorough understanding of open
system dynamics is not only a fundamental issue but also
relevant to practical applications, such as in the development
of quantum information technology [2]. In the usually used
Markov approximation, the evolution of an open system is
described by a family of completely positive trace-preserving
reduced dynamical maps and a corresponding quantum master
equation with a Lindblad generator [3]. Physically, the Markov
approximation has priorly assumed a monotonic one-way
decay of information from the system to the environment.
However, in many situations quantum systems exhibit non-
Markovian behavior [4–16] when there is a backflow of
information from the environment to the system due to the
memory effect. Correspondingly, some characteristics of the
system (e.g., the coherence and the entanglement) would
partially revive during the time evolution. This not only
signifies a real physical phenomenon but also proves useful
in practical schemes relying on non-Markovian evolutions,
such as quantum-state engineering and quantum control [17].

So far several scenarios have been recognized under
which the non-Markovian dynamics can happen, for example,
strong system-environment coupling, structured reservoirs,
low temperatures, and initial system-environment correlations
[18–22]. In addition to those conventional mechanisms, some
others have also been found able to induce non-Markovian
dynamics of the system. As has been shown [23], revivals of
quantum correlations of a composite system may occur when
the environment is classical and does not backreact on the
quantum system. Such a prediction has been realized by using
an all-optical experiment [24]. Furthermore, for a bipartite
open system where each subsystem locally interacts with a
subsystem of a composite environment, the initial correlations
between the subsystems of the environment can lead to
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non-Markovian behavior of the total open system, although
the local dynamics of both subsystems of the system are
Markovian [25]. Subsequently, an experimental demonstration
of that phenomenon has also been achieved by using a photonic
open system [26]. Although the unconventional mechanisms
are few, there are still unknown strategies that would induce
non-Markovian dynamics of an open quantum system.

A system undoubtedly exhibits Markovian behavior when
it is weakly coupled to a single environment. However, what
will happen if the system is coupled simultaneously to many
environments? The consideration of simultaneous affections
of multiple environments on a open system is relevant in many
realistic situations where the system may be strongly coupled
to a principal environment and meanwhile weakly to the minor
ones [27,28]. For example, in a quantum dot the electron
spin may be influenced strongly by the surrounding nuclei
and weakly by the phonons [29]. The surrounding nitrogen
impurities constitute the principal bath for a nitrogen-vacancy
center, while the carbon-13 nuclear spins also have some
influences on it [30]. A similar scenario occurs for a single-
donor electron spin in silicon [31]. Intuitively, addition of an
environment means addition of a decay channel and, hence,
the system’s information would monotonically flow along
all those Markovian environments, retaining the Markovian
dynamics of the system. Nevertheless, as we shall show here,
this expectation is true only when the number of involved
environments is not large enough. In order to make clear
this question, we consider a two-level system (TLS) which
is coupled to N reservoirs of field modes initially in the vacua.
For N = 1, i.e., there is only one reservoir, the weak (strong)
coupling regime leads to the Markovian (non-Markovian)
dynamics. However, in the presence of N > 1 reservoirs, we
find out that, independent of the coupling regime, the system
always exhibits non-Markovian dynamics if N is equal to or
exceeds a critical value Ncr. That is, N � Ncr is the condition
of triggering non-Markovian dynamics of the system, even in
the weak-coupling regimes. Moreover, we shall show that the
degree of the non-Markovian process, quantified by the so-
called non-Markovianity N , is proportional to the number N

of the contributed reservoirs. Therefore it provides a possible
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way to trigger or enhance the non-Markovian dynamics of a
TLS by increasing the number of reservoirs. To reveal how the
system retrieves the decayed information from the reservoirs,
particularly in the weak-coupling regimes, we shall examine
the information flow between the system and reservoirs by
means of the pseudomode theory [32,33]. We find that when
N � Ncr, the pseudomodes of the reservoirs can partially
return information back to the system, regardless of magnitude
of the couplings between the system and individual reservoirs.

We organize our paper as follows. In Sec. II, we first
present our model of a TLS simultaneously interacting with
N reservoirs and the notion of non-Markovianity. Then,
focusing on the reservoirs with Lorentzian spectral densities,
we demonstrate emergence of the system’s non-Markovian
dynamics under the condition N � Ncr as well as enhancement
of non-Markovianity by increasing the number of reservoirs.
In Sec. III, we make use of the pseudomode theory to explain
our results. The final section, Sec. IV, is the conclusion.

II. THE MODEL AND THE NON-MARKOVIANITY

Let us for concreteness consider a TLS with ground state
|0〉 and excited state |1〉 being coupled to N independent
reservoirs of field modes assumed initially in the vacua. The
total Hamiltonian is given by (with � = 1)

Ĥ=ω0

2
σ̂z+

N∑
n=1

∑
k

[ωn,kâ
†
n,kân,k + gn,k(â†

n,kσ̂− + ân,kσ̂+)],

(1)
where ân,k (â†

n,k) is the annihilation (creation) operator of field
mode k with frequency ωn,k in reservoir n, σ̂± the raising and
lowering operators of the TLS with transition frequency ω0,

and gn,k the coupling between the TLS and mode k in the nth
reservoir.

Suppose the initial state of the TLS is of the form

|φ(0)〉S = c0(0) |0〉S + c1(0) |1〉S (2)

and the state of N vacuum reservoirs reads
∏N

n=1 |0〉n,r with
|0〉n,r = ∏

k=1 |0k〉n,r . Then the total state |�(0)〉 = |φ(0)〉S ⊗∏N
n=1 |0〉n,r evolves after time t > 0 into the state

|�(t)〉 = [c0(0)|0〉S + c1(t)|1〉S] ⊗
N∏

n=1

|0〉n,r

+ |0〉S ⊗
N∑

n=1

∑
k

cn,k(t)|1k〉n,r , (3)

in which the amplitude c0(0) is constant, while c1(t) and cn,k(t)
are time dependent. From the Schrödinger equation, we obtain
the time development of these amplitudes in the interaction
picture, which are governed by N + 1 differential equations:

d

dt
c1(t) = −i

N∑
n=1

∑
k

gn,ke
i(ω0−ωn,k)t cn,k(t), (4)

d

dt
cn,k(t) = −ig∗

n,ke
−i(ω0−ωn,k)t c1(t). (5)

Integrating Eq. (5) with the initial condition cn,k(0) = 0 and
inserting the solutions into Eq. (4), one obtains an integro-

differential equation for the amplitude c1(t)

d

dt
c1(t) = −

∫ t

0

N∑
n=1

∑
k

|gn,k|2ei(ω0−ωn,k)(t−t ′)c1(t ′)dt ′. (6)

The sum
∑

k |gn,k|2ei(ω0−ωn,k)(t−t ′) in the above equation is
recognized as a correlation function fn(t − t ′) of the nth
reservoir, which in the limit of a large number of modes can
be changed to an integration in terms of the spectral density
Jn(ω) as

fn(t − t ′) =
∫

dωJn(ω) exp[i(ω0 − ω)(t − t ′)]. (7)

Therefore the amplitude c1(t) can be reexpressed as

d

dt
c1(t) = −

∫ t

0
dt ′c1(t ′)F (t − t ′), (8)

with the kernel F (t − t ′) ≡ ∑N
n=1 fn(t − t ′). The correlation

function fn(t − t ′) in Eq. (7) has actually been written as a
Fourier transform of the nth reservoir’s spectral density and
by virtue of the linearity of which we note that the kernel
F (t − t ′) can be expressed as a Fourier transform of J(ω) =∑N

n=1 Jn(ω), namely,

F (t − t ′) =
∫

dωJ(ω) exp[i(ω0 − ω)(t − t ′)]. (9)

The implication of expression (9) is clear: the N reservoirs
that interact simultaneously with one and the same system are
tantamount to a “single” reservoir with the “combined spectral
density” J(ω) being the sum of spectral densities Jn(ω) of all
the N individual reservoirs. For convenience, we express the
dynamics of the TLS by the reduced density matrix in the
system’s basis {|1〉 , |0〉} as

ρ(t) =
(

ρ11(0)|c1(t)|2 ρ10(0)c1(t)
ρ01(0)c∗

1(t) ρ00(0) + ρ11(0)(1 − |c1(t)|2)

)
,

(10)

where ρ11(0) = |c1(0)|2, ρ00 = |c0(0)|2, and ρ10(0) =
ρ∗

01(0) = c1(0)c∗
0(0).

The non-Markovianity characterizing the degree of a non-
Markovian process can be quantified by different measures,
such as the Breuer-Laine-Piilo measure based on the dis-
tinguishability between different initial states of the system
[34], the Lorenzo-Plastina-Paternostro measure based on the
volume of accessible states of the system [35], and the
Rivas-Huelga-Plenio measure based on the entanglement that
the system shares with an ancilla [36]. It is known that in
general these measures are not always equivalent, and cases
have been found where one of them vanishes while another
one does not [37]. However, as for our considered situation,
the dynamical map described by the form (10) is recognized as
an amplitude damping channel, for which a reliable condition
to indicate the onset of non-Markovianity has been given as
d|c1(t)|/dt > 0, ∀ t > 0 ⇔ the system’s dynamics is non-
Markovian [37–39]. Actually, the dynamics of form (10) is
indivisible—a fundamental property of non-Markovianity—if
and only if (iff) d|c1(t)|/dt > 0 at any time [37]. Moreover,
some relevant non-Markovianity measures, such as those given
in Refs. [34–36], vanish at the same time iff the above condition
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does not hold [39]; therefore they give the same results for the
occurrence of non-Markovianity.

The dynamics of trace distance between two different
initial states ρ1(0) and ρ2(0) of an open system is one of
the most employed quantifiers. A Markovian evolution can
never increase the trace distance; hence the violation of
the contractiveness of the trace distance would signify the
non-Markovian dynamics of the system. Based on this concept,
the non-Markovianity can be quantified by a measure N
defined as [34]

N = max
ρ1(0),ρ2(0)

∫
σ>0

σ [t,ρ1(0),ρ2(0)]dt, (11)

in which σ [t,ρ1(0),ρ2(0)] = dD[ρ1(t),ρ2(t)]/dt is the rate of
change of the trace distance given by

D[ρ1(t),ρ2(t)] = 1
2 Tr|ρ1(t) − ρ2(t)|, (12)

where |A| =
√

A†A. In order to evaluate the non-Markovianity
N , we have to find a specific pair of optimal initial states to
maximize the time derivative of the trace distance. In Ref. [40]
it is proved that the pair of optimal states is associated with two
antipodal pure states on the surface of the Bloch sphere. We
thus adopt a pair of initial states ρ1,2(0) = |ψ1,2(0)〉〈ψ1,2(0)|
with |ψ1,2(0)〉 = (|0〉 ± |1〉)/√2 as the optimal one. In this
way, the time derivative of the trace distance can be derived in
a simple form as σ [t,ρ1(0),ρ2(0)] = d|c1(t)|/dt. Hence, the
variation of trace distance is consistent with that of |c1(t)|,
which is in turn related to the sum of the correlation functions
of all the involved reservoirs [cf. Eq. (8)].

Now consider the case when the spectral densities of all the
reservoirs are Lorentzian, which for an nth reservoir takes
the form Jn(ω) = γnλ

2
n/{2π [(ω − ω0)2 + λ2

n]}, with γn the
system-reservoir coupling strength and λ−1

n the reservoir’s
correlation time. Then the two-point correlation function of an
nth reservoir can be expressed as fn(τ ) = 1

2γnλn exp(−λn|τ |)
and the function c1(t) that determines the system’s dynamics
can be derived by solving Eq. (8) using the Laplace transform
technique. Here, to derive an analytical expression for the
system’s dynamics and visually present the effects through the
parameter N (the reservoirs’ number), we assume identical
reservoirs for simplicity. The calculation for the less trivial case
of nonidentical reservoirs (that actually matters in practice) is
more cumbersome and, as we shall show below by numerical
simulations, the result remains unchanged qualitatively. With
identical system-reservoir couplings, i.e., γn/λn = γ /λ ∀n, we
obtain the function c1(t) as

c1(t) = e−λt

[
cosh

(
Gt

2

)
+ λ

G
sinh

(
Gt

2

)]
, (13)

with G =
√

λ2 − 2Nγλ. Before dealing with an arbitrary N ,
we first recall the case of N = 1 (i.e., the TLS interacts
with one reservoir), that γ < λ/2 (γ > λ/2) represents the
weak (strong) system-reservoir coupling regime resulting in
the system’s Markovian (non-Markovian) dynamics. In the
presence of more than one reservoir, the system’s dynamics
would vary with N. As can be verified from Eq. (13), if
1 � N < [λ/2γ + 1] ([x] the integer party of x) and γ < λ/2,

then c1(t) monotonically decays to zero, indicating Markovian
behavior of the system. That is, if initially a TLS is in

contact with N Markovian reservoirs, each of which has
γ < λ/2, then the system dynamics remains Markovian when
1 � N < [λ/2γ + 1]. Yet, if more reservoirs are added so
that N � [λ/2γ + 1], then c1(t) oscillates in time, signifying
non-Markovian behavior of the system, no matter how large
the ratio λ/2γ. Therefore, Ncr = [λ/2γ + 1] can be regarded
as a critical number of reservoirs in the sense that the
condition N � Ncr guarantees the system’s non-Markovian
dynamics in any coupling regime. For instance, in a trivial
case of strong-coupling regime with γ > λ/2 (or, the same,
λ/2γ < 1), Ncr is found to be 1, i.e., just a single such
reservoir suffices to trigger the non-Markovian dynamics of
the system. Also, the greater the number of reservoirs (in
either strong- or weak-coupling regimes), the stronger the
non-Markovianity, as we shall show later. The interesting
fact arises when γ < λ/2 (i.e., when all the N reservoirs are
all in the weak-coupling regimes), as the system’s dynamics
can still become non-Markovian if N � [λ/2γ + 1] = Ncr.

Moreover, the weaker the system coupled to each reservoir
(i.e., the smaller the value of 2γ /λ), the greater the num-
ber N of reservoirs is required to guarantee the onset of
non-Markovian dynamics. In principle, the system’s non-
Markovian dynamics can always be obtained by just adding
a sufficiently large number of reservoirs as long as λ/2γ is
finite.

We plot the time evolution of trace distance D[ρ1(t),ρ2(t)]
of a TLS interacting with N identical reservoirs in Figs. 1(a)
and 1(b), while the reservoirs are different in Fig. 1(c). We
first choose γ = 3λ/8 for the coupling of the TLS, with each
reservoir implying a Markovian dynamics if N = 1. (See
the dashed curve in Fig. 1(a); D[ρ1(t),ρ2(t)] asymptotically
decays, as it should be.) However, if the TLS is allowed to
be simultaneously coupled to more reservoirs, D[ρ1(t),ρ2(t)]
becomes an oscillatory function of time, signifying an emer-
gence of the system’s non-Markovian dynamics. (In Fig. 1(a)
this happens already for N starting from 2.) In Fig. 1(b), where
a weaker coupling γ = 5λ/24 is chosen, the corresponding
critical number of reservoirs is found to be Ncr = 3 and, as
seen from the figure, the system dynamics remains Markovian
for N = 2 but becomes non-Markovian for N � 3. Although
in the above discussions the reservoirs are chosen to be
identical, the results are indeed general, as we demonstrate in
Fig. 1(c) for different system-reservoir couplings. Suppose the
TLS interacts simultaneously with N = 2 distinct reservoirs,
one has γ1 = λ/8 and the other has γ2 = 3λ/8, then the
system’s dynamics is Markovian [blue curve in Fig. 1(c)].
However, if one more pair (N = 4) or two more pairs
(N = 6) of such reservoirs are added, then the transition
of the dynamics from Markovian to non-Markovian occurs
[see the red and green curves in Fig. 1(c)]. In Fig. 1(d) we
display the non-Markovianity N as a function of the number
N of the involved reservoirs. Evidently from Fig. 1(d),
N becomes positive starting from N = Ncr = 2 for γ =
3λ/8 (black squares), but from N = Ncr = 3 for γ = 5λ/24
(black circles). We thus encounter a sudden emergence of
non-Markovian dynamics at N = Ncr. Furthermore, N is
increasing with N.

Next, we switch to the situation when γn/λn = γ /λ >

1/2 ∀n, i.e., when the TLS dynamics is readily non-
Markovian for any N � 1. We are concerned with the
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FIG. 1. (Color online) The trace distance D[ρ1(t),ρ2(t)], with ρ1.2(0) = 1
2 (|0〉 ± |1〉)(〈0| ± 〈1|), as a function of λt and the non-

Markovianity N as a function of N for the case of a TLS coupled simultaneously to N reservoirs. In (a) and (b) the reservoirs are identical
with γ = 3λ/8, Ncr = 2 and γ = 5λ/24, Ncr = 3, respectively. In (c) the reservoirs are nonidentical: the blue curve is for N = 2 reservoirs
with γ1 = λ/8 and γ2 = 3λ/8, the red curve is for N = 4 reservoirs with γ1,2 = λ/8 and γ3,4 = 3λ/8, and the green curve is for N = 6
reservoirs with γ1,2,3 = λ/8 and γ4,5,6 = 3λ/8. In (d) the reservoirs are identical with γ = 3λ/8 (black squares) and γ = 5λ/24 (black
circles).

change of non-Markovianity when the number of reservoirs
increases. For that purpose, in Fig. 2 we plot N versus
γ /λ for various values of N. Besides the increase of N
with γ /λ that should occur, what is worthy to note here

FIG. 2. The non-MarkovianityN as a function of γ /λ for various
numbers N of identical reservoirs.

is enhancement of the non-Markovianity due to the addi-
tion of reservoirs and, more importantly, the enhancement
holds for whatever values of γ and λ, as visualized from
Fig. 2.

III. EXPLANATION IN TERMS OF THE
PSEUDOMODE THEORY

So far, we have shown that a TLS always exhibits
non-Markovian dynamics when N � Ncr. In particular, non-
Markovian dynamics can even be triggered when the couplings
of the system with all the reservoirs are weak, which would
contradict the common thinking that in the weak-coupling
regime no information can be returned from the reservoirs
back to the system. In order to shed some light on this issue,
we make use of the so-called pseudomode theory developed
in Refs. [32] and [33] to clarify how the decayed information
can flow back to the system in the weak-coupling regimes.
According to the pseudomode theory [32,33], pseudomodes
of a reservoir are auxiliary variables that are introduced in
terms of the position of the poles of the reservoir’s spectral
distribution. The coupling of the system with a reservoir can
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be thought of as coherent interaction between the system and
the pseudomodes, which are in turn surrounded by external
Markovian reservoirs called the pseudomodes’ reservoirs. By
treating the system of interest plus the pseudomodes as an
extended system, one can derive a corresponding Markovian
master equation. For the present model with a TLS coupled to
N reservoirs with Lorentzian spectral densities (each reservoir
contains one pseudomode), the pseudomode theory leads to
the following master equation for the density matrix ρSP(t) of
the extended system:

ρ̇SP(t) = −i[Ĥ0,ρ
SP(t)] −

N∑
n=1

�n

2
[b̂†nb̂nρ

SP(t)

−2b̂nρ
SP(t)b̂†n + ρSP(t)b̂†nb̂n], (14)

where Ĥ0 = ω0
2 σ̂z+

∑N
n=1 ω0b̂

†
nb̂n+

∑N
n=1 n(b̂†nσ̂− + b̂nσ̂+),

with b̂
†
n (b̂n) being the creation (annihilation) operator of

the nth pseudomode whose constant of coupling to the TLS
is n = √

λnγn/2, and �n = 2λn denotes the decay rate of
the nth pseudomode. By tracing out Eq. (14) over all the
pseudomodes we obtain a master equation for the density
matrix ρ(t) of the TLS:

ρ̇(t) = �S(t)
[
σ̂−ρ(t)σ̂+ − 1

2 {σ̂+σ̂−,ρ(t)}], (15)

with the time-dependent decay rate �S(t) given by

�S(t) = 1

|c(t)|2
(

N∑
n=1

2nIm{c(t)b∗
n(t)}

)
, (16)

where c(t) and bn(t), amplitudes of the excited state of the
TLS and the nth pseudomode, satisfy the following differential
equations:

iċ(t) = ω0c(t) +
N∑

n=1

nbn(t), (17)

iḃn(t) =
(

ω0 − i

2
�n

)
bn(t) + nc(t). (18)

In terms of the pseudomode theory, when a TLS interacts
with a single reservoir, its information first flows to the pseu-
domode and then from the pseudomode to the pseudomode’s
reservoir. The flow from the pseudomode to its reservoir is
one-way, but the flow between the system and the pseudomode
is two-way. In other words, the pseudomode could play a role
of memory supplier, which can be revealed, for the case of
N = 1, by the equation [33]

d|b1(t)|2
dt

+ �1|b1(t)|2 = �S(t)|c(t)|2. (19)

This equation connects the compensated rate of change of
the pseudomode population (CRCPP) and the system’s decay
rate. If the pseudomode population is reduced (d|b1(t)|2/dt <

0) and meanwhile that reduction cannot be accounted for by
the decay to its reservoir due to the term �1|b1(t)|2, then the
left-hand side of Eq. (19) is negative and so is the system’s
decay rate �S(t). Physically, this means that the energy of the
populated pseudomode is transferred not only to its reservoir
but also to the system and, as a consequence, the system’s
dynamics becomes non-Markovian. Therefore the evolution

of CRCPP can be used as a witness to specify the directions
of the information flow between system and reservoirs. In
particular, its negativity indicates the backflow of information
to the system. For an arbitrary N > 1 we have derived the
following equation associated with the total CRCPP (see the
Appendix):

N∑
n=1

(
d|bn(t)|2

dt
+ �n|bn(t)|2

)
= �S(t)|c(t)|2. (20)

This equation implies that the system’s decay rate �S(t) is
determined by the total compensated rates of change of all
the pseudomodes’ populations. Notwithstanding, we should
make clear the information flow in an individual pseudomode,
particularly when the system is weakly coupled to all the reser-
voirs. For this purpose, by solving the differential equations
(17) and (18) we derive for an arbitrary nth pseudomode
of N identical reservoirs (i.e., γn/λn = γ /λ ∀n) an ana-
lytical expression for its CRCPP, d|bn(t)|2/dt + �n|bn(t)|2,
as

d|bn(t)|2
dt

+ �n|bn(t)|2

= Q(t)

[
λ sinh

(
Gt

2

)
+ G cosh

(
Gt

2

)]
, (21)

with Q(t) = 2λγ e−λt sinh(Gt/2)/G2 and G= √
λ(λ − 2Nγ )

as given previously. Obviously, if 1 � N < Ncr = [λ/2γ + 1]
(here γ < λ/2, i.e., weak-coupling regimes are assumed),
then the CRCPP is always positive for t > 0, implying a
one-way flow of the information from the system to the
pseudomode and eventually to the pseudomode’s reservoir.
Nevertheless, if N � Ncr, then G = i

√
λ(2Nγ − λ) is purely

imaginary and the CRCPP can attain a negative value inside
several periods of time during the evolution, implying the
information of the pseudomode flows back to the system and
this backaction is independent of the coupling strength of
the system with all the reservoirs. Remarkably, the condition
N � Ncr is consistent with that for the onset of system’s
non-Markovian dynamics, as shown in the previous section.
Therefore we conclude that if N � Ncr the information in
the pseudomodes of N identical reservoirs can flow back
to the system, by which means the system can partially retrieve
the previously lost information that corresponds to the non-
Markovian dynamics. Moreover, the total returned information
of all the pseudomodes determines the degree of the non-
Markovian process, explaining why the non-Markovianity N
is proportional to the number N of involved reservoirs, given
a definite coupling strength [cf. Fig. 1(d)]. Although in the
above discussion we considered identical reservoirs, the results
are valid to the general situations of nonidentical reservoirs
too.

We plot in Fig. 3 the time dependence of the nth mode
CRCPP, d|bn(t)|2/dt + �n|bn(t)|2, for both cases of identical
and nonidentical reservoirs. Figure 3(a) represents the case
when the TLS is weakly coupled with N identical reservoirs
with γ = 3λ/8. When there is only one reservoir (N = 1),
the values of the CRCPP are always positive [cf. solid
line in Fig. 3(a)]. As we have shown above, for γ = 3λ/8,
d|bn(t)|2/dt + �n|bn(t)|2 can sometimes be negative starting
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FIG. 3. (Color online) The compensated rate of change of an nth pseudomode population, d|bn(t)|2/dt + �n|bn(t)|2, as a function of γ /λ.

(a) All the N reservoirs are identical with a coupling strength γ = 3λ/8. (b) N = 4 reservoirs with different coupling strengths to the system:
γ1 = 8λ/24 (black solid curve), γ2 = 9λ/24 (red dashed curve), γ3 = 10λ/24 (green dotted curve), and γ4 = 11λ/24 (blue dash-dotted curve).

from N = Ncr = 2, as is visualized in Fig. 3(a), for example,
for N = 4 (red curve) and N = 6 (blue curve). Furthermore,
the time moment at which the CRCPP first becomes negative is
earlier for N = 6 than for N = 4. This fact implies that a sud-
den emergence of non-Markovian dynamics takes place sooner
when the number of contributed reservoirs is larger, which is
also consistent with the behavior of the trace distance displayed
in Fig. 1(a) for N = 4 and N = 6. In Fig. 3(b), we consider
four reservoirs with different coupling constants: γ1 = 8λ/24,

γ2 = 9λ/24, γ3 = 10λ/24, and γ4 = 11λ/24 for the first,
second, third, and fourth reservoir, respectively. Although all
four reservoirs are only weakly coupled to the system, the
CRCPP d|bn(t)|2/dt + �n|bn(t)|2 ∀n can become negative
during the time evolution. It is interesting to note that the
four pseudomodes begin to return information at the same time
[here at t ≈ 2.95/λ, as seen from Fig. 3(b) and, more evidently,
from its inset], despite their distinct coupling strengths to the
system.

IV. CONCLUSION

In conclusion, we have studied a model consisting of
one TLS transversely coupled simultaneously with N zero-
temperature bosonic reservoirs, which could be realized by
the configuration sketched in Fig. 4: a TLS, such as a
two-level atom, is located at the center of N lossy cavities.
The fundamental mode ω0 supported by a cavity displays a
Lorentzian broadening due to the nonperfect reflectivity of the
cavity mirrors. The effective spectral density of the intracavity
field can thus be treated as Lorentzian. In experiment, instead
of the dynamics of trace distance, a simple and reliable
witness of non-Markovianity is the atomic average energy
whose growth at some stage of time evolution signifies
the non-Markovian dynamics, which greatly simplifies the
experimental implementation. In the presence of N reservoirs,
we explore the emergence and enhancement of non-Markovian
dynamics of the TLS. We find out that, provided N is not
smaller than a critical value Ncr (i.e., N � Ncr), the system
dynamics is always non-Markovian for whatever system-
reservoir coupling strengths. In particular, non-Markovian
dynamics even emerges when the system is weakly coupled

with all the reservoirs, exhibiting a fundamental difference
to the situation with N < Ncr, under which the system’s
dynamics remains Markovian all the time. Although the
analytical formula of Ncr is derived for identical reservoirs, our
results are valid also to the general cases of nonidentical ones.
Moreover, we show quantitatively that the non-Markovianity
N is proportional to the number N of the contributed reservoirs
in both weak- and strong-coupling regimes. This means
that if, for a given N, the system’s dynamics is already
non-Markovian, then the non-Markovian behavior can be
enhanced by further increasing the reservoirs’ number. To
interpret the obtained results we examine the information flow
between the system and the reservoirs by taking advantage
of the pseudomode theory. We find that the pseudomodes
of all the reservoirs can always return information back
to the system during certain periods of time in the course
of evolution if N � Ncr, regardless of the system-reservoir
coupling strengths. It is the total returned information of all
the pseudomodes that determines the non-Markovianity N ,
in agreement with the proportional relation of N versus N .

FIG. 4. (Color online) A possible configuration to simultane-
ously couple a TLS with N lossy cavities (served as reservoirs).
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Among other mechanisms by which non-Markovian dynamics
of an open system can be induced or enhanced, as mentioned
in the Introduction, our results provide an alternate one,
namely, by letting more reservoirs be coupled to the system
of interest. Finally, we would like to recall that in this work
we only consider a very specific model of open quantum
systems—a TLS with transversal coupling to zero-temperature
bosonic reservoirs. Generalization of our results to other
more complex models, such as the longitudinal coupling,
the hybrid of transversal and longitudinal couplings, the
general thermal reservoirs, and so on, needs further elaborate
efforts.

ACKNOWLEDGMENTS

In this work, Z.X.M. and Y.J.X. are supported by the
National Natural Science Foundation (China) under Grants
No. 11204156, No. 61178012, and No. 11247240, and the
Promotive Research Fund for Excellent Young and Middle-
Aged Scientists of Shandong Province (China) under Project
No. BS2013DX034, while N.B.A. is funded by the Na-
tional Foundation for Science and Technology Development
(NAFOSTED, Vietnam) under Project No. 103.01-2014.02.

APPENDIX: DERIVATION OF EQ. (20)

By virtue of Eq. (18),

d

dt
|bn(t)|2 = b∗

n(t)
d

dt
bn(t) + bn(t)

d

dt
b∗

n(t)

= −i

(
ω0 − i

2
�n

)
|bn(t)|2 − inc(t)b∗

n(t)

+ i

(
ω0 + i

2
�n

)
|bn(t)|2 + inc

∗(t)bn(t)

= −�n|bn(t)|2 + 2nIm{c(t)b∗
n(t)}. (A1)

Therefore we have d|bn(t)|2/dt+�n|bn(t)|2=2nIm
{c(t)b∗

n(t)}. On the other hand, from the time-dependent decay
rate �S(t) given by Eq. (16),

�S(t)|c(t)|2 =
N∑

n=1

2nIm{c(t)b∗
n(t)}. (A2)

Then, by comparison, we obtain

N∑
n=1

(
d|bn(t)|2

dt
+ �n|bn(t)|2

)
= �S(t)|c(t)|2, (A3)

which is Eq. (20).
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[13] U. Hoeppe, C. Wolff, J. Küchenmeister, J. Niegemann, M.
Drescher, H. Benner, and K. Busch, Phys. Rev. Lett. 108, 043603
(2012).
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