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A new S
4
flavor model based on 𝑆𝑈(3)

𝐶
⊗ 𝑆𝑈(3)

𝐿
⊗ 𝑈(1)

𝑋
gauge symmetry responsible for fermion masses and mixings is

constructed.Theneutrinos get smallmasses fromonly an antisextet of SU(3)L which is in a doublet under S4. In thiswork,we assume
the VEVs of the antisextet differ from each other under S

4
and the difference of these VEVs is regarded as a small perturbation,

and then the model can fit the experimental data on neutrino masses and mixings. Our results show that the neutrino masses are
naturally small and a deviation from the tribimaximal neutrino mixing form can be realized. The quark masses and mixing matrix
are also discussed.The number of required Higgs multiplets is less and the scalar potential of the model is simpler than those of the
model based on S

3
and our previous S

4
model. The assignation of VEVs to antisextet leads to the mixing of the new gauge bosons

and those in the standard model. The mixing in the charged gauge bosons as well as the neutral gauge bosons is considered.

1. Introduction

The experiments on neutrino oscillation confirm that neutri-
nos are massive particles [1–6]. The parameters of neutrino
oscillations such as the squared mass differences and mixing
angles are now well constrained. The data in PDG2012 [7–11]
imply

sin2 (2𝜃
12
) = 0.857 ± 0.024 (𝑡

12
≃ 0.6717) ,

sin2 (2𝜃
13
) = 0.098 ± 0.013 (𝑠

13
≃ 0.1585) ,

sin2 (2𝜃
23
) > 0.95,

Δ𝑚
2

21
= (7.50 ± 0.20) × 10

−5 eV2
,

Δ𝑚
2

32
= (2.32

+0.12

−0.08
) × 10

−3 eV2
.

(1)

These large neutrino mixing angles are completely different
from the quark mixing ones defined by the CKM matrix
[12, 13]. This has stimulated work on flavor symmetries and
non-Abelian discrete symmetries are considered to be the
most attractive candidate to formulate dynamical principles
that can lead to the flavor mixing patterns for quarks and

lepton. There are many recent models based on the non-
Abelian discrete symmetries, such as 𝐴

4
[14–29], 𝑆

3
[30–65],

and 𝑆
4
[66–93].

An alternative to extend the standard model (SM) is
the 3-3-1 models, in which the SM gauge group 𝑆𝑈(2)

𝐿
⊗

𝑈(1)
𝑌
is extended to 𝑆𝑈(3)

𝐿
⊗ 𝑈(1)

𝑋
which is investigated

in [94–109]. The extension of the gauge group with respect
to SM leads to interesting consequences. The first one is
that the requirement of anomaly cancelation together with
that of asymptotic freedom of QCD implies that the number
of generations must necessarily be equal to the number of
colors, hence giving an explanation for the existence of three
generations. Furthermore, quark generations should trans-
form differently under the action of 𝑆𝑈(3)

𝐿
. In particular,

two quark generations should transform as triplets, one as an
antitriplet.

A fundamental relation holds among some of the gener-
ators of the group:

𝑄 = 𝑇
3
+ 𝛽𝑇

8
+ 𝑋, (2)

where 𝑄 indicates the electric charge, 𝑇
3
and 𝑇

8
are two of

the 𝑆𝑈(3) generators, and 𝑋 is the generator of 𝑈(1)
𝑋
. 𝛽 is
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a key parameter that defines a specific variant of the model.
The model thus provides a partial explanation for the family
number, as also required by flavor symmetries such as 𝑆

4

for 3-dimensional representations. In addition, due to the
anomaly cancelation one family of quarks has to transform
under 𝑆𝑈(3)

𝐿
differently from the two others. 𝑆

4
canmeet this

requirement with the representations 1 and 2.
There are two typical variants of the 3-3-1 models as far as

lepton sectors are concerned. In the minimal version, three
𝑆𝑈(3)

𝐿
lepton triplets are (]

𝐿
, 𝑙
𝐿
, 𝑙
𝑐

𝑅
), where 𝑙

𝑅
are ordinary

right-handed charged leptons [94–98]. In the second version,
the third components of lepton triplets are the right-handed
neutrinos, (]

𝐿
, 𝑙
𝐿
, ]𝑐

𝑅
) [99–105]. To have a model with the

realistic neutrino mixing matrix, we should consider another
variant of the form (]

𝐿
, 𝑙
𝐿
, 𝑁

𝑐

𝑅
) where 𝑁

𝑅
are three new

fermion singlets under SM symmetry with vanishing lepton
numbers [110–113].

In our previous works we have also extended the above
application to the 3-3-1 models [110–113]. In [112] we have
studied the 3-3-1 model with neutral fermions based on
𝑆
4
group, in which most of the Higgs multiplets are in

triplets under 𝑆
4
except that 𝜒 is in a singlet, and the exact

tribimaximal form [114–117] is obtained, in which 𝜃
13
= 0. As

we know, the recent considerations have implied 𝜃
13

̸= 0, but
small as given in (1).This problem has been improved in [111]
by adding a new triplet 𝜌 and another antisextet 𝑠, in which
𝑠
 is regarded as a small perturbation. Therefore the model
contains up to eight Higgs multiplets, and the scalar potential
of the model is quite complicated.

In this paper, we propose another choice of fermion
content and Higgs sector. As a consequence, the number
of required Higgs is fewer and the scalar potential of the
model is much simpler. The resulting model is near that
of our previous work in [111] and includes those given in
[112] as a special case and the physics is also different from
the former. With the similar analysis as in [111], 𝑆

4
contains

two triplets irreducible representation, one doublet and two
singlets. This feature is useful to separate the third family
of fermions from the others which contains a 2 irreducible
representation which can connect two maximally mixed
generations. Besides the facilitatingmaximal mixing through
2, it provides two inequivalent singlet representations 1 and 1
which play a crucial role in consistently reproducing fermion
masses and mixing as a perturbation. We have pointed out
that this model is simpler than that of 𝑆

3
and our previous

𝑆
4
model, since fewer Higgs multiplets are needed in order

to allow the fermions to gain masses and to break the
gauge symmetry. Indeed, the model contains only six Higgs
multiplets. On the other hand, the neutrino sector is simpler
than those of 𝑆

3
and 𝑆

4
models [111, 112].

The rest of this work is organized as follows. In Sections
2 and 3 we present the necessary elements of the 3-3-1
model with 𝑆

4
flavor symmetry as in the above choice, as

well as introducing necessary Higgs fields responsible for the
charged-lepton masses. In Section 4, we discuss on quark
sector. Section 5 is devoted to the neutrino mass and mixing.
In Section 6 we discuss the gauge boson pattern of the
model. We summarize our results and make conclusions in
Section 7. Appendix A is devoted to the Higgs potential and

minimization conditions. Appendix B is devoted to 𝑆
4
group

with its Clebsch-Gordan coefficients. Appendix C presents
the lepton numbers and lepton parities of model particles.

2. Fermion Content

The gauge symmetry is based on 𝑆𝑈(3)
𝐶
⊗ 𝑆𝑈(3)

𝐿
⊗ 𝑈(1)

𝑋
,

where the electroweak factor 𝑆𝑈(3)
𝐿
⊗ 𝑈(1)

𝑋
is extended

from those of the SM whereas the strong interaction sector
is retained. Each lepton family includes a new fermion
singlet carrying no lepton number (𝑁

𝑅
) arranged under the

𝑆𝑈(3)
𝐿
symmetry as a triplet (]

𝐿
, 𝑙
𝐿
, 𝑁

𝑐

𝑅
) and a singlet 𝑙

𝑅
. The

residual electric charge operator 𝑄 is therefore related to the
generators of the gauge symmetry by [110–112]

𝑄 = 𝑇
3
−

1

√3

𝑇
8
+ 𝑋, (3)

where 𝑇
𝑎
(𝑎 = 1, 2, . . . , 8) are 𝑆𝑈(3)

𝐿
charges with Tr𝑇

𝑎
𝑇
𝑏
=

(1/2)𝛿
𝑎𝑏

and 𝑋 is the 𝑈(1)
𝑋

charge. This means that the
model under consideration does not contain exotic electric
charges in the fundamental fermion, scalar, and adjoint gauge
boson representations.

The particles in the lepton triplet have different lepton
numbers (1 and 0), so the lepton number in the model
does not commute with the gauge symmetry unlike the SM.
Therefore, it is better to work with a new conserved charge
L commuting with the gauge symmetry and related to the
ordinary lepton number by diagonal matrices [110–112, 118]

𝐿 =
2

√3

𝑇
8
+L. (4)

The lepton charge arranged in this way (i.e., 𝐿(𝑁
𝑅
) = 0 as

assumed) is in order to prevent unwanted interactions due
to 𝑈(1)L symmetry and breaking (due to the lepton parity
as shown below), such as the SM and exotic quarks, and to
obtain the consistent neutrino mixing.

By this embedding, exotic quarks 𝑈 and 𝐷 as well as
new non-Hermitian gauge bosons 𝑋0 and 𝑌± possess lepton
charges as of the ordinary leptons: 𝐿(𝐷) = −𝐿(𝑈) = 𝐿(𝑋

0
) =

𝐿(𝑌
−
) = 1. The lepton parity is introduced as follows: 𝑃

𝑙
=

(−)
𝐿, which is a residual symmetry of 𝐿. The particles possess

𝐿 = 0, ±2 such as𝑁
𝑅
, ordinary quarks, and bileptons having

𝑃
𝑙
= 1; the particles with 𝐿 = ±1 such as ordinary leptons

and exotic quarks having 𝑃
𝑙
= −1. Any nonzero VEV with

odd parity, 𝑃
𝑙
= −1, will break this symmetry spontaneously

[112]. For convenience in reading, the numbers 𝐿 and𝑃
𝑙
of the

component particles are given in Appendix C.
In this paper we work on a basis where 3 and 3 are real

representations whereas the two-dimensional representation
2 of 𝑆

4
is complex, 2∗(1∗, 2∗) = 2(2∗, 1∗), and

2 ⊗ 2 = 1 (12 + 21) ⊕ 1

(12 − 21) ⊕ 2 (22, 11) . (5)

The lepton content of this model is similar to that of [111]
but is different from the one in [112]; namely, in [112] three
left-handed leptons are put in one triplet 3 under 𝑆

4
, whereas

in this model we put the first family of leptons in singlets
1 of 𝑆

4
, while the two other families are in the doublets 2.

In the quark content, the third family is put in a singlet 1
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and the two others in a doublet 2 under 𝑆
4
which satisfy

the anomaly cancelation in 3-3-1 models. The difference in
fermion content leads to the difference between this work
and our previous work [112] in physical phenomenon as seen
bellow. Under the [𝑆𝑈(3)

𝐿
, 𝑈(1)

𝑋
, 𝑈(1)L, 𝑆4] symmetries as

proposed, the fermions of the model transform as follows:

𝜓
1𝐿
= (]

1𝐿
, 𝑙
1𝐿
, 𝑁

𝑐

1𝑅
)
𝑇

∼ [3, −
1

3
,
2

3
, 1] ,

𝑙
1𝑅
∼ [1, −1, 1, 1] ,

𝜓
𝛼𝐿
= (]

𝛼𝐿
, 𝑙
𝛼𝐿
, 𝑁

𝑐

𝛼𝑅
)
𝑇

∼ [3, −
1

3
,
2

3
, 2] ,

𝑙
𝛼𝑅

∼ [1, −1, 1, 2] , (𝛼 = 2, 3) ,

𝑄
3𝐿
= (𝑢

3𝐿
, 𝑑

3𝐿
, 𝑈

𝐿
)
𝑇

∼ [3,
1

3
, −
1

3
, 1] ,

𝑢
3𝑅
∼ [1,

2

3
, 0, 1] , 𝑑

3𝑅
∼ [1, −

1

3
, 0, 1] ,

𝑈
𝑅
∼ [1,

2

3
, −1, 1] ,

𝑄
𝑖𝐿
= (𝑑

𝑖𝐿
, −𝑢

𝑖𝐿
, 𝐷

𝑖𝐿
)
𝑇

∼ [3
∗
, 0,

1

3
, 2] , (𝑖 = 1, 2) ,

𝑑
𝑖𝑅
∼ [1, −

1

3
, 0, 2] , 𝑢

𝑖𝑅
∼ [1,

2

3
, 0, 2] ,

𝐷
𝑖𝑅
∼ [1, −

1

3
, 1, 2] ,

(6)

where the subscript numbers on field indicate respective
families in order to define components of their 𝑆

4
multiplets.

In the following, we consider possibilities of generating
masses for the fermions.The scalar multiplets needed for this
purpose would be introduced accordingly.

3. Charged Lepton Mass

In [112], both three families of left-handed fermions and
three right-handed quarks are put in a triplet under 𝑆

4
. To

generate masses for the charged leptons, we have introduced
two 𝑆𝑈(3)

𝐿
scalar triplets 𝜙 and 𝜙 lying in 3 and 3 under

𝑆
4
, respectively, with VEVs ⟨𝜙⟩ = (V V V)𝑇 and ⟨𝜙


⟩ =

(V V V)𝑇. From the invariant Yukawa interactions for the
charged leptons, we obtain the right-handed charged leptons
mixing matrices which are diagonal ones, 𝑈

𝑙𝑅
= 1, and the

right-handed one given by [112]

𝑈
𝐿
=

1

√3

(

1 1 1

1 𝜔 𝜔
2

1 𝜔
2

𝜔

) . (7)

Similar to the charged lepton sector, to generate the
quark masses, we have additionally introduced the three
scalar Higgs triplets 𝜒, 𝜂, 𝜂 lying in 1, 3, and 3

 under 𝑆
4
,

respectively. Quark masses can be derived from the invariant
Yukawa interactions for quarks with supposing that the VEVs
of 𝜂, 𝜂, and 𝜒 are (𝑢, 𝑢, 𝑢), (𝑢, 𝑢, 𝑢), and𝑤, where 𝑢 = ⟨𝜂0

1
⟩,

𝑢

= ⟨𝜂

0

1
⟩, and 𝑤 = ⟨𝜒

0

3
⟩. The other VEVs ⟨𝜂0

3
⟩, ⟨𝜂0

3
⟩, and

⟨𝜒
0

1
⟩ vanish if the lepton parity is conserved. In addition, the

VEV 𝑤 also breaks the 3-3-1 gauge symmetry down to that
of the standard model and provides the masses for the exotic
quarks 𝑈 and 𝐷 as well as the new gauge bosons. The 𝑢, 𝑢
as well as V, V break the SM symmetry and give the masses
for the ordinary quarks, charged leptons, and gauge bosons.
To keep consistency with the effective theory, we assume that
𝑤 is much larger than those of 𝜙 and 𝜂 [112]. The unitary
matrices which couple the left-handed quarks 𝑢

𝐿
and 𝑑

𝐿
with

those in the mass bases are unit ones (𝑈𝑢

𝐿
= 1, 𝑈𝑑

𝐿
= 1),

and the CKM quark mixing matrix at the tree level is then
𝑈CKM = 𝑈

†

𝑑𝐿
𝑈
𝑢𝐿
= 1. For a detailed study on charged lepton

and quark mass the reader can see [112].
In [112], to generate masses for neutrinos, we have

introduced one 𝑆𝑈(3)
𝐿
antisextet lying in 1 under 𝑆

4
and

one 𝑆𝑈(3)
𝐿
antisextet lying in 3 under 𝑆

4
with the VEV of

𝑠 being set as (⟨𝑠
1
⟩, 0, 0) under 𝑆

4
. The neutrino masses are

explicitly separated and the lepton mixing matrix yields the
exact tribimaximal form [112] where 𝜃

13
= 0 which is a small

deviation from recent neutrino oscillation data [7]. However,
this problem will be improved in this work.

Because the fermion content of the model, as given in (6),
is the same as that of one in [111] under all symmetries, so the
charged-leptonmass is also similar to the one in [111]. Indeed,
to generatemasses for the charged leptons, we need two scalar
triplets:

𝜙 = (

𝜙
+

1

𝜙
0

2

𝜙
+

3

) ∼ [3,
2

3
, −
1

3
, 1] ,

𝜙

= (

𝜙
+

1

𝜙
0

2

𝜙
+

3

) ∼ [3,
2

3
, −
1

3
, 1


] ,

(8)

with VEVs ⟨𝜙⟩ = (0, V, 0)𝑇 and ⟨𝜙⟩ = (0, V, 0)𝑇.
The Yukawa interactions are

−L
𝑙
= ℎ

1
(𝜓

1𝐿
𝜙)

1
𝑙
1𝑅
+ ℎ

2
(𝜓

𝛼𝐿
𝜙)

2
𝑙
𝛼𝑅
+ ℎ

3
(𝜓

𝛼𝐿
𝜙

)
2
𝑙
𝛼𝑅
+ ℎ.𝑐.

= ℎ
1
(𝜓

1𝐿
𝜙)

1
𝑙
1𝑅
+ ℎ

2
(𝜓

2𝐿
𝜙𝑙

2𝑅
+ 𝜓

3𝐿
𝜙𝑙

3𝑅
)

+ ℎ
3
(𝜓

3𝐿
𝜙

𝑙
3𝑅
− 𝜓

2𝐿
𝜙

𝑙
2𝑅
) + ℎ.𝑐.

(9)

The mass Lagrangian of the charged leptons reads

−L
mass
𝑙

= (𝑙
1𝐿
, 𝑙
2𝐿
, 𝑙
3𝐿
)𝑀

𝑙
(𝑙
1𝑅
, 𝑙
2𝑅
, 𝑙
3𝑅
)
𝑇
+ ℎ.𝑐.

𝑀
𝑙
= (

ℎ
1
V 0 0

0 ℎ
2
V − ℎ

3
V 0

0 ℎ
2
V + ℎ

3
V
) ≡ (

𝑚
𝑒

0 0

0 𝑚
𝜇

0

0 0 𝑚
𝜏

) .

(10)



4 Advances in High Energy Physics

It is then diagonalized, and

𝑈
+

𝑒𝐿
= 𝑈

𝑒𝑅
= 𝐼. (11)

This means that the charged leptons 𝑙
1,2,3

by themselves are
the physical mass eigenstates, and the lepton mixing matrix
depends on only that of the neutrinos that will be studied in
Section 5.

We see that the masses of muon and tauon are separated
by the 𝜙 triplet. This is the reason why we introduce 𝜙 in
addition to 𝜙.

The charged lepton Yukawa couplings ℎ
1,2,3

relate to their
masses as follows:

ℎ
1
V = 𝑚

𝑒
,

2ℎ
2
V = 𝑚

𝜏
+ 𝑚

𝜇
,

2ℎ
3
V = 𝑚

𝜏
− 𝑚

𝜇
.

(12)

The current mass values for the charged leptons at the weak
scale are given by [7]

𝑚
𝑒
= 0.511MeV, 𝑚

𝜇
= 105.66MeV,

𝑚
𝜏
= 1776.82MeV.

(13)

Thus, we get

ℎ
1
V = 0.511MeV, ℎ

2
V = 941.24MeV,

ℎ
3
V = 835.58MeV.

(14)

It follows that if V and V are of the same order of magnitude,
ℎ
1
≪ ℎ

2
and ℎ

2
∼ ℎ

3
. This result is similar to the case of

the model based on 𝑆
3
group [111]. On the other hand, if we

choose the VEV of 𝜙 as V = 100GeV, then ℎ
1
∼ 5 × 10

−6,
ℎ
3
∼ ℎ

2
∼ 10

−4.

4. Quark Mass

To generate the quark masses with a minimal Higgs content,
we additionally introduce the following scalar multiplets:

𝜒 = (𝜒
0

1
, 𝜒

−

2
, 𝜒

0

3
)
𝑇

∼ [3, −
1

3
,
2

3
, 1] ,

𝜂 = (𝜂
0

1
, 𝜂

−

2
, 𝜂

0

3
)
𝑇

∼ [3, −
1

3
, −
1

3
, 1] ,

𝜂

= (𝜂

0

1
, 𝜂

−

2
, 𝜂

0

3
)
𝑇

∼ [3, −
1

3
, −
1

3
, 1


] .

(15)

It is noticed that these scalars do not couple with the lepton
sector due to the gauge invariance. The Yukawa interactions
are then

−L
𝑞
= 𝑓

3
𝑄
3𝐿
𝜒𝑈

𝑅
+ 𝑓(𝑄

𝑖𝐿
𝜒
∗
)
2
𝐷

𝑖𝑅

+ ℎ
𝑢

3
𝑄
3𝐿
𝜂𝑢

3𝑅
+ ℎ

𝑢
(𝑄

𝑖𝐿
𝜙
∗
)
2
𝑢
𝑖𝑅

+ ℎ
𝑢
(𝑄

𝑖𝐿
𝜙
∗
)
2
𝑢
𝑖𝑅
+ ℎ

𝑑

3
𝑄
3𝐿
𝜙𝑑

3𝑅

+ ℎ
𝑑
(𝑄

𝑖𝐿
𝜂
∗
)
2
𝑑
𝑖𝑅
+ ℎ

𝑑
(𝑄

𝑖𝐿
𝜂
∗
)
2
𝑑
𝑖𝑅
+ ℎ.𝑐

= 𝑓
3
𝑄
3𝐿
𝜒𝑈

𝑅
+ 𝑓𝑄

𝑖𝐿
𝜒
∗
𝐷

𝑖𝑅
+ ℎ

𝑢

3
𝑄
3𝐿
𝜂𝑢

3𝑅

+ ℎ
𝑢
(𝑄

1𝐿
𝜙
∗
𝑢
1𝑅
+ 𝑄

2𝐿
𝜙
∗
𝑢
2𝑅
)

+ ℎ
𝑢
(𝑄

2𝐿
𝜙
∗
𝑢
2𝑅
− 𝑄

1𝐿
𝜙
∗
𝑢
1𝑅
)

+ ℎ
𝑑

3
𝑄
3𝐿
𝜙𝑑

3𝑅
+ ℎ

𝑑
(𝑄

1𝐿
𝜂
∗
𝑑
1𝑅
+ 𝑄

2𝐿
𝜂
∗
𝑑
2𝑅
)

+ ℎ
𝑑
(𝑄

2𝐿
𝜂
∗
𝑑
2𝑅
− 𝑄

1𝐿
𝜂
∗
𝑑
1𝑅
) + ℎ.𝑐.

(16)

Suppose that the VEVs of 𝜂, 𝜂, and 𝜒 are 𝑢, 𝑢, and 𝑤,
where 𝑢 = ⟨𝜂

0

1
⟩, 𝑢 = ⟨𝜂

0

1
⟩, and 𝑤 = ⟨𝜒

0

3
⟩. The other

VEVs ⟨𝜂0
3
⟩, ⟨𝜂0

3
⟩, and ⟨𝜒0

1
⟩ vanish due to the lepton parity

conservation [111]. The exotic quarks therefore get masses
𝑚

𝑈
= 𝑓

3
𝑤 and 𝑚

𝐷
1,2

= 𝑓𝑤. In addition, 𝑤 has to be much
larger than those of 𝜙, 𝜙, 𝜂, and 𝜂 for a consistency with the
effective theory. The mass matrices for ordinary up-quarks
and down-quarks are, respectively, obtained as follows:

𝑀
𝑢
= (

ℎ
𝑢V − ℎ𝑢V 0 0

0 ℎ
𝑢V + ℎ𝑢V 0

0 0 ℎ
𝑢

3
𝑢

)

≡ (

𝑚
𝑢

0 0

0 𝑚
𝑐

0

0 0 𝑚
𝑡

) ,

𝑀
𝑑
= (

ℎ
𝑑
𝑢 − ℎ

𝑑
𝑢


0 0

0 ℎ
𝑑
𝑢 + ℎ

𝑑
𝑢


0

0 0 ℎ
𝑑

3
V
)

≡ (

𝑚
𝑑

0 0

0 𝑚
𝑠

0

0 0 𝑚
𝑏

) .

(17)

Similar to the charged leptons, the masses of 𝑢 − 𝑐 and
𝑑 − 𝑠 quarks are in pair separated by the scalars 𝜙 and
𝜂
, respectively. We see also that the introduction of 𝜂 in
addition to 𝜂 is necessary to provide the different masses for
𝑢 and 𝑐 quarks as well as for 𝑑 and 𝑠 quarks.

The expressions (17) yield the relations:

ℎ
𝑢

3
𝑢 = 𝑚

𝑡
, 2ℎ

𝑢V = 𝑚
𝑢
+ 𝑚

𝑐
, 2ℎ

𝑢V = 𝑚
𝑐
− 𝑚

𝑢
,

ℎ
𝑑

3
V = 𝑚

𝑏
, 2ℎ

𝑑
𝑢 = 𝑚

𝑑
+ 𝑚

𝑠
, 2ℎ

𝑑
𝑢

= 𝑚

𝑠
− 𝑚

𝑑
.

(18)

The current mass values for the quarks are given by [7]

𝑚
𝑢
= (1.8 ÷ 3.0) MeV, 𝑚

𝑑
= (4.5 ÷ 5.5) MeV,

𝑚
𝑐
= (1.25 ÷ 1.30) GeV,

𝑚
𝑠
= (90.0 ÷ 100.0) MeV, 𝑚

𝑡
= (172.1 ÷ 174.9) GeV,

𝑚
𝑏
= (4.13 ÷ 4.37) GeV.

(19)
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Hence

ℎ
𝑢

3
𝑢 = (172.1 ÷ 174.9) GeV, ℎ

𝑑

3
V = (4.13 ÷ 4.37) GeV,

ℎ
𝑢V = (625.9 ÷ 651.5) MeV,

ℎ
𝑑
𝑢 = (47.25 ÷ 52.75) MeV,

ℎ
𝑑
𝑢

= (42.75 ÷ 47.25) MeV,

ℎ
𝑢V = (624.1 ÷ 648.5) MeV.

(20)

It is obvious that if 𝑢 ∼ V ∼ V ∼ 𝑢
, the Yukawa coupling

hierarchies are ℎ𝑢 ∼ ℎ
𝑢

≪ ℎ
𝑢

3
, ℎ𝑑 ∼ ℎ

𝑑
≪ ℎ

𝑑

3
, and the

couplings between up-quarks (ℎ𝑢, ℎ𝑢, ℎ𝑢
3
) and Higgs scalar

multiplets are slightly heavier than those of down-quarks
(ℎ

𝑑
, ℎ

𝑑
, ℎ

𝑑

3
), respectively.

The unitary matrices, which couple the left-handed up-
and down-quarks with those in the mass bases, are 𝑈𝑢

𝐿
= 1

and 𝑈𝑑

𝐿
= 1, respectively. Therefore we get the CKMmatrix

𝑈CKM = 𝑈
𝑑†

𝐿
𝑈

𝑢

𝐿
= 1. (21)

This is a good approximation for the realistic quark mixing
matrix, which implies that the mixings among the quarks are
dynamically small.The small permutations such as a breaking
of the lepton parity due to the VEVs ⟨𝜂0

3
⟩, ⟨𝜂0

3
⟩, and ⟨𝜒

0

1
⟩

or a violation of L and/nor 𝑆
4
symmetry due to unnormal

Yukawa interactions, namely, 𝑄
3𝐿
𝜒𝑢

3𝑅
, 𝑄

𝑖𝐿
𝜒
∗
𝑑
𝑖𝑅
, 𝑄

3𝐿
𝜒𝑢

𝑖𝑅
,

𝑄
𝑖𝐿
𝜒
∗
𝑑
3𝑅
, and so forth, will disturb the tree level matrix

resulting in mixing between ordinary and exotic quarks and
possibly providing the desirable quark mixing pattern. A
detailed study on these problems is out of the scope of this
work and should be skipped.

5. Neutrino Mass and Mixing

The neutrino masses arise from the couplings of 𝜓𝑐

𝛼𝐿
𝜓
𝛼𝐿
,

𝜓
𝑐

1𝐿
𝜓
1𝐿
, and 𝜓

𝑐

1
𝜓
𝛼𝐿

to scalars, where 𝜓𝑐

𝛼𝐿
𝜓
𝛼𝐿

transforms as
3
∗
⊕ 6 under 𝑆𝑈(3)

𝐿
and 1 ⊕ 2 ⊕ 3 ⊕ 3

 under 𝑆
4
, 𝜓𝑐

1𝐿
𝜓
1𝐿

transforms as 3∗ ⊕ 6 under 𝑆𝑈(3)
𝐿
and 1 under 𝑆

4
, and

𝜓
𝑐

1𝐿
𝜓
𝛼𝐿

transforms as 3∗ ⊕ 6 under 𝑆𝑈(3)
𝐿
and 2 under 𝑆

4
.

For the known scalar triplets (𝜙, 𝜙, 𝜒, 𝜂, 𝜂), only available
interactions are (𝜓

𝑐

𝛼𝐿
𝜓
𝛼𝐿
)𝜙 and (𝜓

𝑐

𝛼𝐿
𝜓
𝛼𝐿
)𝜙

 but explicitly
suppressed because of the L-symmetry. We will therefore
propose new 𝑆𝑈(3)

𝐿
antisextets instead of coupling to 𝜓𝑐

𝐿
𝜓
𝐿

responsible for the neutrino masses which are lying in either
1, 2, 3, or 3 under 𝑆

4
. In [112], we have introduced two

𝑆𝑈(3)
𝐿
antisextets 𝜎, 𝑠 which are lying in 1 and 3 under

𝑆
4
, respectively. Contrastingly, in this work, with fermion

content as proposed, to obtain a realistic neutrino spectrum,
the model needs only one antisextet which transforms as
follows:

𝑠
𝑖
= (

𝑠
0

11
𝑠
+

12
𝑠
0

13

𝑠
+

12
𝑠
++

22
𝑠
+

23

𝑠
0

13
𝑠
+

23
𝑠
0

33

) ∼ [6
∗
,
2

3
, −
4

3
, 2] , (22)

where the numbered subscripts on the component scalars are
the 𝑆𝑈(3)

𝐿
indices, whereas 𝑖 = 1, 2 is that of 𝑆

4
. The VEV of

𝑠 is set as (⟨𝑠
1
⟩, ⟨𝑠

2
⟩) under 𝑆

4
, in which

⟨𝑠
𝑖
⟩ = (

𝜆
𝑖
0 V

𝑖

0 0 0

V
𝑖
0 Λ

𝑖

) . (𝑖 = 1, 2) . (23)

Following the potential minimization conditions, we have
several VEV alignments. The first is that ⟨𝑠

1
⟩ = ⟨𝑠

2
⟩ and

then 𝑆
4
is broken into an eight-element subgroup, which is

isomorphic to 𝐷
4
. The second is that ⟨𝑠

1
⟩ ̸= 0 = ⟨𝑠

2
⟩ or

⟨𝑠
1
⟩ = 0 ̸= ⟨𝑠

2
⟩ and then 𝑆

4
is broken into 𝐴

4
consisting of

the identity and the even permutations of four objects. The
third is that ⟨𝑠

1
⟩ ̸= ⟨𝑠

2
⟩ ̸= 0 and then 𝑆

4
is broken into a four-

element subgroup consisting of the identity and three double
transitions, which is isomorphic to Klein four group [75] (in
this paper we denote this group by 𝐾

4
). To obtain a realistic

neutrino spectrum, we argue that both the breakings 𝑆
4
→

𝐷
4
and 𝑆

4
→ 𝐾

4
must take place. We therefore assume that

its VEVs are aligned as the former to derive the direction of
the breaking 𝑆

4
→ 𝐷

4
, and this happens in any case bellow:

𝜆
1
= 𝜆

2
≡ 𝜆

𝑠
, V

1
= V

2
≡ V

𝑠
, Λ

1
= Λ

2
≡ Λ

𝑠
,

⟨𝑠
1
⟩ = ⟨𝑠

2
⟩ = ⟨𝑠⟩ = (

𝜆
𝑠
0 V

𝑠

0 0 0

V
𝑠
0 Λ

𝑠

) .

(24)

The direction of the breaking 𝑆
4
→ 𝐾

4
is equivalent to the

breaking 𝐷
4
→ {Identity}. In this direction, we set ⟨𝑠

1
⟩ =

⟨𝑠⟩ ̸= ⟨𝑠
2
⟩ ̸= 0. If 𝐷

4
is unbroken, we have ⟨𝑠

1
⟩ = ⟨𝑠

2
⟩ = ⟨𝑠⟩

as in (24), and on the contrary, if 𝐷
4
is unbroken, we have

⟨𝑠⟩ = ⟨𝑠
2
⟩ ≈ ⟨𝑠

1
⟩:

⟨𝑠
1
⟩ = (

𝜆
1
0 V

1

0 0 0

V
1
0 Λ

1

) . (25)

The difference between ⟨𝑠
1
⟩ and ⟨𝑠

2
⟩ is very small which is

regarded as a small perturbation as considered bellow. It is
noteworthy that the derivation in this paper contains a fewer,
in comparison with the model based on the 𝑆

3
group [111],

number of Higgs triplets; consequently the Higgs sector and
theminimization condition of the potential aremuch simpler.
Moreover, the obtained model, despite the compact in Higgs
sector, can fit the current data with 𝜃

13
̸= 0, while the old

version [112] based on 𝑆
4
cannot provide nonvanishing 𝜃

13
.

In general, the Yukawa interactions are

−L] =
1

2
𝑥(𝜓

𝑐

1𝐿
𝜓
𝐿
)
2
𝑠
𝑖
+
1

2
𝑦(𝜓

𝑐

𝐿
𝜓
𝐿
)
2
𝑠
𝑖
+ ℎ.𝑐

=
1

2
𝑥 (𝜓

𝑐

1𝐿
𝜓
2𝐿
𝑠
2
+ 𝜓

𝑐

1𝐿
𝜓
3𝐿
𝑠
1
)

+
1

2
𝑦 (𝜓

𝑐

2𝐿
𝜓
2𝐿
𝑠
1
+ 𝜓

𝑐

3𝐿
𝜓
3𝐿
𝑠
2
) + ℎ.𝑐.

(26)
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With the alignments of VEVs as in (24) and (25), the mass
Lagrangian for the neutrinos is determined by

−L
mass
] =

1

2
𝜒
𝑐

𝐿
𝑀]𝜒𝐿 + ℎ.𝑐.,

𝜒
𝐿
≡ (

]
𝐿

𝑁
𝑐

𝑅

) , 𝑀] ≡ (
𝑀

𝐿
𝑀

𝑇

𝐷

𝑀
𝐷

𝑀
𝑅

) ,

(27)

where ] = (]
1
, ]

2
, ]

3
)
𝑇 and 𝑁 = (𝑁

1
, 𝑁

2
, 𝑁

3
)
𝑇. The mass

matrices are then obtained by

𝑀
𝐿,𝑅,𝐷

= (

0 𝑎
𝐿,𝑅,𝐷

𝑏
𝐿,𝑅,𝐷

𝑎
𝐿,𝑅,𝐷

𝑐
𝐿,𝑅,𝐷

0

𝑏
𝐿,𝑅,𝐷

0 𝑑
𝐿,𝑅,𝐷

), (28)

with

𝑎
𝐿
=
𝑥

2
𝜆
𝑠
, 𝑎

𝐷
=
𝑥

2
V
𝑠
, 𝑎

𝑅
=
𝑥

2
Λ

𝑠
,

𝑏
𝐿
=
𝑥

2
𝜆
1
, 𝑏

𝐷
=
𝑥

2
V
1
, 𝑏

𝑅
=
𝑥

2
Λ

1
,

𝑐
𝐿
= 𝑦𝜆

1
, 𝑐

𝐷
= 𝑦V

1
, 𝑐

𝑅
= 𝑦Λ

1
,

𝑑
𝐿
= 𝑦𝜆

𝑠
, 𝑑

𝐷
= 𝑦V

𝑠
, 𝑑

𝑅
= 𝑦Λ

𝑠
.

(29)

The VEVs Λ
1,2

break the 3-3-1 gauge symmetry down to that
of the SM and provide themasses for the neutral fermions𝑁

𝑅

and the new gauge bosons: the neutral𝑍 and the charged𝑌±

and 𝑋0,0∗. The 𝜆
1,2

and V
1,2

belong to the second stage of the
symmetry breaking from the SM down to the 𝑆𝑈(3)

𝐶
⊗𝑈(1)

𝑄

symmetry and contribute themasses to the neutrinos. Hence,
to keep a consistency we assume thatΛ

1,𝑠
≫ V

1,𝑠
≫ 𝜆

1,𝑠
[105].

Three active neutrinos therefore gain masses via a combi-
nation of type I and type II seesaw mechanisms derived from
(27) and (28) as

𝑀eff = 𝑀𝐿
−𝑀

𝑇

𝐷
𝑀

−1

𝑅
𝑀

𝐷
= (

𝐴 𝐵
1
𝐵
2

𝐵
1
𝐶
1
𝐷

𝐵
2
𝐷 𝐶

2

) , (30)

where

𝐴 = −
(𝑎

𝑅
𝑏
𝐷
− 𝑎

𝐷
𝑏
𝑅
)
2

𝑏
2

𝑅
𝑐
𝑅
+ 𝑎

2

𝑅
𝑑
𝑅

,

𝐵
1
= (𝑏

𝑅
[𝑎

𝑅
𝑏
𝐷
𝑐
𝐷
+ 𝑎

𝐿
𝑏
𝑅
𝑐
𝑅
− 𝑎

𝐷
(𝑏

𝑅
𝑐
𝐷
+ 𝑏

𝐷
𝑐
𝑅
)]

+ 𝑎
𝑅
(𝑎

𝐿
𝑎
𝑅
− 𝑎

2

𝐷
) 𝑑

𝑅
)

× (𝑏
2

𝑅
𝑐
𝑅
+ 𝑎

2

𝑅
𝑑
𝑅
)
−1

,

𝐵
2
= (−𝑏

2

𝐷
𝑏
𝑅
𝑐
𝑅
+ 𝑏

𝐿
𝑏
2

𝑅
𝑐
𝑅
+ 𝑎

𝐷
𝑎
𝑅
𝑏
𝑅
𝑑
𝐷
+ 𝑎

2

𝑅
𝑏
𝐿
𝑑
𝑅

− 𝑎
𝑅
𝑏
𝐷
(𝑎

𝑅
𝑑
𝐷
+ 𝑎

𝐷
𝑑
𝑅
) )

× (𝑏
2

𝑅
𝑐
𝑅
+ 𝑎

2

𝑅
𝑑
𝑅
)
−1

,

𝐶
1
=

𝑏
2

𝑅
(𝑐

𝐿
𝑐
𝑅
− 𝑐

2

𝐷
) + (𝑎

2

𝑅
𝑐
𝐿
+ 𝑎

2

𝐷
𝑐
𝑅
− 2𝑎

𝐷
𝑎
𝑅
𝑐
𝐷
) 𝑑

𝑅

𝑏
2

𝑅
𝑐
𝑅
+ 𝑎

2

𝑅
𝑑
𝑅

,

𝐶
2
=

−2𝑏
𝐷
𝑏
𝑅
𝑐
𝑅
𝑑
𝐷
+ 𝑏

2

𝑅
𝑐
𝑅
𝑑
𝐿
+ 𝑏

2

𝐷
𝑐
𝑅
𝑑
𝑅
+ 𝑎

2

𝑅
(𝑑

𝐿
𝑑
𝑅
− 𝑑

2

𝐷
)

𝑏
2

𝑅
𝑐
𝑅
+ 𝑎

2

𝑅
𝑑
𝑅

,

𝐷 =
(𝑎

𝑅
𝑐
𝐷
− 𝑎

𝐷
𝑐
𝑅
) (𝑏

𝑅
𝑑
𝐷
− 𝑏

𝐷
𝑑
𝑅
)

𝑏
2

𝑅
𝑐
𝑅
+ 𝑎

2

𝑅
𝑑
𝑅

.

(31)

The following comments of 𝑆
4
breaking are in order.

(i) If 𝑆
4
is broken into𝐷

4
(𝐷

4
is unbroken), we have 𝐴 =

𝐷 = 0, 𝐵
1
= 𝐵

2
= 𝐵, and 𝐶

1
= 𝐶

2
= 𝐶, which is

presented in Section 5.1.
(ii) If 𝑆

4
is broken into 𝐾

4
(𝐷

4
is broken into {Identity}),

we have 𝐴 ≈ 0, 𝐵
1
≈ 𝐵

2
, 𝐶

1
≈ 𝐶

2
, and 𝐷 ̸= 0 but it

is very small. In this case the disparity of two VEVs
of ⟨𝑠⟩ is regarded as a small perturbation as shown in
Section 5.2.

We next divide our considerations into two cases to fit the
data: the first case is 𝑆

4
→ 𝐷

4
, and the second one is 𝑆

4
→

𝐾
4
.

5.1. Experimental Constraints in the Case 𝑆
4
→ 𝐷

4
. If 𝑆

4
is

broken into 𝐷
4
, 𝜆

1
= 𝜆

2
≡ 𝜆

𝑠
, V

1
= V

2
≡ V

𝑠
, Λ

1
= Λ

2
≡ Λ

𝑠
,

we have 𝐴 = 0, 𝐵
1
= 𝐵

2
≡ 𝐵, 𝐶

1
= 𝐶

2
≡ 𝐶, and 𝐷 = 0, and

𝑀eff reduces to

𝑀eff = (
0 𝐵 𝐵

𝐵 𝐶 0

𝐵 0 𝐶

) , (32)

where

𝐵 = (𝜆
𝑠
−

V2
𝑠

Λ
𝑠

)
𝑥

2
, 𝐶 = (𝜆

𝑠
−

V2
𝑠

Λ
𝑠

)𝑦. (33)

We can diagonalize the matrix𝑀eff in (32) as follows:

𝑈
𝑇
𝑀eff𝑈 = diag (𝑚

1
, 𝑚

2
, 𝑚

3
) , (34)

where

𝑚
1
=
1

2
(𝐶 − √𝐶

2
+ 8𝐵

2
) = (𝜆

𝑠
−

V2
𝑠

Λ
𝑠

)

𝑦 + √𝑦
2
+ 2𝑥

2

2
,

𝑚
2
=
1

2
(𝐶 + √𝐶

2
+ 8𝐵

2
) = (𝜆

𝑠
−

V2
𝑠

Λ
𝑠

)

𝑦 − √𝑦
2
+ 2𝑥

2

2
,

𝑚
3
= 𝐶 = (𝜆

𝑠
−

V2
𝑠

Λ
𝑠

)𝑦,

(35)
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and the neutrino mixing matrix takes the form:

𝑈
0
=

(
(
(
(
(

(

|𝐾|

√|𝐾|
2
+ 2

−
√2

√|𝐾|
2
+ 2

0

1

√|𝐾|
2
+ 2

1

√2

|𝐾|

√|𝐾|
2
+ 2

−
1

√2

1

√|𝐾|
2
+ 2

1

√2

|𝐾|

√|𝐾|
2
+ 2

1

√2

)
)
)
)
)

)

𝐾 = −
𝐶 + √𝐶

2
+ 8𝐵

2

2𝐵
.

(36)

Note that𝑚
1
𝑚

2
= −2𝐵

2.This matrix can be parameterized in
three Euler’s angles, which implies

𝜃
13
= 0, 𝜃

23
=
𝜋

4
, tan 𝜃

12
=
√2

|𝐾|
. (37)

This case coincides with the data since sin2(2𝜃
13
) < 0.15 and

sin2(2𝜃
23
) > 0.92 [119, 120]. For the remaining constraints,

taking the central values from the data in [119]

sin2 (2𝜃
12
) ≃ 0.87, (𝑠

2

12
= 0.32) ,

Δ𝑚
2

21
= 7.59 × 10

−5 eV2
, Δ𝑚

2

32
= 2.43 × 10

−3 eV2
,

(38)

and we have a solution

𝑚
1
= 0.0280284 eV, 𝑚

2
= 0.0293347 eV,

𝑚
3
= 0.0573631 eV,

(39)

and 𝐵 = −0.0202757𝑖 eV, 𝐶 = 0.0573631 eV, 𝐾 = 1.44667,
and |𝑥/𝑦| = 0.707087. It follows that tan 𝜃

12
= 0.977565,

(𝜃
12
≃ 44.35

0
), and the neutrino mixing matrix form is very

close to that of bimaximal mixing which takes the form:

𝑈 =(

0.715083 −0.69904 0

0.494296 0.50564 −
1

√2

0.494296 0.50564
1

√2

.

) . (40)

Now, it is natural to choose𝜆
𝑠
, V2

𝑠
/Λ

𝑠
in eVorder, and suppose

that 𝜆
𝑠
> V2

𝑠
/Λ

𝑠
. Let us assume 𝜆

𝑠
− V2

𝑠
/Λ

𝑠
= 0.1, and we have

then 𝑥 = 0.399403𝑖 and 𝑦 = −0.573631.
This result is not obviously consistent with the recent data

on neutrinos oscillation in which 𝜃
13

̸= 0, but small as given in
[7]. However, as we will see in Section 5.2, this situation will
be improved if the direction of the breaking 𝑆

4
→ 𝐾

4
takes

place. This means that, for the model under consideration,
both the breakings 𝑆

4
→ 𝐷

4
and 𝑆

4
→ 𝐾

4
(instead of𝐷

4
→

{Identity}) must take place in the neutrino sector.

5.2. Experimental Constraints in the Case 𝑆
4
→ 𝐾

4
. In this

case 𝑆
4
is broken into theKlein four group𝐾

4
,𝜆

1
̸= 𝜆

2
, V

1
̸= V
2
,

and Λ
1
̸= Λ

2
, and the direct consequence is 𝐴 ≈ 0, 𝐵

1
≈ 𝐵

2
,

𝐶
1
≈ 𝐶

2
, and𝐷 ̸= 0.The general neutrinomass matrix in (30)

can be rewritten in the form:

𝑀eff = (
0 𝐵 𝐵

𝐵 𝐶 0

𝐵 0 𝐶

) +(

𝑎
2
𝑟 𝑎𝑝 𝑎𝑞

𝑎𝑝 𝑞 𝑟

𝑎𝑞 𝑟 𝑝

) , (𝑎 =
𝑥

2𝑦
)

= (

0 𝐵 𝐵

𝐵 𝐶 0

𝐵 0 𝐶

) +(

𝑎
2
𝑟 0 0

0 0 𝑟

0 𝑟 0

)

+ (

0 𝑎𝑝 0

𝑎𝑝 0 0

0 0 𝑝

) + (

0 0 𝑎𝑞

0 𝑞 0

𝑎𝑞 0 0

) ,

(41)

where 𝐵 and 𝐶 are given by (33), accommodated in the first
matrix, which is matched to the case of 𝑆

4
→ 𝐷

4
. The three

last matrices in (41) are a deviation from the contribution due
to the disparity of ⟨𝑠

1
⟩ and ⟨𝑠

2
⟩, namely,𝐴 = 𝑎

2
𝑟,𝐵

1
−𝐵 = 𝑎𝑝,

𝐵
2
− 𝐵 = 𝑎𝑞, 𝑞 = 𝐶

1
− 𝐶, 𝑝 = 𝐶

2
− 𝐶, and 𝑟 = 𝐷, with the

𝐴, 𝐵
1,2
,𝐶

1,2
, and𝐷 being defined in (5), which correspond to

𝑆
4
→ 𝐾

4
.

Substituting (29) into (5) we get

𝑞 = ([Λ
4

𝑠
𝜆
1
− 𝜆

𝑠
Λ

𝑠
(Λ

3

𝑠
+ Λ

3

1
) + Λ

2

𝑠
Λ

1
V2
𝑠
+ Λ

3

1
V2
𝑠

+ Λ
3

𝑠
V
𝑠
(V

𝑠
− 2V

1
) + Λ

𝑠
Λ
2

1
(𝜆

1
Λ

1
− V2

1
)] 𝑦)

× (Λ
𝑠
(Λ

3

𝑠
+ Λ

3

1
))

−1

= (𝜆
1
− 𝜆

𝑠
) 𝑦

+ ([
Λ

𝑠

Λ
2

1

V2
𝑠
+

V2
𝑠

Λ
𝑠

+
Λ
2

𝑠

Λ
3

1

V2
𝑠

−2
Λ
2

𝑠

Λ
3

1

V
𝑠
V
1
−

V2
1

Λ
1

]𝑦)

× (1 + (
Λ

𝑠

Λ
1

)

3

)

−1

,

𝑝 =
Λ

1
(Λ

1
V
𝑠
− Λ

𝑠
V
1
)
2
𝑦

Λ
𝑠
(Λ

3

𝑠
+ Λ

3

1
)

=
Λ

𝑠
(V

𝑠
/Λ

𝑠
− V

1
/Λ

1
)
2

𝑦

1 + (Λ
𝑠
/Λ

1
)
3

,

𝑟 = −
(Λ

1
V
𝑠
− Λ

𝑠
V
1
)
2

𝑦

Λ
3

1
+ Λ

3

𝑠

=
Λ

𝑠
(Λ

𝑠
/Λ

1
) (V

𝑠
/Λ

𝑠
− V

1
/Λ

1
)
2

𝑦

1 + (Λ
𝑠
/Λ

1
)
3

.

(42)

Indeed, if 𝑆
4

→ 𝐷
4
, the deviations 𝑝, 𝑞, 𝑟 will vanish,

therefore the mass matrix 𝑀eff in (30) reduces to its first
term coinciding with (32). The first term of (41) provides
bimaximal mixing pattern, in which 𝜃

13
= 0 as shown in

Section 5.1. The other matrices proportional to 𝑝, 𝑞, 𝑟 due to
contribution from the disparity of ⟨𝑠

1
⟩ and ⟨𝑠

2
⟩ will take the

role of perturbation for such a deviation of 𝜃
13
. So, in this

work we consider the disparity of ⟨𝑠
1
⟩ and ⟨𝑠

2
⟩ as a small

perturbation and terminating the theory at the first order.
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Without loss of generality, we consider the case of
breaking 𝑆

4
→ 𝐾

4
, in which 𝜆

1
̸= 𝜆

𝑠
whereas V

1
= V

𝑠
and

Λ
1
= Λ

𝑠
. It is then 𝑝 = 𝑟 = 0, 𝑞 = (𝜆

1
− 𝜆

𝑠
)𝑦 ≡ 𝜖𝑦 with

𝜖 = 𝜆
1
− 𝜆

𝑠
being a small parameter. In this case, the matrix

𝑀eff in (41) reduces to

𝑀eff =(

0
𝑥

2𝑦
𝐶

𝑥

2𝑦
𝐶

𝑥

2𝑦
𝐶 𝐶 0

𝑥

2𝑦
𝐶 0 𝐶

)+ 𝜖(

0 0
𝑥

2

0 𝑦 0

𝑥

2
0 0

)

≡ 𝑀
0

eff + 𝜖𝑀
(1)
.

(43)

At the first order of perturbation, the physical neutrino
masses are obtained as

𝑚


1
= 𝜆

1
= 𝑚

1
+ 𝜖 (

𝐾𝑥 + 𝑦

𝐾
2
+ 2

) ,

𝑚


2
= 𝜆

2
= 𝑚

2
+
𝜖𝐾 (𝐾𝑦 − 2𝑥)

2 (𝐾
2
+ 2)

, 𝑚


3
= 𝜆

3
= 𝑚

3
+ 𝜖

𝑦

2
,

(44)

where𝑚
1,2,3

are themass values as of the case 𝑆
4
→ 𝐷

4
given

by (39). For the corresponding perturbed eigenstates, we put

𝑈 → 𝑈

= 𝑈 + Δ𝑈, (45)

where 𝑈 is defined by (36), and

Δ𝑈 = (

Δ𝑈
11

Δ𝑈
12

Δ𝑈
13

Δ𝑈
21

Δ𝑈
22

Δ𝑈
23

Δ𝑈
31

Δ𝑈
32

Δ𝑈
33

) , (46)

with

Δ𝑈
11
= −𝜖

(𝐾
2
− 2) 𝑥 + 2𝐾𝑦

2(𝐾
2
+ 2)

3/2

(𝑚
1
− 𝑚

2
)

,

Δ𝑈
21
= −𝜖

(𝐾𝑥 − 2𝑦)

4√𝐾
2
+ 2 (𝑚

1
− 𝑚

3
)

+ 𝜖

𝐾 [(𝐾
2
− 2) 𝑥 + 2𝐾𝑦]

4(𝐾
2
+ 2)

3/2

(𝑚
1
− 𝑚

2
)

,

Δ𝑈
31
= 𝜖

(𝐾𝑥 − 2𝑦)

4√𝐾
2
+ 2 (𝑚

1
− 𝑚

3
)

+ 𝜖

𝐾 [(𝐾
2
− 2) 𝑥 + 2𝐾𝑦]

4(𝐾
2
+ 2)

3/2

(𝑚
1
− 𝑚

2
)

,

Δ𝑈
12
= −𝜖

𝐾 [(𝐾
2
− 2) 𝑥 + 2𝐾𝑦]

2√2(𝐾
2
+ 2)

3/2

(𝑚
1
− 𝑚

2
)

,

Δ𝑈
22
=

𝜖

2√2

𝐾𝑦 + 𝑥

√𝐾
2
+ 2 (𝑚

2
− 𝑚

3
)

−
𝜖

2√2

(𝐾
2
− 2) 𝑥 + 2𝐾𝑦

(𝐾
2
+ 2)

3/2
(𝑚

1
− 𝑚

2
)

,

Δ𝑈
32
= −

𝜖

2√2

𝐾𝑦 + 𝑥

√𝐾
2
+ 2 (𝑚

2
− 𝑚

3
)

−
𝜖

2√2

(𝐾
2
− 2) 𝑥 + 2𝐾𝑦

(𝐾
2
+ 2)

3/2

(𝑚
1
− 𝑚

2
)

,

Δ𝑈
13
= −

𝜖

2√2

𝐾 (𝐾𝑥 − 2𝑦)

(𝐾
2
+ 2) (𝑚

1
− 𝑚

3
)

−
𝜖

√2

𝐾𝑦 + 𝑥

(𝐾
2
+ 2) (𝑚

2
− 𝑚

3
)
,

Δ𝑈
23
= Δ𝑈

33
= −

𝜖

2√2

𝐾𝑥 − 2𝑦

(𝐾
2
+ 2) (𝑚

1
− 𝑚

3
)

+
𝜖

2√2

𝐾 (𝐾𝑦 + 𝑥)

(𝐾
2
+ 2) (𝑚

2
− 𝑚

3
)
.

(47)

The lepton mixing matrix in this case 𝑈 can still be parame-
terized in three new Euler’s angles 𝜃

𝑖𝑗
, which are also a pertur-

bation from the 𝜃
𝑖𝑗
in the case 1, defined by

𝑠


13
= −𝑈



13
= Δ𝑈

13

= −
𝜖

2√2

𝐾 (𝐾𝑥 − 2𝑦)

(𝐾
2
+ 2) (𝑚

1
− 𝑚

3
)

−
𝜖

√2

𝐾𝑦 + 𝑥

(𝐾
2
+ 2) (𝑚

2
− 𝑚

3
)
= −

𝜖𝑦

2√2𝐵

,

𝑡


12
= −

𝑈


12

𝑈


11

= (− [4𝜖𝐵
2
𝐶𝑥 + 𝜖𝐶

2
(𝐶 + √𝐶

2
+ 8𝐵

2
) 𝑥

+ 2𝐵𝐶 (𝐶 + √𝐶
2
+ 8𝐵

2
) (2𝐶 − 𝜖𝑦)

+ 8𝐵
3
(4𝐶 + 4√𝐶

2
+ 8𝐵

2
− 𝜖𝑦)])

× ({√2 [64𝐵
4
+ 2𝐶

3
(𝐶 + √𝐶

2
+ 8𝐵

2
)

− 𝜖𝐵𝐶 (𝐶 + √𝐶
2
+ 8𝐵

2
) 𝑥

+ 2𝐵
2
(12𝐶

2
+ 8𝐶√𝐶

2
+ 8𝐵

2
)

+ 𝜖𝐶𝑦 + 𝜖𝑦√𝐶
2
+ 8𝐵

2
]})

−1

,
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𝑡


23
= −

𝑈


23

𝑈


33

=
4𝐵

2
+ 𝜖𝐵𝑥 − 𝜖𝐶𝑦

4𝐵
2
− 𝜖𝐵𝑥 + 𝜖𝐶𝑦

.

(48)

It is easily to show that our model is consistent since the five
experimental constraints on the mixing angles and squared
neutrinomass differences can be, respectively, fitted with two
Yukawa coupling parameters 𝑥, 𝑦 of the antisextet scalar 𝑠
with the above mentioned VEVs. Indeed, taking the data
in (1) we obtain 𝜖 ≃ 0.0692, 𝑥 ≃ 0.0728, 𝑦 ≃ −0.1562,
and 𝐵 ≃ −0.0241 eV and 𝐶 = 0.022 eV, 𝐾 = 1.943, and
𝑡


23
= 0.9045 [𝜃

23
≃ 42.13

𝑜
, sin2(2𝜃

23
) = 0.98999 satisfying

the condition sin2(2𝜃
23
) > 0.95]. The neutrino masses are

explicitly given as𝑚

1
≃ −0.02737 eV,𝑚

2
≃ −0.02870 eV, and

𝑚


3
≃ −0.05607 eV. The neutrino mixing matrix then takes

the form:

𝑈 = (

0.8251 −0.5657 −0.1585

0.3302 0.6781 −0.6716

0.4697 0.4888 0.7426

) . (49)

6. Gauge Bosons

The covariant derivative of a triplet is given by

𝐷
𝜇
= 𝜕

𝜇
− 𝑖𝑔

𝜆
𝑎

2
𝑊

𝜇𝑎
− 𝑖𝑔

𝑋
𝑋
𝜆
9

2
𝐵
𝜇
= 𝜕

𝜇
− 𝑖𝑃

𝜇
, (50)

where 𝜆
𝑎
(𝑎 = 1, 2, . . . , 8) are Gell-Mann matrices, 𝜆

9
=

√2/3 diag(1, 1, 1), Tr 𝜆
𝑎
𝜆
𝑏
= 2𝛿

𝑎𝑏
, Tr 𝜆

9
𝜆
9
= 2, and 𝑋 is 𝑋-

charge of Higgs triplets.
Let us denote the following combinations:

𝑊
+

𝜇
=

𝑊
𝜇1
− 𝑖𝑊

𝜇2

√2

, 𝑋
0

𝜇
=

𝑊
𝜇4
− 𝑖𝑊

𝜇5

√2

,

𝑌
−

𝜇
=

𝑊
𝜇6
− 𝑖𝑊

𝜇7

√2

, 𝑊
−

𝜇
= (𝑊

+

𝜇
)
∗

, 𝑌
+

𝜇
= (𝑌

−

𝜇
)
∗

,

(51)

and then 𝑃
𝜇
is rewritten in a convenient form as follows:

𝑔

2

(

(

𝑊
𝜇3
+

𝑊
𝜇8

√3

+ 𝑡√
2

3
𝑋𝐵

𝜇
√2𝑊

+

𝜇
√2𝑋

0

𝜇
,

√2𝑊
−

𝜇
−𝑊

𝜇3
+

𝑊
𝜇8

√3

+ 𝑡√
2

3
𝑋𝐵

𝜇
√2𝑌

−

𝜇

√2𝑋
0∗

𝜇
√2𝑌

+

𝜇
−
2

√3

𝑊
𝜇8
+ 𝑡√

2

3
𝑋𝐵

𝜇

)

)

, (52)

with 𝑡 = 𝑔
𝑋
/𝑔. We note that 𝑊

4
and 𝑊

5
are pure real and

imaginary parts of 𝑋0 and 𝑋
0∗, respectively. The covariant

derivative for an antisextet with the VEV part is [121]

𝐷
𝜇
⟨𝑠

𝑖
⟩ =

𝑖𝑔

2
{𝑊

𝑎

𝜇
𝜆
∗

𝑎
⟨𝑠

𝑖
⟩ + ⟨𝑠

𝑖
⟩𝑊

𝑎

𝜇
𝜆
∗𝑇

𝑎
} − 𝑖𝑔

𝑋
𝑇
9
𝑋𝐵

𝜇
⟨𝑠

𝑖
⟩ .

(53)

The covariant derivative (53) acting on the antisextet VEVs is
given by

[𝐷
𝜇
⟨𝑠

𝑖
⟩]

11
= 𝑖𝑔(𝜆

𝑖
𝑊

𝜇3
+
𝜆
𝑖

√3

𝑊
𝜇8

+√
2

3

1

3
𝑡𝜆

𝑖
𝐵
𝜇
+ √2V

𝑖
𝑋

0∗
) ,

[𝐷
𝜇
⟨𝑠

𝑖
⟩]

12
=

𝑖𝑔

√2

(𝜆
𝑖
𝑊

+

𝜇
+ V

𝑖
𝑌
+

𝜇
) ,

[𝐷
𝜇
⟨𝑠

𝑖
⟩]

13
=
𝑖𝑔

2
(V

𝑖
𝑊

𝜇3
−

V
𝑖

√3

𝑊
𝜇8
+
2

3

√
2

3
𝑡V

𝑖
𝐵
𝜇

+√2𝜆
𝑖
𝑋

0

𝜇
+ √2Λ

𝑖
𝑋

0∗

𝜇
) ,

[𝐷
𝜇
⟨𝑠

𝑖
⟩]

21
= [𝐷

𝜇
⟨𝑠

𝑖
⟩]

12
, [𝐷

𝜇
⟨𝑠

𝑖
⟩]

22
= 0,

[𝐷
𝜇
⟨𝑠

𝑖
⟩]

23
=

𝑖𝑔

√2

(V
𝑖
𝑊

+

𝜇
+ Λ

𝑖
𝑌
+

𝜇
) ,

[𝐷
𝜇
⟨𝑠

𝑖
⟩]

31
= [𝐷

𝜇
⟨𝑠

𝑖
⟩]

13
, [𝐷

𝜇
⟨𝑠

𝑖
⟩]

32
= [𝐷

𝜇
⟨𝑠

𝑖
⟩]

23
,

[𝐷
𝜇
⟨𝑠

𝑖
⟩]

33
= 𝑖𝑔(−

2

√3

Λ
𝑖
𝑊

𝜇8
+ √

2

3

1

3
𝑡Λ

𝑖
𝐵
𝜇
+ √2V

𝑖
𝑋

0

𝜇
) .

(54)

The masses of gauge bosons in this model are defined as
follows:

L
GB
mass

= (𝐷
𝜇
⟨𝜙⟩)

+

(𝐷
𝜇
⟨𝜙⟩) + (𝐷

𝜇
⟨𝜙


⟩)

+

(𝐷
𝜇
⟨𝜙


⟩)

+ (𝐷
𝜇
⟨𝜒⟩)

+

(𝐷
𝜇
⟨𝜒⟩) + (𝐷

𝜇
⟨𝜂⟩)

+

(𝐷
𝜇
⟨𝜂⟩)

+ (𝐷
𝜇
⟨𝜂


⟩)

+

(𝐷
𝜇
⟨𝜂


⟩) + Tr [(𝐷

𝜇
⟨𝑠

1
⟩)

+

(𝐷
𝜇
⟨𝑠

1
⟩)]

+ Tr [(𝐷
𝜇
⟨𝑠

2
⟩)

+

(𝐷
𝜇
⟨𝑠

2
⟩)] ,

(55)

where LGB
mass in (55) is different from the one in [122] by the

difference of the components of the antisextet 𝑠. In [122],
⟨𝑠

1
⟩ = ⟨𝑠

1
⟩, namely, 𝜆

1
= 𝜆

2
= 𝜆

𝑠
, V

1
= V

2
= V

𝑠
, and

Λ
1
= Λ

2
= Λ

𝑠
, are taken into account, and the contribution

of perturbation has been skipped at the first order. In the
following, we consider the general case in which 𝜆

1
̸= 𝜆

2
,

V
1
̸= V
2
, and Λ

1
̸= Λ

2
. As a consequence, the fewer number of
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Higgs multiplets is needed in order to allow the fermions to
gain masses and with the simpler scalar Higgs potential as
mentioned above.

Substitution of the VEVs of Higgs multiplets into (55)
yields

L
GB
mass

=
V2

324
[81𝑔

2
(𝑊

2

𝜇1
+𝑊

2

𝜇2
) + 81𝑔

2
(𝑊

2

𝜇6
+𝑊

2

𝜇7
)

+(−9𝑔𝑊
𝜇3
+ 3√3𝑔𝑊

𝜇8
+ 2√6𝑔

𝑋
𝐵
𝜇
)
2

]

+
V2

324
[81𝑔

2
(𝑊

2

𝜇1
+𝑊

2

𝜇2
) + 81𝑔

2
(𝑊

2

𝜇6
+𝑊

2

𝜇7
)

+(−9𝑔𝑊
𝜇3
+ 3√3𝑔𝑊

𝜇8
+ 2√6𝑔

𝑋
𝐵
𝜇
)
2

]

+
𝜔
2

108
[27𝑔

2
(𝑊

2

𝜇4
+𝑊

2

𝜇5
) + 27𝑔

2
(𝑊

2

𝜇6
+𝑊

2

𝜇7
)

+ 36𝑔
2
𝑊

2

𝜇8
+ 12√2𝑔𝑔

𝑥
𝑊

𝜇8
𝐵
𝜇
+ 2𝑔

2

𝑋
𝐵
2

𝜇
]

+
𝑢
2

324
[81𝑔

2
(𝑊

2

𝜇1
+𝑊

2

𝜇2
) + 81𝑔

2
(𝑊

2

𝜇4
+𝑊

2

𝜇5
)

+(−9𝑔𝑊
𝜇3
− 3√3𝑔𝑊

𝜇8
+ √6𝑔

𝑋
𝐵
𝜇
)
2

]

+
𝑢
2

324
[81𝑔

2
(𝑊

2

𝜇1
+𝑊

2

𝜇2
) + 81𝑔

2
(𝑊

2

𝜇4
+𝑊

2

𝜇5
)

+(−9𝑔𝑊
𝜇3
− 3√3𝑔𝑊

𝜇8
+ √6𝑔

𝑋
𝐵
𝜇
)
2

]

+
𝑔
2

6
[2 (Λ

1
V
1
+ Λ

2
V
2
) (3𝑊

𝜇3
𝑊

𝜇4
+ 3𝑊

𝜇1
𝑊

𝜇6

−3𝑊
𝜇2
𝑊

𝜇7
− 5√3𝑊

𝜇4
𝑊

𝜇8
)

+ 3 (V2
1
+ V2

2
+ 𝜆

2

1
+ 𝜆

2

2
)𝑊

2

𝜇1

+ 3 (V2
1
+ V2

2
+ 𝜆

2

1
+ 𝜆

2

2
)𝑊

2

𝜇2

+ 3 (V2
1
+ V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2
)𝑊

2

𝜇3

+ 3 (4V2
1
+ 4V2

2
+ 𝜆

2

1
+ 𝜆

2

2
+ Λ

2

1
+ Λ

2

2

+2Λ
1
𝜆
1
+ 2Λ

2
𝜆
2
)𝑊

2

𝜇4

+ 3 (4V2
1
+ 4V2

2
+ 𝜆

2

1
+ 𝜆

2

2
+ Λ

2

1
+ Λ

2

2

−2Λ
1
𝜆
1
− 2Λ

2
𝜆
2
)𝑊

2

𝜇5

+ 3 (V2
1
+ V2

2
+ Λ

2

1
+ Λ

2

2
)𝑊

2

𝜇6

+ 3 (V2
1
+ V2

2
+ Λ

2

1
+ Λ

2

2
)𝑊

2

𝜇7

+ 2√3 (−V2
1
− V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2
)𝑊

𝜇3
𝑊

𝜇8

+ (V2
1
+ V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2
+ 8Λ

2

1
+ 8Λ

2

2
)𝑊

2

𝜇8

+ 18 (𝜆
1
V
1
+ 𝜆

2
V
2
)𝑊

𝜇3
𝑊

𝜇4

+ 6 (𝜆
1
V
1
+ 𝜆

2
V
2
)𝑊

𝜇1
𝑊

𝜇6

− 6 (𝜆
1
V
1
+ 𝜆

2
V
2
)𝑊

𝜇2
𝑊

𝜇7

+2√3 (𝜆
1
V
1
+ 𝜆

2
V
2
)𝑊

𝜇4
𝑊

𝜇8
]

+
2

27
𝑡
2
𝑔
2
(𝜆

2

1
+ 𝜆

2

2
+ Λ

2

1
+ Λ

2

2
+ 2V2

1
+ 2V2

2
) 𝐵

2

𝜇

−
2

3

√
2

3
𝑡𝑔

2
(𝜆

2

1
+ 𝜆

2

2
+ V2

1
+ V2

2
)𝑊

𝜇3
𝐵
𝜇

−
4

3

√
2

3
𝑡𝑔

2
[(𝜆

1
+ Λ

1
) V

1
+ (𝜆

2
+ Λ

2
) V

2
]𝑊

𝜇4
𝐵
𝜇

−
2√2

9
𝑡𝑔

2
(𝜆

2

1
+ 𝜆

2

2
− V2

1
− V2

2
− 2Λ

2

1
− 2Λ

2

2
)𝑊

𝜇8
𝐵
𝜇
.

(56)

We can separateLGB
mass in (57) into

L
GB
mass = L

𝑊
5

mass +L
CGB
mix +L

NGB
mix , (57)

whereL𝑊
5

mass is the Lagrangian part of the imaginary part𝑊
5
.

This boson is decoupled with mass given by

𝑀
2

𝑊
5

=
𝑔
2

2
(𝜔

2
+ 𝑢

2
+ 𝑢

2
+ 8V2

1
+ 8V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2

+ 2Λ
2

1
+ 2Λ

2

2
− 4Λ

1
𝜆
1
− 4Λ

2
𝜆
2
) .

(58)

In the limit 𝜆
1
, 𝜆

2
, V

1
, V

2
→ 0 we have

𝑀
2

𝑊
5

=
𝑔
2

2
(𝜔

2
+ 𝑢

2
+ 𝑢

2
+ 2Λ

2

1
+ 2Λ

2

2
) . (59)

LCGB
mix is the Lagrangian part of the charged gauge bosons𝑊

and 𝑌:

L
CGB
mix =

𝑔
2

4
[V2 + V2 + 𝑢2 + 𝑢2

+2 (V2
1
+ V2

2
+ 𝜆

2

1
+ 𝜆

2

2
)] (𝑊

2

𝜇1
+𝑊

2

𝜇2
)

+
𝑔
2

4
[V2 + V2 + 𝜔2
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+2 (V2
1
+ V2

2
+ Λ

2

1
+ Λ

2

2
)] (𝑊

2

𝜇6
+𝑊

2

𝜇7
)

+ 𝑔
2
(Λ

1
V
1
+ 𝜆

1
V
1
+ Λ

2
V
2
+ 𝜆

2
V
2
)

× (𝑊
𝜇1
𝑊

𝜇6
−𝑊

𝜇2
𝑊

𝜇7
) .

(60)

LCGB
mix in (60) can be rewritten in matrix form as follows:

L
CGB
mix =

𝑔
2

4
(𝑊

−

𝜇
𝑌
−

𝜇
)𝑀

2

𝑊𝑌
(𝑊

+

𝜇
𝑌
+

𝜇
)
𝑇

, (61)

where

𝑀
2

𝑊𝑌
= 2(

V2 + V2 + 𝑢2 + 𝑢2 + 2 (V2
1
+ V2

2
+ 𝜆

2

1
+ 𝜆

2

2
) 2 (Λ

1
V
1
+ 𝜆

1
V
1
+ Λ

2
V
2
+ 𝜆

2
V
2
)

2 (Λ
1
V
1
+ 𝜆

1
V
1
+ Λ

2
V
2
+ 𝜆

2
V
2
) V2 + V2 + 𝜔2

+ 2 (V2
1
+ V2

2
+ Λ

2

1
+ Λ

2

2
)
) . (62)

The matrix𝑀2

𝑊𝑌
in (62) can be diagonalized as follows:

𝑈
𝑇

2
𝑀

2

𝑊𝑌
𝑈
2
= diag (𝑀2

𝑊
,𝑀

2

𝑌
) , (63)

where

𝑀
2

𝑊
=
𝑔
2

4
{2 (𝜆

2

1
+ 𝜆

2

2
+ 2V2

1
+ 2V2

2
+ Λ

2

1
+ Λ

2

2
)

+𝜔
2
+ 𝑢

2
+ 𝑢

2
+ 2 (V2 + V2) − √Γ} ,

𝑀
2

𝑌
=
𝑔
2

4
{2 (𝜆

2

1
+ 𝜆

2

2
+ 2V2

1
+ 2V2

2
+ Λ

2

1
+ Λ

2

2
)

+𝜔
2
+ 𝑢

2
+ 𝑢

2
+ 2 (V2 + V2) + √Γ} ,

(64)

with

Γ = 4𝜆
4

1
+ 4Λ

4

1
+ (2𝜆

2

2
− 2Λ

2

2
− 𝜔

2
+ 𝑢

2
+ 𝑢

2
)
2

− 4𝜆
2

1
(2Λ

2

1
− 2𝜆

2

2
+ 2Λ

2

2
+ 𝜔

2
− 𝑢

2
− 𝑢

2
− 4V2

1
)

− 4Λ
2

1
(2𝜆

2

2
− 2Λ

2

2
− 𝜔

2
+ 𝑢

2
+ 𝑢

2
− 4V2

1
)

+ 32Λ
1
(𝜆

2
+ Λ

2
) V

1
V
2
+ 16(𝜆

2
+ Λ

2
)
2V2

2

+ 32𝜆
1
V
1
(Λ

1
V
1
+ 𝜆

2
V
2
+ Λ

2
V
2
) .

(65)

With corresponding eigenstates, the charged gauge boson
mixing matrix takes the form:

𝑈
2
= (

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ) . (66)

The mixing angle 𝜃 is given by

tan 𝜃 =
4 (𝜆

1
+ Λ

1
) V

1
+ 4 (𝜆

2
+ Λ

2
) V

2

2𝜆
2

1
− 2Λ

2

1
+ 2𝜆

2

2
− 2Λ

2

2
− 𝜔

2
+ 𝑢

2
+ 𝑢

2
− √Γ

.

(67)

The physical charged gauge bosons are defined

𝑊
−

𝜇
= cos 𝜃𝑊−

𝜇
+ sin 𝜃𝑌−

𝜇
,

𝑌
−

𝜇
= − sin 𝜃𝑊−

𝜇
+ cos 𝜃𝑌−

𝜇
.

(68)

In our model, the following limit is often taken into account:

𝜆
2

1,2
, V2

1,2
≪ 𝑢

2
, 𝑢

2
, V2, V2 ≪ 𝜔

2
∼ Λ

2

1,2
. (69)

With the help of (69), the Γ in (65) becomes

√Γ ≃ (2Λ
2

1
+ 2Λ

2

2
+ 𝜔

2
− 𝑢

2
− 𝑢

2
)

+
16Λ

1
Λ

2
V
1
V
2
+ 8Λ

2

2
V2
2

2Λ
2

1
+ 2Λ

2

2
+ 𝜔

2
− 𝑢

2
− 𝑢

2
.

(70)

It is then

𝑀
2

𝑊
≃
𝑔
2

2
(𝑢

2
+ 𝑢

2
+ V2 + V2) −

𝑔
2

2
Δ

𝑀
2

w
, (71)

with

Δ
𝑀
2

w
=

4 (2Λ
1
Λ

2
V
1
V
2
+ Λ

2

2
V2
2
)

2Λ
2

1
+ 2Λ

2

2
+ 𝜔

2
− 𝑢

2
− 𝑢

2
. (72)

In the limit V
1,2

→ 0 the mixing angle 𝜃 tends to zero, Γ =

2Λ
2

1
+ 2Λ

2

2
+ 𝜔

2
− 𝑢

2
− 𝑢

2, and one has

𝑀
2

𝑊
=
𝑔
2

2
(𝑢

2
+ 𝑢

2
+ V2 + V2) ,

𝑀
2

𝑌
=
𝑔
2

2
(2Λ

2

1
+ 2Λ

2

2
+ 𝜔

2
+ V2 + V2) .

(73)

With the help of (69), one can estimate

tan 𝜃 ≃ 4Λ
1
V
1
+ 4Λ

2
V
2

−2Λ
2

1
− 2Λ

2

2
− 𝜔

2
− 2 (Λ

2

1
+ Λ

2

2
)
∼

V
𝑖

Λ
𝑖

,

(𝑖 = 1, 2) .

(74)

In addition, from (73), it follows that 𝑀2

𝑊
is much smaller

than𝑀2

𝑌
. Note that, due to the above mixing, the new gauge

boson 𝑌 will give a contribution to neutrinoless double beta
decay (for details, see [123–125]).
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LNGB
mix is the Lagrangian that describes the mixing among

the neutral gauge bosons𝑊
3
,𝑊

8
,𝐵,𝑊

4
.Themass Lagrangian

in this case has the form
L

NGB
mix

=

(V2 + V2)

324
(−9𝑔𝑊

𝜇3
+ 3√3𝑔𝑊

𝜇8
+ 2√6𝑔

𝑋
𝐵
𝜇
)
2

+
𝜔
2

108
(27𝑔

2
𝑊

2

𝜇4
+ 36𝑔

2
𝑊

2

𝜇8

+ 12√2𝑔𝑔
𝑥
𝑊

𝜇8
𝐵
𝜇
+ 2𝑔

2

𝑋
𝐵
2

𝜇
)

+

(𝑢
2
+ 𝑢

2
)

324
[81𝑔

2
𝑊

2

𝜇4

+(−9𝑔𝑊
𝜇3
− 3√3𝑔𝑊

𝜇8
+ √6𝑔

𝑋
𝐵
𝜇
)
2

]

+
𝑔
2

6
[2 (Λ

1
V
1
+ Λ

2
V
2
) (3𝑊

𝜇3
𝑊

𝜇4
− 5√3𝑊

𝜇4
𝑊

𝜇8
)

+ 3 (V2
1
+ V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2
)𝑊

2

𝜇3

+ 3 (4V2
1
+ 4V2

2
+ 𝜆

2

1
+ 𝜆

2

2
+ Λ

2

1
+ Λ

2

2

+2Λ
1
𝜆
1
+ 2Λ

2
𝜆
2
)𝑊

2

𝜇4

+ 2√3 (−V2
1
− V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2
)𝑊

𝜇3
𝑊

𝜇8

+ (V2
1
+ V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2
+ 8Λ

2

1
+ Λ

2

2
)𝑊

2

𝜇8

+ 18 (𝜆
1
V
1
+ 𝜆

2
V
2
)𝑊

𝜇3
𝑊

𝜇4

+2√3 (𝜆
1
V
1
+ 𝜆

2
V
2
)𝑊

𝜇4
𝑊

𝜇8
]

+
2

27
𝑡
2
𝑔
2
(𝜆

2

1
+ 𝜆

2

2
+ Λ

2

1
+ Λ

2

2
+ 2V2

1
+ 2V2

2
) 𝐵

2

𝜇

−
2

3

√
2

3
𝑡𝑔

2
(𝜆

2

1
+ 𝜆

2

2
+ V2

1
+ V2

2
)𝑊

𝜇3
𝐵
𝜇

−
4

3

√
2

3
𝑡𝑔

2
[(𝜆

1
+ Λ

1
) V

1
+ (𝜆

2
+ Λ

2
) V

2
]𝑊

𝜇4
𝐵
𝜇

−
2√2

9
𝑡𝑔

2
(𝜆

2

1
+ 𝜆

2

2
− V2

1
− V2

2
− 2Λ

2

1
− 2Λ

2

2
)𝑊

𝜇8
𝐵
𝜇
.

(75)

On the basis of (𝑊
𝜇3
,𝑊

𝜇8
, 𝐵

𝜇
,𝑊

𝜇4
), theLNGB

mix in (75) can
be rewritten in matrix form:

L
NGB
mix ≡

1

2
𝑉
𝑇
𝑀

2
𝑉,

𝑉
𝑇
= (𝑊

𝜇3
,𝑊

𝜇8
, 𝐵

𝜇
,𝑊

𝜇4
) ,

𝑀
2
=
𝑔
2

4

(
(

(

𝑀
2

11
𝑀

2

12
𝑀

2

13
𝑀

2

14

𝑀
2

12
𝑀

2

22
𝑀

2

23
𝑀

2

24

𝑀
2

13
𝑀

2

23
𝑀

2

33
𝑀

2

34

𝑀
2

14
𝑀

2

24
𝑀

2

34
𝑀

2

44
,

)
)

)

,

(76)

where

𝑀
2

11
= 2 (V2 + V2 + 𝑢2 + 𝑢2 + 2V2

1
+ 2V2

2
+ 4𝜆

2

1
+ 4𝜆

2

2
) ,

𝑀
2

12
= −

2√3

3
(V2 + V2 − 𝑢2 − 𝑢2 + 2V2

1
+ 2V2

2
− 4𝜆

2

1
− 4𝜆

2

2
) ,

𝑀
2

13
= −

2

3

√
2

3
𝑡 (2V2 + 2V2 + 𝑢2 + 𝑢2

+4𝜆
2

1
+ 4𝜆

2

2
+ 4V2

1
+ 4V2

2
) ,

𝑀
2

14
= 4 (Λ

1
V
1
+ Λ

2
V
2
) + 12 (𝜆

1
V
1
+ 𝜆

2
V
2
) ,

𝑀
2

22
=
2

3
(V2 + V2 + 4𝜔2

+ 𝑢
2
+ 𝑢

2
+ 2V2

1
+ 2V2

2

+4𝜆
2

1
+ 4𝜆

2

2
+ 16Λ

2

1
+ 16Λ

2

2
) ,

𝑀
2

23
=
2√2𝑡

9
(2V2 + 2V2 + 2𝜔2

− 𝑢
2
− 𝑢

2
− 4𝜆

2

1
− 4𝜆

2

2

+4V2
1
+ 4V2

2
+ 8Λ

2

1
+ 8Λ

2

2
) ,

𝑀
2

24
=

4

√3

[𝜆
1
V
1
+ 𝜆

2
V
2
− 5 (Λ

1
V
1
+ Λ

2
V
2
)] ,

𝑀
2

33
=
4𝑡

2

27
(4V2 + 4V2 + 𝜔2

+ 𝑢
2
+ 𝑢

2
+ 4𝜆

2

1
+ 4𝜆

2

2

+4Λ
2

1
+ 4Λ

2

2
+ 8V2

1
+ 8V2

2
) ,

𝑀
2

34
= −

16

3

√
2

3
𝑡 (𝜆

1
V
1
+ Λ

1
V
1
+ 𝜆

2
V
2
+ Λ

2
V
2
) ,

𝑀
2

44
= 2 (𝜔

2
+ 𝑢

2
+ 𝑢

2
+ 8V2

1
+ 8V2

2
+ 2𝜆

2

1
+ 2𝜆

2

2

+2Λ
2

1
+ 2Λ

2

2
+ 4Λ

1
𝜆
1
+ 4Λ

2
𝜆
2
) .

(77)

The matrix 𝑀2 in (76) with elements in (77) has one exact
eigenvalue, which is identified with the photon mass:

𝑀
2

𝛾
= 0. (78)

The corresponding eigenvector of𝑀2

𝛾
is

𝐴
𝜇
=

(
(
(
(
(
(

(

√3𝑡

√4𝑡
2
+ 18

−
𝑡

√4𝑡
2
+ 18

3√2

√4𝑡
2
+ 18

0

)
)
)
)
)
)

)

. (79)

Note that in the limit 𝜆
1,2
, V

1,2
→ 0,𝑀2

14
= 𝑀

2

24
= 𝑀

2

34
=

0, and 𝑊
4
does not mix with 𝑊

3𝜇
, 𝑊

8𝜇
, 𝐵

𝜇
. In the general

case 𝜆
1,2
, V

1,2
̸= 0, the mass matrix in (76) contains one exact

eigenvalues as in (78) with the corresponding eigenstate given
in (79).
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Themass matrix𝑀2 in (76) is diagonalized via two steps.
In the first step, the basic (𝑊

𝜇3
,𝑊

𝜇8
, 𝐵



𝜇
,𝑊

4𝜇
) is transformed

into the basic (𝐴
𝜇
, 𝑍

𝜇
, 𝑍



𝜇
,𝑊

4𝜇
) by the matrix:

𝑈NGB =
(
(
(
(

(

𝑠
𝑊

−𝑐
𝑊

0 0

−
𝑐
𝑊
𝑡
𝑊

√3

−
𝑠
𝑊
𝑡
𝑊

√3

√1 −
𝑡
2

𝑊

3
0

𝑐
𝑊
√1 −

𝑡
2

𝑊

3
𝑠
𝑊
√1 −

𝑡
2

𝑊

3

𝑡
𝑊

√3

0

0 0 0 1

)
)
)
)

)

.

(80)

The corresponding eigenstates are given by

𝐴
𝜇
= 𝑠

𝑊
𝑊

3𝜇
+ 𝑐

𝑊
(−

𝑡
𝑊

√3

𝑊
8𝜇
+ √1 −

𝑡
2

𝑊

3
𝐵
𝜇
) ,

𝑍
𝜇
= −𝑐

𝑊
𝑊

3𝜇
+ 𝑠

𝑊
(−

𝑡
𝑊

√3

𝑊
8𝜇
+ √1 −

𝑡
2

𝑊

3
𝐵
𝜇
) ,

𝑍


𝜇
= √1 −

𝑡
2

𝑊

3
𝑊

8𝜇
+
𝑡
𝑊

√3

𝐵
𝜇
.

(81)

To obtain (80) and (81) we have used the continuation of the
gauge coupling constant 𝑔 of the 𝑆𝑈(3)

𝐿
at the spontaneous

symmetry breaking point, in which

𝑡 =
3√2𝑠

𝑊

√3 − 4𝑠
2

𝑊

. (82)

On this basis, the mass matrix𝑀2 becomes

𝑀
2
= 𝑈

+

NGB𝑀
2
𝑈NGB =

𝑔
2

4
(

0 0 0 0

0 𝑀
2

22
𝑀

2

23
𝑀

2

24

0 𝑀
2

23
𝑀

2

33
𝑀

2

34

0 𝑀
2

24
𝑀

2

34
𝑀

2

44
,

) ,

(83)

where

𝑀
2

22
=

2

𝑐
2

𝑊

(𝑢
2
+ 𝑢

2
+ V2 + V2 + 4𝜆2

1
+ 4𝜆

2

2
+ 2V2

1
+ 2V2

2
) ,

𝑀
2

23
= (2 [(1 − 2𝑐

2

𝑊
) (𝑢

2
+ 𝑢

2
+ 4𝜆

2

1
+ 4𝜆

2

2
)

+V2 + V2 + V2
1
+ V2

2
]√𝛼0) (𝑐

2

𝑊
)
−1

,

𝑀
2

24
= −

4

𝑐
𝑊

(Λ
1
V
1
+ Λ

2
V
2
+ 3𝜆

1
V
1
+ 3𝜆

2
V
2
) ,

𝑀
2

33
= 32 (Λ

2

1
+ Λ

2

2
) 𝑐

2

𝑊
𝛼
0
+ 8𝜔

2
𝑐
2

𝑊
𝛼
0

+
2

𝑐
2

𝑊

(V2 + V2 + 2V2
1
+ 2V2

2
) 𝛼

0

+
2

𝑐
2

𝑊

(2𝑐
2

𝑊
− 1)

2

(𝑢
2
+ 𝑢

2
) 𝛼

0

+
8(2𝑐

2

𝑊
− 1)

2

𝑐
2

𝑊

(𝜆
2

1
+ 𝜆

2

2
) 𝛼

0
,

𝑀
2

34
= −

4√𝛼

𝑐
𝑊

[𝑥
0
(Λ

1
V
1
+ Λ

2
V
2
)

+ (2 −
1

𝛼
0

) (𝜆
1
V
1
+ 𝜆

2
V
2
)] ,

𝑀
2

44
= 2 (𝑢

2
+ 𝑢

2
+ 𝜔

2
+ 2𝜆

2

1
+ 2𝜆

2

2
+ 2Λ

2

1
+ 2Λ

2

2

+4𝜆
1
Λ

1
+ 4𝜆

2
Λ

2
+ 8V2

1
+ 8V2

2
) .

(84)

In the approximation 𝜆2
1,2
, V2

1,2
≪ Λ

2

1,2
∼ 𝜔

2, we have

𝑀
2

22
=

2

𝑐
2

𝑊

(𝑢
2
+ 𝑢

2
+ V2 + V2) ,

𝑀
2

23
=

2 [(1 − 2𝑐
2

𝑊
) (𝑢

2
+ 𝑢

2
) + V2 + V2]√𝛼0

𝑐
2

𝑊

,

𝑀
2

24
= −

4

𝑐
𝑊

(Λ
1
V
1
+ Λ

2
V
2
) ,

𝑀
2

33
= 32 (Λ

2

1
+ Λ

2

2
) 𝑐

2

𝑊
𝛼
0
+ 8𝜔

2
𝑐
2

𝑊
𝛼
0

+
2

𝑐
2

𝑊

(V2 + V2) 𝛼
0
+

2

𝑐
2

𝑊

(2𝑐
2

𝑊
− 1)

2

(𝑢
2
+ 𝑢

2
) 𝛼

0
,

𝑀
2

34
= −

4𝑥
0
√𝛼

𝑐
𝑊

(Λ
1
V
1
+ Λ

2
V
2
) ,

𝑀
2

44
= 2 (𝑢

2
+ 𝑢

2
+ 𝜔

2
+ 2Λ

2

1
+ 2Λ

2

2
+ 4𝜆

1
Λ

1
+ 4𝜆

2
Λ

2
) ,

(85)

with
𝑠
𝑊
= sin 𝜃

𝑊
, 𝑐

𝑊
= cos 𝜃

𝑊
, 𝑡

𝑊
= tan 𝜃

𝑊
,

𝑥
0
= 4𝑐

2

𝑊
+ 1, 𝛼

0
= (4𝑐

2

𝑊
− 1)

−1

.

(86)
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From (83), there exist mixings between 𝑍
𝜇
, 𝑍

𝜇
and𝑊

𝜇4
. It is

noteworthy that, in the limit V
1,2

= 0, the elements𝑀2

24
and

𝑀
2

34
vanish. In this case there is no mixing between𝑊

4
and

𝑍
𝜇
, 𝑍

𝜇
.

In the second step, three bosons gain masses via seesaw
mechanism

𝑀
2

𝑍
=
𝑔
2

4
[𝑀

2

22
− (𝑀

off
)
𝑇

(𝑀
2

2×2
)
−1

𝑀
off
] , (87)

where

𝑀
off
= (

𝑀
2

23

𝑀
2

24

) , 𝑀
2

2×2
= (

𝑀
2

33
𝑀

2

34

𝑀
2

34
𝑀

2

44

) . (88)

Combination of (87), (88), and (85) yields

𝑀
2

𝑍
=

𝑔
2
(𝑢

2
+ 𝑢

2
+ V2 + V2)

2𝑐
2

𝑊

−
𝑔
2

2𝑐
2

𝑊

Δ
𝑀
2

𝑧

, (89)

where

Δ
𝑀
2

𝑧

=

4Δ
2

𝑧
(4𝑐

4

𝑊
𝑥
3
− 2𝑥

0
𝑥
1
+ 𝑥

4
) + 𝑥

2

1
𝑥
2

𝑥
2
(𝑥

4
+ 4𝑐

4

𝑊
𝑥
3
) − 4Δ

2

𝑧
𝑥
2

0

, (90)

with

𝑥
1
= (1 − 2𝑐

2

𝑊
) (𝑢

2
+ 𝑢

2
) + V2 + V2,

𝑥
2
= 2Λ

1
(2𝜆

1
+ Λ

1
) + 2Λ

2
(2𝜆

2
+ Λ

2
) + 𝜔

2
+ 𝑢

2
+ 𝑢

2
,

𝑥
3
= 4Λ

2

1
+ 4Λ

2

2
+ 𝜔

2
+ 𝑢

2
+ 𝑢

2
,

𝑥
4
= (1 − 4𝑐

2
) (𝑢

2
+ 𝑢

2
) + V2 + V2,

Δ
𝑧
= Λ

1
V
1
+ Λ

2
V
2
.

(91)

The 𝜌 parameter in our model is given by

𝜌 =
𝑀

2

𝑊

𝑀
2

𝑍
cos2𝜃

𝑊

= 1 +
𝛿w𝑧
𝑀

2

𝑧

≡ 1 + 𝛿tree, (92)

where

𝛿w𝑧 =
𝑔
2

2𝑐
2

𝑊

(Δ
𝑀
2

𝑧

− Δ
𝑀
2

w
) . (93)

Let us assume the relations (A.17) and put V
2
≡ V

𝑠
, 𝜔 = Λ

2
≡

Λ
𝑠
, and then

Δ
𝑀
2

𝑧

− Δ
𝑀
2

w
≃

8 (𝑘
2
+ 1) V2

𝑠

2𝑘
2
+ 3

(
𝑘
2
+ 1

2𝑐
2

𝑊

− 1) . (94)

From (92)–(94) we have

𝛿tree =
𝑔
2

2𝑐
2

𝑊

1

𝑀
2

𝑧

8 (𝑘
2
+ 1) V2

𝑠

2𝑘
2
+ 3

(
𝑘
2
+ 1

2𝑐
2

𝑊

− 1) . (95)

The experimental value of the 𝜌 parameter and 𝑀
𝑊

are,
respectively, given in [7]

𝜌 = 1.0004
+0.0003

−0.0004
(𝛿tree = 0.0004

+0.0003

−0.0004
) ,

𝑠
2

𝑊
= 0.23116 ± 0.00012,

𝑀
𝑊
= 80.358 ± 0.015GeV.

(96)

It means

0 ≤ 𝛿tree ≤ 0.0007. (97)

From (95) one can make the relations between V, 𝑔, and 𝑘.
Indeed, we have

V = ±
𝑐
2

𝑊
√𝛿tree√2𝑘

2
+ 3𝑀

𝑍

𝑔√2𝑘
2
+ 2√𝑘

2
+ 1 − 2𝑐

2

𝑊

. (98)

Figure 1 gives the relation between V
𝑠
and 𝑔, 𝑘 provided that

𝑔 = 0.5, and 𝑘 ∈ (0.9, 1.1) in which |V
𝑠
| ∈ (0, 8.0)Gev.

Figure 2 gives the relation between𝑔 and 𝛿tree, V𝑠 provided
that 𝑘 = 1 and 𝛿tree ∈ (0, 0.0007), V

𝑠
∈ (0, 8.0)GeV in

which |𝑔| ∈ (0, 2.0)GeV. The conditions (69) are satisfied.
The Figure 3 gives the relation between 𝑘 and 𝑔, V

𝑠
provided

𝛿tree = 0.0005 and 𝑔 ∈ (0.4, 0.6), V
𝑠
∈ (0, 8.0)GeV in which

𝑘 ∈ (1, 3)GeV (𝑘 is a real number, Figure 3(a)) or 𝑘 = 𝑖𝑘
1
, 𝑘

1
∈

(−1.2, −1.05)GeV (𝑘 is a pure complex number, Figure 3(b)).
The conditions (69) are satisfied. From Figure 3 we see that
a lot of values of 𝑘 that is different from the unit but nearly
it still can fit the recent experimental data [7]. It means that
the difference of ⟨𝑠

1
⟩ and ⟨𝑠

2
⟩ as mentioned in this work is

necessary.
Diagonalizing the mass matrix 𝑀

2

2×2
, we get two new

physical gauge bosons

𝑍


𝜇
= cos𝜙𝑍

𝜇
+ sin𝜙𝑊

𝜇4
,

𝑊


𝜇4
= − sin𝜙𝑍

𝜇
+ cos𝜙𝑊

𝜇4
.

(99)

With the approximation as in (69), the mixing angle 𝜙 is
given by

tan𝜙 ≃
2√𝛼0𝑐𝑊 (Λ

1
V
1
+ Λ

2
V
2
) 𝑥

0

−4𝛼
0
𝑐
4

𝑊
𝑥
3
+ 𝑐

2

𝑊
𝑥
2
− 𝛼

0
𝑥
4

∼
V
1

Λ
1

∼
V
2

Λ
2

(100)

provided that V
1
∼ V

2
, Λ

1
∼ Λ

2
.

In the limit 𝜆
1,2
, V

1,2
→ 0 the mixing angle 𝜙 tends to

zero, and the physical mass eigenvalues are defined by

𝑀
2

𝑍


𝜇

=
𝑔
2

2𝑐
2

𝑊

(𝑥
4
+ 4𝑐

4

𝑊
𝑥
3
) ,

𝑀
2

𝑊


𝜇4

=
𝑔
2

2
(𝑢

2
+ 𝑢

2
+ 𝜔

2
+ 2Λ

2

1
+ 2Λ

2

2
) .

(101)

From (59) and (101) we see that the𝑊

𝜇4
and𝑊

5
components

have the same mass in the limit 𝜆
1,2
, V

1,2
→ 0. So we should

identify the combination of𝑊

𝜇4
and𝑊

𝜇5

√2𝑋
0

𝜇
= 𝑊



𝜇4
− 𝑖𝑊

𝜇5
, (102)
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and 𝑔, 𝑘 with 𝑔 = 0.5 and 𝑘 ∈ (0.9, 1.1).
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Figure 3: The relation between 𝑘 and 𝑔, V
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provided that 𝛿tree = 0.0005 and 𝑔 ∈ (0.4, 0.6), V𝑠 ∈ (0, 8.0)GeV.

as physical neutral non-Hermitian gauge boson. The sub-
script “0” denotes neutrality of gauge boson 𝑋. Notice that
the identification in (102) only can be acceptable with the
limit 𝜆

1,2
, V

1,2
→ 0. In general, it is not true because of the

difference in masses of𝑊

𝜇4
and𝑊

𝜇5
as in (58) and (99).

The expressions (74) and (100) show that, with the limit
(69), the mixings between the charged gauge bosons𝑊 − 𝑌

and the neutral ones 𝑍
− 𝑊

4
are in the same order since

they are proportional to V
𝑖
/Λ

𝑖
(𝑖 = 1, 2). In addition, from

(101), 𝑀2

𝑍


𝜇

≃ 𝑔
2
(4Λ

2

1
+ 4Λ

2

2
+ 𝜔

2
) is little bigger than

𝑀
2

𝑊


𝜇4

≃ (𝑔
2
/2)(𝜔

2
+ 2Λ

2

1
+ 2Λ

2

2
) (or 𝑀2

𝑋
0

𝜇

), and |𝑀
2

𝑌
−

𝑀
2

𝑋
0

𝜇

| = (𝑔
2
/2)(𝑢

2
+ 𝑢

2
− V2 − V2) is little smaller than

𝑀
2

𝑊
= (𝑔

2
/2)(𝑢

2
+ 𝑢

2
+ V2 + V2). In that limit, the masses

of𝑋0

𝜇
and 𝑌 degenerate.
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7. Conclusions

In this paper, we have constructed a new 𝑆
4
model based

on 𝑆𝑈(3)
𝐶
⊗ 𝑆𝑈(3)

𝐿
⊗ 𝑈(1)

𝑋
gauge symmetry responsible

for fermion masses and mixing which is different from our
previous work in [112]. Neutrinos get masses from only an
antisextet which is in a doublet under 𝑆

4
. We argue how

flavor mixing patterns and mass splitting are obtained with a
perturbed 𝑆

4
symmetry by the difference of VEV components

of the antisextet under 𝑆
4
. We have pointed out that this

model is simpler than those of 𝑆
3
and 𝑆

4
[111, 112] with the

fewer number of Higgs multiplets needed in order to allow
the fermions to gain masses but with the simple scalar Higgs
potential. Quark mixing matrix is unity at the tree level. The
realistic neutrino mixing in which 𝜃

13
̸= 0 can be obtained if

the direction for breaking 𝑆
4
→ 𝐾

4
takes place. This corre-

sponds to the requirement on the difference of VEV compo-
nents of the antisextet under 𝑆

4
group. As a result, the value

of 𝜃
13

is a small perturbation by |𝜆
1
− 𝜆

2
|. The assignation

of VEVs to antisextet leads to the mixing of the new gauge
bosons and those in the SM.Themixing in the charged gauge
bosons as well as the neutral gauge boson was considered.

Appendices

A. Vacuum Alignment

We can separate the general scalar potential into

𝑉total = 𝑉tri + 𝑉sext + 𝑉tri−sext + 𝑉, (A.1)

where 𝑉tri and 𝑉sext, respectively, consist of the 𝑆𝑈(3)
𝐿

scalar triplets and sextets, whereas𝑉tri−sext contains the terms
connecting the two sectors. Moreover 𝑉tri,sext,tri−sext conserve
L-charge and 𝑆

4
symmetry, while 𝑉 includes possible soft

terms explicitly violating these charges. Here the soft terms as
we meant include the trilinear and quartic ones as well. The
reason for imposing 𝑉 will be shown below.

The details on the potentials are given as follows. We first
denote 𝑉(𝑋 → 𝑋

1
, 𝑌 → 𝑌

1
, . . .) ≡ 𝑉(𝑋, 𝑌, . . .)|

𝑋=𝑋
1
,𝑌=𝑌
1
,...

Notice also that (Tr𝐴)(Tr𝐵) = Tr(𝐴Tr𝐵). 𝑉tri is a sum of

𝑉 (𝜒) = 𝜇
2

𝜒
𝜒
†
𝜒 + 𝜆

𝜒
(𝜒

†
𝜒)

2

,

𝑉 (𝜙) = 𝑉 (𝜒 → 𝜙) , 𝑉 (𝜙

) = 𝑉 (𝜙 → 𝜙


) ,

𝑉 (𝜂) = 𝑉 (𝜙 → 𝜂) , 𝑉 (𝜂

) = 𝑉 (𝜙 → 𝜂


) ,

𝑉 (𝜒, 𝜙) = 𝜆
𝜙𝜒

1
(𝜙

†
𝜙) (𝜒

†
𝜒) + 𝜆

𝜙𝜒

2
(𝜙

†
𝜒) (𝜒

†
𝜙) ,

𝑉 (𝜒, 𝜙

) = 𝑉 (𝜙 → 𝜙


, 𝜒) , 𝑉 (𝜒, 𝜂) = 𝑉 (𝜙 → 𝜂, 𝜒) ,

𝑉 (𝜒, 𝜂

) = 𝑉 (𝜙 → 𝜂


, 𝜒) ,

𝑉 (𝜙, 𝜙

) = 𝑉 (𝜙, 𝜒 → 𝜙


) + 𝜆

𝜙𝜙


3
(𝜙

+
𝜙

) (𝜙

+
𝜙

)

+ 𝜆
𝜙𝜙


4
(𝜙

+
𝜙) (𝜙

+
𝜙) ,

𝑉 (𝜙, 𝜂) = 𝑉 (𝜙, 𝜒 → 𝜂) , 𝑉 (𝜙, 𝜂

) = 𝑉 (𝜙, 𝜒 → 𝜂


) ,

𝑉 (𝜙

, 𝜂) = 𝑉 (𝜙 → 𝜙


, 𝜒 → 𝜂) ,

𝑉 (𝜙

, 𝜂


) = 𝑉 (𝜙 → 𝜙


, 𝜒 → 𝜂


) ,

𝑉 (𝜂, 𝜂

) = 𝑉 (𝜙 → 𝜂, 𝜒 → 𝜂


) + 𝜆

𝜂,𝜂


3
(𝜂

+
𝜂

) (𝜂

+
𝜂

)

+ 𝜆
𝜂,𝜂


4
(𝜂

+
𝜂) (𝜂

+
𝜂) ,

𝑉
𝜒𝜙𝜙

𝜂𝜂
 = 𝜇

1
𝜒𝜙𝜂 + 𝜇



1
𝜒𝜙


𝜂

+ 𝜆

1

1
(𝜙

+
𝜙

)
1
(𝜂

+
𝜂

)
1


+ 𝜆
2

1
(𝜙

†
𝜂

)
1
(𝜂

†
𝜙

)
1
 + 𝜆

3

1
(𝜙

+
𝜙

)
1
(𝜂

+
𝜂)

1


+ 𝜆
4

1
(𝜙

†
𝜂)

1
(𝜂

†
𝜙

)
1
+ 𝜆

5

1
(𝜙

+
𝜂)

1
(𝜙

+
𝜂

)
1

+ 𝜆
6

1
(𝜙

†
𝜂

)
1
(𝜙

†
𝜂)

1
 + ℎ.𝑐.

(A.2)

𝑉sext is only of 𝑉(𝑠),

𝑉 (𝑠) = 𝜇
2

𝑠
Tr (𝑠†𝑠) + 𝜆𝑠

1
Tr [(𝑠†𝑠)

1
(𝑠
†
𝑠)
1
]

+ 𝜆
𝑠

2
Tr [(𝑠†𝑠)

1

(𝑠

†
𝑠)

1

] + 𝜆

𝑠

3
Tr [(𝑠†𝑠)

2
(𝑠

†
𝑠)

2
]

+ 𝜆
𝑠

4
Tr (𝑠†𝑠)

1
Tr (𝑠†𝑠)

1
+ 𝜆

𝑠

5
Tr (𝑠†𝑠)

1
 Tr (𝑠†𝑠)

1


+ 𝜆
𝑠

6
Tr (𝑠†𝑠)

2
Tr (𝑠†𝑠)

2
,

(A.3)

And 𝑉tri−sext is a sum of

𝑉 (𝜒, 𝑠) = 𝜆
𝜒𝑠

1
(𝜒

†
𝜒)Tr (𝑠†𝑠) + 𝜆𝜒𝑠

2
(𝜒

†
𝑠
†
)
2
(𝑠𝜒)

2

+ 𝜆
𝜒𝑠

3
(𝜒

†
𝑠)
2
(𝑠
†
𝜒)

2
,

𝑉 (𝜙, 𝑠) = 𝑉 (𝜒 → 𝜙, 𝑠) , 𝑉 (𝜙

, 𝑠) = 𝑉 (𝜒 → 𝜙


, 𝑠) ,

𝑉 (𝜂, 𝑠) = 𝑉 (𝜒 → 𝜂, 𝑠) , 𝑉 (𝜂

, 𝑠) = 𝑉 (𝜒 → 𝜂


, 𝑠) ,

𝑉
𝑠𝜒𝜙𝜙

𝜂𝜂
 = (𝜆



1
𝜙
†
𝜙

+ 𝜆



2
𝜂
†
𝜂

)Tr (𝑠†𝑠)

1


+ 𝜆


3
[(𝜙

†
𝑠
†
) (𝑠𝜙


)]

1
+ 𝜆



4
[(𝜂

†
𝑠
†
) (𝑠𝜂


)]

1
+ ℎ.𝑐.

(A.4)

To provide the Majorana masses for the neutrinos, the lepton
number must be broken. This can be achieved via the scalar
potential violating 𝑈(1)L. However, the other symmetries
should be conserved. The violatingL potential up to quartic
interactions is given as

𝑉 = [𝜆
1
Tr (𝑠†𝑠)

1
+ 𝜆

2
𝜂
†
𝜒 + 𝜆

3
𝜂
†
𝜂 + 𝜆

4
𝜂
†
𝜂


+ 𝜆
5
𝜂
†
𝜂

+ 𝜆

6
𝜂
†
𝜂 + 𝜆

7
𝜙
†
𝜙 + 𝜆

8
𝜙
†
𝜙


+𝜆
9
𝜙
†
𝜙

+ 𝜆

10
𝜙
†
𝜙] 𝜂

†
𝜒
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+ [𝜆
11
Tr (𝑠†𝑠)

1
 + 𝜆

12
𝜂
†
𝜒 + 𝜆

13
𝜂
†
𝜂 + 𝜆

14
𝜂
†
𝜂


+ 𝜆
15
𝜂
†
𝜂

+ 𝜆

16
𝜂
†
𝜂 + 𝜆

17
𝜙
†
𝜙 + 𝜆

18
𝜙
†
𝜙


+𝜆
19
𝜙
†
𝜙

+ 𝜆

20
𝜙
†
𝜙]

1

𝜂
†
𝜒

+ 𝜆
21
(𝜂

†
𝜙) (𝜙

†
𝜒) + 𝜆

22
(𝜂

†
𝜙

)
1
(𝜙

†
𝜒)

1


+ 𝜆
23
(𝜂

†
𝜙)

1
(𝜙

†
𝜒)

1
 + 𝜆24(𝜂

†
𝜙

)
1
(𝜙

†
𝜒)

1

+ 𝜆
25
(𝜂

†
𝑠
†
)
2
(𝑠𝜒)

2
+ 𝜆

26
(𝜂

†
𝑠
†
)
2
(𝑠𝜒)

2
+ ℎ.𝑐.

(A.5)

We have not explicitly written, but there must additionally
exist the terms in 𝑉 explicitly violating the only 𝑆

4
symmetry

or both the 𝑆
4
and L-charge too. In the following, most

of them will be omitted, and only the terms of the kind of
interest will be provided.

There are the several scalar sectors corresponding
to the expected VEV directions. The first direction,
0 ̸= ⟨𝑠

1
⟩ ̸= ⟨𝑠

2
⟩ ̸= 0, 𝑆

4
, is broken into a subgroup including the

elements {1, 𝑇𝑆2𝑇2
, 𝑆

2
, 𝑇

2
𝑆
2
𝑇} which is isomorphic to the

Klein four-group [75] [𝑆 = (1234), 𝑇 = (123), obeying the
relations 𝑆4 = 𝑇

3
= 1, 𝑆𝑇2

𝑆 = 𝑇, are generators of 𝑆
4
group

given in [112]]. The second direction, ⟨𝑠
1
⟩ = ⟨𝑠

2
⟩ = ⟨𝑠⟩ ̸= 0,

𝑆
4
, is broken into 𝐷

4
. The third direction, 0 = ⟨𝑠

1
⟩ ̸= ⟨𝑠

2
⟩, or

0 = ⟨𝑠
2
⟩ ̸= ⟨𝑠

1
⟩, 𝑆

4
, is broken into𝐴

4
. As mentioned before, to

obtain a realistic neutrino spectrum, we have thus imposed
both of the first and the second directions to be performed.

Let us now consider the potential 𝑉tri. The flavons 𝜒,
𝜙, 𝜙, 𝜂, 𝜂 with their VEVs aligned in the same direction
(all of them are singlets) are an automatic solution from the
minimization conditions of 𝑉tri. To explicitly see this, in the
system of equations for minimization, let us put V∗ = V,
V∗ = V, 𝑢∗ = 𝑢, 𝑢∗ = 𝑢

, and V∗
𝜒
= V

𝜒
. Then the potential

minimization conditions for triplets reduce to

𝜕𝑉tri
𝜕𝜔

= 4𝜆
𝜒
𝜔
3
+ 2 (𝜇

2

𝜒
+ 𝜆

𝜒𝜂

1
𝑢
2
+ 𝜆

𝜒𝜂


1
𝑢
2
+ 𝜆

𝜒𝜙

1
V2

+𝜆
𝜒𝜙


1
V2)𝜔 − 𝜇

1
𝑢V − 𝜇

1
𝑢
V = 0,

(A.6)
𝜕𝑉tri
𝜕V

= 4𝜆
𝜙V3

+ 2 [𝜇
2

𝜙
+ 𝜆

𝜙𝜂

1
𝑢
2
+ 𝜆

𝜙𝜂


1
𝑢
2

+ (𝜆
𝜙𝜙


1
+ 𝜆

𝜙𝜙


2
+ 𝜆

𝜙𝜙


3
+ 𝜆

𝜙𝜙


4
) V2 + 𝜔2

𝜆
𝜙𝜒

1
] V

+ (𝜆
1

1
+ 𝜆

2

1
+ 𝜆

3

1
) 𝑢𝑢

V − 𝜇
1
𝜔𝑢 = 0,

(A.7)
𝜕𝑉tri
𝜕V

= 4𝜆
𝜙


V3

+ 2 [𝜇
2

𝜙
 + 𝜆

𝜙

𝜂

1
𝑢
2
+ 𝜆

𝜙

𝜂


1
𝑢
2

+ (𝜆
𝜙𝜙


1
+ 𝜆

𝜙𝜙


2
+ 𝜆

𝜙𝜙


3
+ 𝜆

𝜙𝜙


4
) V2 + 𝜔2

𝜆
𝜙

𝜒

1
] V

+ (𝜆
1

1
+ 𝜆

2

1
+ 𝜆

3

1
) 𝑢𝑢

V − 𝜇
1
𝜔𝑢


= 0,

(A.8)

𝜕𝑉tri
𝜕𝑢

= 4𝜆
𝜂
𝑢
3

+ 2 [𝜇
2

𝜂
+ (𝜆

𝜂𝜂


1
+ 𝜆

𝜂𝜂


2
+ 𝜆

𝜂𝜂


3
+ 𝜆

𝜂𝜂


4
) 𝑢

2

+ 𝜆
𝜙𝜂

1
V2 + 𝜆𝜙


𝜂

1
V2 + 𝜔2

𝜆
𝜂𝜒

1
] 𝑢

+ (𝜆
1

1
+ 𝜆

2

1
+ 𝜆

3

1
) 𝑢

VV − 𝜇
1
𝜔V = 0,

(A.9)

𝜕𝑉tri
𝜕𝑢


= 4𝜆

𝜂


𝑢
3

+ 2 [𝜇
2

𝜂
 + (𝜆

𝜂𝜂


1
+ 𝜆

𝜂𝜂


2
+ 𝜆

𝜂𝜂


3
+ 𝜆

𝜂𝜂


4
) 𝑢

2

+ 𝜆
𝜙𝜂


1
V2 + 𝜆𝜙


𝜂


1
V2 + 𝜔2

𝜆
𝜂

𝜒

1
] 𝑢



+ (𝜆
1

1
+ 𝜆

2

1
+ 𝜆

3

1
) 𝑢VV − 𝜇

1
𝜔V = 0.

(A.10)

It is easily shown that the derivatives of𝑉tri with respect to the
variables 𝑢, 𝑢, V, V shown in (A.7), (A.8), (A.9), and (A.10)
are symmetric to each other. The system of (A.6)–(A.10)
always has the solution (𝑢, V, 𝑢, V) as expected, even though
it is complicated. It is also noted that the above alignment is
only one of the solutions to be imposed to have the desirable
results. We have evaluated that (A.7)–(A.10) have the same
structure solution. Consequently, to have a simple solution,
we can assume that 𝑢 = 𝑢


= V = V. In this case, (A.7)–

(A.10) reduce a unique equation, and system of (A.6)–(A.10)
becomes

𝜕𝑉tri
𝜕𝜔

= 4𝜆
𝜒
𝜔
3
+ 2𝜔 [𝜇

2

𝜒
+ (2𝜆

𝜒𝜂

1
+ 2𝜆

𝜒𝜙

1
) V2] − 2𝜇

1
V = 0,

𝜕𝑉tri
𝜕V

= 2V [2𝜔2
(𝜆

𝜒𝜂

1
+ 𝜆

𝜒𝜙

1
) + 2 (𝜇

2

𝜂
+ 𝜇

2

𝜙
)

+ 2 (𝜆
1

1
+ 𝜆

2

1
+ 𝜆

3

1
+ 4𝜆

𝜙𝜂

1
+ 𝜆

𝜂𝜂


1
+ 𝜆

𝜂𝜂


2

+ 𝜆
𝜂𝜂


3
+ 𝜆

𝜂𝜂


4
+ 𝜆

𝜙𝜙


1
+ 𝜆

𝜙𝜙


2
+ 𝜆

𝜙𝜙


3

+𝜆
𝜙𝜙


4
+ 2𝜆

𝜙
+ 2𝜆

𝜂
) V2 − 2𝜇

1
𝜔] = 0.

(A.11)

This system has a solution as follows:

𝑢 = 𝑢

= V = V = ±

√𝜔 (𝜇
2

𝜒
+ 𝜆

𝜒
𝜔
2
)

√𝜇
1
− 2𝜔 (𝜆

𝜒𝜂

1
+ 𝜆

𝜒𝜙

1
)

,

𝜔 =
𝛼𝜇

1

2 (𝛼
2
− 𝛽𝜆

𝜒
)
−

Ω

3 × 2
2/3

(𝛼
2
− 𝛽𝜆

𝜒
) (Γ + √Γ

2
+ 4Ω

3
)
1/3

+

(Γ + √Γ
2
+ 4Ω

3
)
1/3

6 × 2
1/3

(𝛼
2
− 𝛽𝜆

𝜒
)
,

(A.12)
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where
Γ = 54𝛼𝛽𝜇

1
(𝜆

𝜒
𝜇
2

1
+ 𝛼

2
𝜇
2

𝜒
− 𝛽𝜆

𝜒
𝜇
2

𝜒
)

− 108𝜆
𝜒
𝜇
1
𝛽𝛾 (𝛼

2
− 𝜆

𝜒
𝛽) ,

Ω = 6 (𝛼
2
− 𝛽𝜆

𝜒
) (2𝛼𝛾 + 𝜇

2

1
− 𝛽𝜇

2

𝜒
) − 9𝛼

2
𝜇
2

1
,

𝛼 = 𝜆
𝜒𝜂

1
+ 𝜆

𝜒𝜙

1
,

𝛽 = 𝜆
1

1
+ 𝜆

2

1
+ 𝜆

3

1
+ 4𝜆

𝜙𝜂

1
+ 𝜆

𝜙𝜙


+ 𝜆
𝜂𝜂


+ 2 (𝜆
𝜂
+ 𝜆

𝜙
) ,

𝜆
𝜙𝜙


= 𝜆
𝜙𝜙


1
+ 𝜆

𝜙𝜙


2
+ 𝜆

𝜙𝜙


3
+ 𝜆

𝜙𝜙


4
,

𝜆
𝜂𝜂


= 𝜆
𝜂𝜂


1
+ 𝜆

𝜂𝜂


2
+ 𝜆

𝜂𝜂


3
+ 𝜆

𝜂𝜂


4
.

(A.13)

Considering the potentials 𝑉sex and 𝑉tri−sex, we impose
that
𝜆
∗

1
= 𝜆

1
, 𝜆

∗

2
= 𝜆

2
, V∗

1
= V

1
, V∗

2
= V

2
,

Λ
∗

1
= Λ

1
, Λ

∗

2
= Λ

2
, V∗ = V, V∗ = V,

𝑢
∗
= 𝑢, 𝑢

∗
= 𝑢


, V∗

𝜒
= V

𝜒
, V∗

𝜌
= V

𝜌
,

(A.14)

and we obtain a system of equations of the potential mini-
mization for antisextets:
𝜕𝑉

1

𝜕𝜆
1

= 2 {𝜆
2
[𝜆

𝜒𝑠

1
𝜔
2
+ 𝜇

2

𝑠
+ (𝜆

𝜂𝑠

1
+ 𝜆

𝜂𝑠

2
+ 𝜆

𝜂𝑠

3
) 𝑢

2

+ (𝜆
𝜂

𝑠

1
+ 𝜆

𝜂

𝑠

2
+ 𝜆

𝜂

𝑠

3
) 𝑢

2
+ (𝜆



2
+ 𝜆



4
) 𝑢𝑢



+ 𝜆
𝜙𝑠

1
V2 + 𝜆𝜙


𝑠

1
V2 + 𝜆

1
VV

+ 2 (3𝜆
𝑠

1
+ 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
) V

1
V
2
+ 4𝜆

𝑠

4
Λ

1
Λ

2
]

+ 2Λ
2
(𝜆

𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
) V

1
V
2
+ 2Λ

1
(𝜆

𝑠

1
+ 𝜆

𝑠

2
) V2

2

+ 2𝜆
1
[𝜆

𝑠

6
Λ
2

2
+ 𝜆

2

2
(2𝜆

𝑠

1
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

4
+ 𝜆

𝑠

6
)

+ (𝜆
𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

6
) V2

2
] } = 0,

𝜕𝑉
1

𝜕𝜆
2

= 2 {𝜆
1
[𝜆

𝜒𝑠

1
𝜔
2
+ 𝜇

2

𝑠
+ (𝜆

𝜂𝑠

1
+ 𝜆

𝜂𝑠

2
+ 𝜆

𝜂𝑠

3
) 𝑢

2

+ (𝜆
𝜂

𝑠

1
+ 𝜆

𝜂

𝑠

2
+ 𝜆

𝜂

𝑠

3
) 𝑢

2
+ (𝜆



2
+ 𝜆



4
) 𝑢𝑢



+ 𝜆
𝜙𝑠

1
V2 + 𝜆𝜙


𝑠

1
V2 + 𝜆

1
VV

+ 2 (3𝜆
𝑠

1
+ 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
) V

1
V
2

+4𝜆
𝑠

4
Λ

1
Λ

2
] + 2Λ

1
(𝜆

𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
) V

1
V
2

+ 2Λ
2
(𝜆

𝑠

1
+ 𝜆

𝑠

2
) V2

1

+ 2𝜆
2
[𝜆

𝑠

6
Λ
2

1
+ 𝜆

2

1
(2𝜆

𝑠

1
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

4
+ 𝜆

𝑠

6
)

+ (𝜆
𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

6
) V2

1
] } = 0,

𝜕𝑉
1

𝜕V
1

= 2 {V
2
[ (2𝜆

𝜒𝑠

1
+ 𝜆

𝜒𝑠

2
+ 𝜆

𝜒𝑠

3
) 𝜔

2
+ 2𝜇

2

𝑠

+ (2𝜆
𝜂𝑠

1
+ 𝜆

𝜂𝑠

2
+ 𝜆

𝜂𝑠

3
) 𝑢

2
+ (2𝜆



2
+ 𝜆



4
) 𝑢𝑢



+ (2𝜆
𝜂

𝑠

1
+ 𝜆

𝜂

𝑠

2
+ 𝜆

𝜂

𝑠

3
) 𝑢

2
+ 2𝜆

𝜙𝑠

1
V2 + 2𝜆

1
VV

+ 2𝜆
𝜙

𝑠

1
V2 + 2 (𝜆

1
Λ

2
+ 𝜆

2
Λ

1
) (𝜆

𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
)

+2 (𝜆
1
𝜆
2
+ Λ

1
Λ

2
) (3𝜆

𝑠

1
+ 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
) ]

+ 2 [2𝜆
2
Λ

2
(𝜆

𝑠

1
+ 𝜆

𝑠

2
) + (𝜆

2

2
+ Λ

2

2
)

× (𝜆
𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

6
) ] V

1

+4 (2𝜆
𝑠

1
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
+ 2𝜆

𝑠

6
) V

1
V2
2
} = 0,

𝜕𝑉
1

𝜕V
2

= 2 {V
1
[ (2𝜆

𝜒𝑠

1
+ 𝜆

𝜒𝑠

2
+ 𝜆

𝜒𝑠

3
) 𝜔

2
+ 2𝜇

2

𝑠

+ (2𝜆
𝜂𝑠

1
+ 𝜆

𝜂𝑠

2
+ 𝜆

𝜂𝑠

3
) 𝑢

2
+ (2𝜆



2
+ 𝜆



4
) 𝑢𝑢



+ (2𝜆
𝜂

𝑠

1
+ 𝜆

𝜂

𝑠

2
+ 𝜆

𝜂

𝑠

3
) 𝑢

2
+ 2𝜆

𝜙𝑠

1
V2 + 2𝜆

1
VV

+ 2𝜆
𝜙

𝑠

1
V2 + 2 (𝜆

1
Λ

2
+ 𝜆

2
Λ

1
) (𝜆

𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
)

+2 (𝜆
1
𝜆
2
+ Λ

1
Λ

2
) (3𝜆

𝑠

1
+ 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
) ]

+ 2 [2𝜆
1
Λ

1
(𝜆

𝑠

1
+ 𝜆

𝑠

2
) + (𝜆

2

1
+ Λ

2

1
)

× (𝜆
𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

6
) ] V

2

+ 4 (2𝜆
𝑠

1
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
+ 2𝜆

𝑠

6
) V

2
V2
1
} = 0,

𝜕𝑉
1

𝜕Λ
1

= 2 {Λ
2
[(𝜆

𝜒𝑠

1
+ 𝜆

𝜒𝑠

2
+ 𝜆

𝜒𝑠

3
) 𝜔

2
+ 𝜇

2

𝑠
+ 𝜆

𝜂𝑠

1
𝑢
2

+ 𝜆


2
𝑢𝑢


+ 𝜆

𝜂

𝑠

1
𝑢
2
+ 𝜆



1
VV + 𝜆𝜙𝑠

1
V2 + 𝜆𝜙


𝑠

1
V2

+4𝜆
𝑠

4
𝜆
1
𝜆
2
+ 2 (3𝜆

𝑠

1
+ 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
) V

1
V
2
]

+ 2𝜆
2
(𝜆

𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
) V

1
V
2
+ 2𝜆

1
(𝜆

𝑠

1
+ 𝜆

𝑠

2
) V2

2

+ 2Λ
1
[𝜆

𝑠

6
𝜆
2

2
+ Λ

2

2
(2𝜆

𝑠

1
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

4
+ 𝜆

𝑠

6
)

+ (𝜆
𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

6
) V2

2
] } = 0,

𝜕𝑉
1

𝜕Λ
2

= 2 {Λ
1
[(𝜆

𝜒𝑠

1
+ 𝜆

𝜒𝑠

2
+ 𝜆

𝜒𝑠

3
) 𝜔

2
+ 𝜇

2

𝑠
+ 𝜆

𝜂𝑠

1
𝑢
2

+ 𝜆


2
𝑢𝑢


+ 𝜆

𝜂

𝑠

1
𝑢
2
+ 𝜆



1
VV + 𝜆𝜙𝑠

1
V2 + 𝜆𝜙


𝑠

1
V2

+4𝜆
𝑠

4
𝜆
1
𝜆
2
+ 2 (3𝜆

𝑠

1
+ 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 4𝜆

𝑠

4
) V

1
V
2
]

+ 2𝜆
1
(𝜆

𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
) V

1
V
2
+ 2𝜆

2
(𝜆

𝑠

1
+ 𝜆

𝑠

2
) V2

1
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+ 2Λ
2
[𝜆

𝑠

6
𝜆
2

1
+ Λ

2

1
(2𝜆

𝑠

1
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

4
+ 𝜆

𝑠

6
)

+ (𝜆
𝑠

1
− 𝜆

𝑠

2
+ 𝜆

𝑠

3
+ 2𝜆

𝑠

6
) V2

1
] } = 0,

(A.15)

where 𝑉
1
is a sum of 𝑉sext and 𝑉tri−sext:

𝑉
1
= 𝑉sext + 𝑉tri−sext (A.16)

It is easily shown that (A.15) takes the same form in couples.
This system of equations yields the following relations:

𝜆
1
= 𝜅𝜆

2
, V

1
= 𝜅V

2
, Λ

1
= 𝜅Λ

2
, (A.17)

where 𝜅 is a constant. It means that there are several
alignments for VEVs. In this work, to have the desirable
results, we have imposed the two directions for breaking
𝑆
4
→ 𝐷

4
and 𝑆

4
→ 𝐾

4
as mentioned, in which 𝜅 = 1 and

𝜅 ̸= 1 but approximates to the unit. In the case that 𝜅 = 1 or
𝜆
1
= 𝜆

2
= 𝜆

𝑠
, V

1
= V

2
= V

𝑠
, and Λ

1
= Λ

2
= Λ

𝑠
, the system

of (A.15) reduces to system for minimal potential condition
consisting of three equations as follows:

𝜆
𝑠
[𝐴

𝜔
+ 𝜇

2

𝑠
+ 2𝐴

𝑠
Λ
2

𝑠
+ 2 (𝐴

𝑠
+ 𝐵

𝑠
) 𝜆

2

𝑠
+ 𝐴V

+4 (𝐴
𝑠
+ 𝐵

𝑠
) V2

𝑠
] + 2𝐵

𝑠
Λ

𝑠
V2
𝑠
= 0,

2 (𝐴
𝜔
+ 𝐵

𝜔
) + 2𝜇

2

𝑠
+ 𝐴V + 𝐴



V + 4𝐵𝑠𝜆𝑠Λ 𝑠

+ 4 (𝐴
𝑠
+ 𝐵

𝑠
) (𝜆

2

𝑠
+ V2

𝑠
+ Λ

2

𝑠
) = 0,

Λ
𝑠
[𝐴

𝜔
+ 𝐵

𝜔
+ 𝜇

2

𝑠
+ 2𝐴

𝑠
𝜆
2

𝑠
+ 2 (𝐴

𝑠
+ 𝐵

𝑠
) Λ

2

𝑠

+𝐴


V + 4 (𝐴 𝑠
+ 𝐵

𝑠
) V2

𝑠
] + 2𝐵

𝑠
𝜆
𝑠
V2
𝑠
= 0,

(A.18)

where

𝐴
𝜔
= 𝜆

𝜒𝑠

1
𝜔
2
, 𝐵

𝜔
= (𝜆

𝜒𝑠

2
+ 𝜆

𝜒𝑠

3
) 𝜔

2
,

𝐴
𝑠
= 2𝜆

𝑠

4
+ 𝜆

𝑠

6
, 𝐵

𝑠
= 2𝜆

𝑠

1
+ 𝜆

𝑠

3
,

𝐴V = (𝜆


1
+ 𝜆



2
+ 𝜆



4
+ 𝜆

𝜙𝑠

1
+ 𝜆

𝜙

𝑠

1
+ 𝜆

𝜂𝑠

1
+ 𝜆

𝜂𝑠

2

+ 𝜆
𝜂𝑠

3
+ 𝜆

𝜂

𝑠

1
+ 𝜆

𝜂

𝑠

2
+ 𝜆

𝜂

𝑠

3
) V2,

𝐴


V = (𝜆


1
+ 𝜆



2
+ 𝜆

𝜙𝑠

1
+ 𝜆

𝜙

𝑠

1
+ 𝜆

𝜂𝑠

1
+ 𝜆

𝜂

𝑠

1
) V2.

(A.19)

The system of (A.18) always has the solution (𝜆
𝑠
, V

𝑠
, Λ

𝑠
) as

expected, even though it is complicated. It is also noted that
the above alignment is only one of the solutions to be imposed
to have the desirable results.

B. 𝑆
4

Group and Clebsch-Gordan Coefficients

𝑆
4
is the permutation group of four objects, which is also

the symmetry group of a cube. It has 24 elements divided
into 5 conjugacy classes, with 1, 1, 2, 3, and 3

 as its 5
irreducible representations. Any element of 𝑆

4
can be formed

by multiplication of the generators 𝑆 and 𝑇 obeying the
relations 𝑆4 = 𝑇

3
= 1, 𝑆𝑇2

𝑆 = 𝑇. Without loss of generality,
we could choose 𝑆 = (1234), 𝑇 = (123) where the cycle
(1234) denotes the permutation (1, 2, 3, 4) → (2, 3, 4, 1), and
(123) means (1, 2, 3, 4) → (2, 3, 1, 4). The conjugacy classes
generated from 𝑆 and 𝑇 are

𝐶
1
: 1,

𝐶
2
: (12) (34) = 𝑇𝑆

2
𝑇
2
, (13) (24) = 𝑆

2
,

(14) (23) = 𝑇
2
𝑆
2
𝑇,

𝐶
3
: (123) = 𝑇, (132) = 𝑇

2
, (124) = 𝑇

2
𝑆
2
,

(142) = 𝑆
2
𝑇, (134) = 𝑆

2
𝑇𝑆

2
, (143) = 𝑆𝑇𝑆,

(234) = 𝑆
2
𝑇
2
, (243) = 𝑇𝑆

2
,

𝐶
4
: (1234) = 𝑆, (1243) = 𝑇

2
𝑆𝑇, (1324) = 𝑆𝑇,

(1342) = 𝑇𝑆, (1423) = 𝑇𝑆𝑇
2
, (1432) = 𝑆

3
,

𝐶
5
: (12) = 𝑆𝑇𝑆

2
, (13) = 𝑇𝑆𝑇𝑆

2
, (14) = 𝑆𝑇

2
,

(23) = 𝑆
2
𝑇𝑆, (24) = 𝑇𝑆𝑇, (34) = 𝑇

2
𝑆.

(B.1)

The character table of 𝑆
4
is given as shown in Table 1,

where 𝑛 is the order of class and ℎ is the order of ele-
ments within each class. Let us note that 𝐶

1,2,3
are even

permutations, while 𝐶
4,5

are odd permutations. The two
three-dimensional representations differ only in the signs of
their 𝐶

4
and 𝐶

5
matrices. Similarly, the two one-dimensional

representations behave the same.
Wewill work on a basis where 3 and 3 are real representa-

tions whereas 2 is complex. One possible choice of generators
is given as follows:

1 : 𝑆 = 1, 𝑇 = 1,

1

: 𝑆 = −1, 𝑇 = 1,

2 : 𝑆 = (
0 1

1 0
) , 𝑇 = (

𝜔 0

0 𝜔
2) ,

3 : 𝑆 = (

−1 0 0

0 0 −1

0 1 0

) , 𝑇 = (

0 0 1

1 0 0

0 1 0

) ,

3

: 𝑆 = −(

−1 0 0

0 0 −1

0 1 0

) , 𝑇 = (

0 0 1

1 0 0

0 1 0

) ,

(B.2)

where 𝜔 = 𝑒
2𝜋𝑖/3

= −1/2 + 𝑖√3/2 is the cube root of unity.
Using them we calculate the Clebsch-Gordan coefficients for
all the tensor products as given below.

First, let us put 3(1, 2, 3) which means some 3 multiplet
such as 𝑥 = (𝑥

1
, 𝑥

2
, 𝑥

3
) ∼ 3 or 𝑦 = (𝑦

1
, 𝑦

2
, 𝑦

3
) ∼ 3,

and similarly for the other representations. Moreover, the
numbered multiplets such as (. . . , 𝑖𝑗, . . .)mean (. . . , 𝑥

𝑖
𝑦
𝑗
, . . .)

where 𝑥
𝑖
and 𝑦

𝑗
are the multiplet components of different
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Table 1

Class 𝑛 ℎ 𝜒
1

𝜒
1
 𝜒

2
𝜒
3

𝜒
3


𝐶
1

1 1 1 1 2 3 3
𝐶
2

3 2 1 1 2 −1 −1
𝐶
3

8 3 1 1 −1 0 0
𝐶
4

6 4 1 −1 0 −1 1
𝐶
5

6 2 1 −1 0 1 −1

representations 𝑥 and 𝑦, respectively. In the following the
components of representations in l.h.s will be omitted and
should be understood, but they always exist in order in the
components of decompositions in r.h.s.:

1 ⊗ 1 = 1 (11) , 1

⊗ 1


= 1 (11) , 1 ⊗ 1


= 1


(11) ,

1 ⊗ 2 = 2 (11, 12) , 1

⊗ 2 = 2 (11, −12) ,

1 ⊗ 3 = 3 (11, 12, 13) , 1

⊗ 3 = 3


(11, 12, 13) ,

1 ⊗ 3

= 3


(11, 12, 13) , 1


⊗ 3


= 3 (11, 12, 13) ,

2 ⊗ 2 = 1 (12 + 21) ⊕ 1

(12 − 21) ⊕ 2 (22, 11) ,

2 ⊗ 3 = 3 ((1 + 2) 1, 𝜔 (1 + 𝜔2) 2, 𝜔
2
(1 + 𝜔

2
2) 3)

⊕ 3

((1 − 2) 1, 𝜔 (1 − 𝜔2) 2, 𝜔

2
(1 − 𝜔

2
2) 3) ,

2 ⊗ 3

= 3


((1 + 2) 1, 𝜔 (1 + 𝜔2) 2, 𝜔

2
(1 + 𝜔

2
2) 3)

⊕ 3 ((1 − 2) 1, 𝜔 (1 − 𝜔2) 2, 𝜔
2
(1 − 𝜔

2
2) 3) ,

3 ⊗ 3 = 1 (11 + 22 + 33)

⊕ 2 (11 + 𝜔
2
22 + 𝜔33, 11 + 𝜔22 + 𝜔

2
33)

⊕ 3
𝑠
(23 + 32, 31 + 13, 12 + 21)

⊕ 3


𝑎
(23 − 32, 31 − 13, 12 − 21) ,

3

⊗ 3


= 1 (11 + 22 + 33)

⊕ 2 (11 + 𝜔
2
22 + 𝜔33, 11 + 𝜔22 + 𝜔

2
33)

⊕ 3
𝑠
(23 + 32, 31 + 13, 12 + 21)

⊕ 3


𝑎
(23 − 32, 31 − 13, 12 − 21) ,

3 ⊗ 3

= 1


(11 + 22 + 33)

⊕ 2 (11 + 𝜔
2
22 + 𝜔33, −11 − 𝜔22 − 𝜔

2
33)

⊕ 3


𝑠
(23 + 32, 31 + 13, 12 + 21)

⊕ 3
𝑎
(23 − 32, 31 − 13, 12 − 21) ,

(B.3)

where the subscripts 𝑠 and 𝑎, respectively, refer to their sym-
metric and antisymmetric product combinations as explicitly
pointed out. We also notice that many group multiplication

Table 2

particles 𝐿 𝑃
𝑙

𝑁
𝑅
, 𝑢, 𝑑, 𝜙+

1
, 𝜙+

1
, 𝜙0

2
, 𝜙0

2
, 𝜂0

1
, 𝜂0

1
, 𝜂−

2
, 𝜂−

2
, 𝜒0

3
, 𝜎0

33
, 𝑠0

33
0 1

]
𝐿
, 𝑙, 𝑈,𝐷∗, 𝜙+

3
, 𝜙+

3
, 𝜂0

3
, 𝜂0

3
, 𝜒0∗

1
, 𝜒+

2
, 𝜎0

13
, 𝜎+

23
, 𝑠0

13
, 𝑠+

23
−1 −1

𝜎
0

11
, 𝜎+

12
, 𝜎++

22
, 𝑠0

11
, 𝑠+

12
, 𝑠++

22
−2 1

rules above have similar forms as those of 𝑆
3
and 𝐴

4
groups

[14, 112].
In the text we usually use the following notations, for

example, (𝑥𝑦)
3
= [𝑥𝑦


]
3
≡ (𝑥

2
𝑦


3
− 𝑥

3
𝑦


2
, 𝑥

3
𝑦


1
− 𝑥

1
𝑦


3
, 𝑥

1
𝑦


2
−

𝑥
2
𝑦


1
) which is the Clebsch-Gordan coefficients of 3

𝑎
in the

decomposition of 3⊗3, whereasmentioned𝑥 = (𝑥
1
, 𝑥

2
, 𝑥

3
) ∼

3 and 𝑦 = (𝑦
1
, 𝑦



2
, 𝑦



3
) ∼ 3

.
The rules to conjugate the representations 1, 1, 2, 3, and

3
 are given by

2
∗
(1

∗
, 2

∗
) = 2 (2

∗
, 1

∗
) , 1

∗
(1

∗
) = 1 (1

∗
) ,

1
∗
(1

∗
) = 1


(1

∗
) ,

3
∗
(1

∗
, 2

∗
, 3

∗
) = 3 (1

∗
, 2

∗
, 3

∗
) ,

3
∗
(1

∗
, 2

∗
, 3

∗
) = 3


(1

∗
, 2

∗
, 3

∗
) ,

(B.4)

where, for example, 2∗(1∗, 2∗) denotes some 2∗ multiplet of
the form (𝑥

∗

1
, 𝑥

∗

2
) ∼ 2

∗.

C. The Numbers

In Table 2 we will explicitly point out the lepton number (𝐿)
and lepton parity (𝑃

𝑙
) of the model particles (notice that the

family indices are suppressed).
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