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Abstract
In this paper we propose a new protocol which allows two distant parties to simultaneously
and deterministically exchange their states under control of a third remote party in such a way
that it cannot succeed without permission of the controller. The original non-local quantum
resource a priori shared among the three parties is a quintet of qubits in a so-called linear
cluster state.
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1. Introduction

One of the most specific and also most important concepts in
quantum information sciences is quantum entanglement [1].
With the aid of it, a number of classically impossible
tasks can be done quantumly (i.e. in a way based on
the postulates of quantum mechanics), such as quantum
cryptography [2], quantum dense coding [3], quantum
information splitting [4] and so on. In 1993, Bennett
et al [5] first suggested a quantum method called quantum
teleportation to securely and faithfully teleport an unknown
quantum state of a single qubit from a sender to a distant
receiver by using an Einstein–Podolsky–Rosen pair [6] as
the shared quantum channel. Soon after that event, related
works appeared widely and achieved great developments in
both theoretical [7] and experimental [8] domains. In 2001,
Huelga et al [9] proposed a modified scheme of quantum
teleportation, called quantum remote control, by using
bidirectional quantum teleportation method to implement an
arbitrary unitary operation upon a distant quantum system.
Since then, the method of bidirectional quantum teleportation
has been used in many related quantum remote control
protocols [10–12]. In a quantum teleportation protocol, one
party, Alice, can transmit any unknown quantum state to
another party, Bob. In the case where Alice knows her
state, the task can be completed by a simpler method called
remote state preparation [13, 14]. The principal concern of
remote state preparation is to study whether the required
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entanglement and classical communication cost can be traded
off with respect to quantum teleportation. As we know,
in original versions of quantum teleportation and remote
state preparation the entanglement is shared only among
two parties (Alice and Bob). As an obvious extension,
many modified versions have been established using various
different non-local resources which are shared among more
than two parties to perform global multiparty tasks. For
example, Karlsson and Bourennane [15] first proposed a
scheme, called controlled quantum teleportation, making use
of the so-called three-qubit Greenberger–Horne–Zeilinger
state [16] shared among three parties (Alice, Bob and a
controller Charlie) as the quantum channel. Afterwards,
entangled states other than the Greenberger–Horne–Zeilinger
one have also been employed to perform controlled quantum
teleportation [17–19]. The merit of controlled quantum
teleportation is that Alice and Bob are unable to complete
the task without permission of the controller Charlie.
Very recently, bidirectional quantum teleportation has been
extended to include quantum control [20–22]. Such protocols
have been referred to as controlled bidirectional quantum
teleportation. In these protocols, by using multi-qubit
entangled states, Alice and Bob are able to simultaneously
teleport an unknown quantum state to each other under the
control of Charlie.

In this work, we devise a protocol called controlled
bidirectional remote state preparation which has not been
dealt with so far. For the non-local quantum resource shared
beforehand among the participants, we use the five-qubit
linear cluster state, i.e. the same entangled state as was used
in [20, 21]. In order to achieve unit success probability,
we follow the adaptive measurement strategy similar to that
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in [14]. In section 2, we set up the task and briefly mention
the type of cluster states we shall use to fulfill the task.
Section 3 presents in detail our protocol which consists of four
sequential steps. Finally, we summarize our work in section 4.

2. The task setup and the cluster state

Suppose that Alice has a quantum state

|ψA〉 = a |0〉 + beiφ
|1〉 (1)

with a, b =
√

1 − a2 and φ being real numbers known to her,
while Bob has another quantum state

|ψB〉 = x |0〉 + yeiϕ
|1〉 (2)

with x, y =
√

1 − x2 and φ being real numbers known to him.
Alice wishes to remotely prepare |ψA〉 at Bob’s lab, Bob
wishes to remotely prepare |ψB〉 at Alice’s lab, and these are
required to be done securely under quantum control of a single
third party, Charlie, who need not know any information
about |ψA〉 and |ψB〉 but plays a decisive role upon the task
completion.

Trivially, of course, this task could be done
awkwardly by two independent probabilistic controlled
remote state preparation protocols, each consumes one
Greenberger–Horne–Zeilinger trio as the quantum channel
and one controller, involving in total a non-local resource of
six qubits and two separate controllers. Our aim here is to
design a single protocol that allows Alice and Bob to exchange
their own states simultaneously and deterministically using
only a non-local resource of five qubits and only one common
controller.

The five qubits we shall use as the original non-local
resource in our protocol belong to a special class of
multi-particle entangled states, the cluster states, which were
introduced in 2001 by Briegel and Raussendorf [23], with the
primary purpose of carrying out a new paradigm of quantum
computation based on measurements but not on conventional
circuits of unitary operations. Cluster states quickly attracted
much attention and various schemes for generating them
via different physical systems have been proposed [24–27].
A linear cluster state |CN 〉12...N of N qubits can be represented
compactly in the form

|CN 〉12...N =
1

√
2N

N
⊗

n=1

(
|0〉n + |1〉n σ

(n+1)
z

)
, (3)

where σ (n)z is the Z-Pauli matrix acting on qubit n (σ (n)z | j〉n =

(−1) j
| j〉n , ∀ j ∈ {0, 1}, with the convention σ (N+1)

z ≡ 1). For
N = 5,

|C5〉12345 =
1
2 (|00000〉 + |00111〉 + |11010〉

+ |11101〉)12345 , (4)

which is the state we shall use as the shared non-local resource
in our protocol to be described in detail in section 3.

Figure 1. The distribution of qubits of the original cluster state,
equation (5), among the three participants Alice, Bob and Charlie,
for our controlled bidirectional remote state preparation protocol.
Qubits are represented by dots and entangled qubits are connected
by solid lines.

3. The protocol

For our convenience we rename the qubits in the state
|C5〉12345 given in equation (4) as

|Q〉A1A2B1B2C =
1
2 (|00000〉 + |01011〉 + |10101〉

+ |11110〉)A1A2B1B2C (5)

of which, intuitively, both Alice and Bob should hold two
qubits and the remaining qubit is held by Charlie. However,
the distribution of qubits among the three parties is subtle:
a wrong distribution will lead to a failure. After examining
all the possibilities we have come up with the following.
While qubit C should always be distributed to Charlie, qubits
A1, A2, B1 and B2 can be distributed as follows: either
(i) A1, A2 to Alice and B1, B2 to Bob or (ii) B1, B2 to
Alice and A1, A2 to Bob. Other distributions, say, A1, B1

to Alice and A2, B2 to Bob, etc do not work. Here we
shall work with the qubits’ distribution (i) which is sketched
in figure 1. Our protocol is composed of four sequential
steps.

In the first step, Alice and Bob independently perform
the following actions. Alice (Bob) first takes an ancillary
qubit |0〉A′

1
(|0〉B′

2
), then performs a CNOTA1A′

1
(CNOTB2B′

2
)

on qubits A1 and A′

1. (B2 and B′

2), where CNOTXY is
the controlled-NOT gate acting on two qubits X and Y as
CNOTXY |i〉X | j〉Y = |i〉X |i ⊕ j〉Y with ⊕ an addition mod 2.
After those actions, qubits A′

1, B′

2 become entangled with
those in state (5), i.e. |Q〉 | j〉A1A2B1B2C → |Q′

〉A1A′

1A2B1B2B′

2C:

∣∣Q′
〉
A1A′

1A2B1B2B′

2C =
1
2 (|0000000〉 + |0010111〉 + |1101001〉

+ |1111110〉)A1A′

1A2B1B2B′

2C . (6)

Note that, though |Q′
〉A1A′

1A2B1B2B′

2C is a seven-qubit entangled
state, the actual non-local resource costs just five qubits
because the entanglement of qubits A′

1 and B′

2 with those in
state (5) is made locally.
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In the second step, Alice first measures qubit A1 in the
basis

{
|υk〉A1 , k = {0, 1}

}
determined by {a, b} as(

|υ0〉A1

|υ1〉A1

)
=

(
a b
b −a

) (
|0〉A1

|1〉A1

)
. (7)

Then, if the outcome is k (i.e. |υk〉A1 is found), she measures
qubit A′

1 in the basis
{
|υ ′

k ′〉A′

1
, k ′

= {0, 1}
}

determined by
{k, ϕ} as(∣∣υ ′

0

〉
A′

1∣∣υ ′

1

〉
A′

1

)
=

1
√

2

(
1 e−iφ

e2ikφ
−ei(2k−1)φ

) (
|0〉A′

1

|1〉A′

1

)
. (8)

As for Bob, he first measures qubit B2 in the basis{
|ul〉B2 , l = {0, 1}

}
determined by {x, y} as(

|u0〉B2

|u1〉B2

)
=

(
x y
y −x

) (
|0〉B2

|1〉B2

)
· (9)

Then, if the outcome is l (i.e. |ul〉B2 is found), he measures
qubit B′

2 in the basis
{
|u′

l ′〉B′

2
, l ′ = {0, 1}

}
determined by

{l, φ} as(∣∣u′

0

〉
B′

2∣∣u′

1

〉
B′

2

)
=

1
√

2

(
1 e−iϕ

e2ilϕ
−ei(2l−1)ϕ

) (
|0〉B′

2

|1〉B′

2

)
.

(10)

In terms of the basic states |υk〉A1 , |υ ′

k ′〉A′

1
, |ul〉B2 and |u′

l ′〉B′

2
,

we can reexpress state (6) as follows:∣∣Q′
〉
A1A′

1A2B1B2B′

2C

=
1

4

1∑
k,k ′,l,l ′=0

|υk〉A1

∣∣υ ′

k ′

〉
A′

1
|ul〉B2

∣∣u′

l

〉
B2

|Dklk ′l ′〉CA2B1
,

(11)
where

|D0000〉CA2B1
=
(
ax |000〉 + ayeiϕ

|110〉 + bxeiφ
|101〉

+byei(φ+ϕ)
|011〉

)
CA2B1

, (12)

|D0001〉CA2B1
=
(
ax |000〉 − ayeiϕ

|110〉 + bxeiφ
|101〉

−byei(φ+ϕ)
|011〉

)
CA2B1

, (13)

|D0010〉CA2B1
=
(
ax |000〉 + ayeiϕ

|110〉 − bxeiφ
|101〉

−byei(φ+ϕ)
|011〉

)
CA2B1

, (14)

|D0011〉CA2B1
=
(
ax |000〉 − ayeiϕ

|110〉 − bxeiφ
|101〉

+byei(φ+ϕ)
|011〉

)
CA2B1

, (15)

|D0100〉CA2B1
=
(
ayeiϕ

|000〉 − ax |110〉 + byei(φ+ϕ)
|101〉

−bxeiφ
|011〉

)
CA2B1

, (16)

|D0101〉CA2B1
=
(
−ayeiϕ

|000〉 − ax |110〉 + byei(φ+ϕ)
|101〉

+bxeiφ
|011〉

)
CA2B1

, (17)

|D0110〉CA2B1
=
(
ayeiϕ

|000〉 − ax |110〉 − byei(φ+ϕ)
|101〉

+bxeiφ
|011〉

)
CA2B1

, (18)

|D0111〉CA2B1
=
(
−ayeiϕ

|000〉 − ax |110〉 − byei(φ+ϕ)
|101〉

−bxeiφ
|011〉

)
CA2B1

, (19)

|D1000〉CA2B1
=
(
bxeiφ

|000〉 + byei(φ+ϕ)
|110〉 − ax |101〉

−ayeiϕ
|011〉

)
CA2B1

, (20)

|D1001〉CA2B1
=
(
bxeiφ

|000〉 − byei(φ+ϕ)
|110〉 − ax |101〉

+ayeiϕ
|011〉

)
CA2B1

, (21)

|D1010〉CA2B1
=
(
−bxeiφ

|000〉 − byei(φ+ϕ)
|110〉 − ax |101〉

−ayeiϕ
|011〉

)
CA2B1

, (22)

|D1011〉CA2B1
=
(
−bxeiφ

|000〉 + byei(φ+ϕ)
|110〉 − ax |101〉

+ayeiϕ
|011〉

)
CA2B1

, (23)

|D1100〉CA2B1
=
(
byei(φ+ϕ)

|000〉 − bxeiφ
|110〉 − ayeiϕ

|101〉

+ax |011〉)CA2B1
, (24)

|D1101〉CA2B1
=
(
−byei(φ+ϕ)

|000〉−bxeiφ
|110〉+ayeiϕ

|101〉

+ax |011〉)CA2B1
, (25)

|D1110〉CA2B1
=
(
−byei(φ+ϕ)

|000〉+bxeiφ
|110〉−ayeiϕ

|101〉

+ax |011〉)CA2B1
(26)

and

|D1111〉CA2B1
=
(
byei(φ+ϕ)

|000〉 + bxeiφ
|110〉 + ayeiϕ

|101〉

+ax |011〉)CA2B1
. (27)

After their measurements, Alice and Bob should let each other
know the outcomes kk ′ and ll ′. What is interesting is that it is
not necessary for them to send secret massages. Instead, they
just need to broadcast their outcomes via any public media
since these outcomes in fact mean nothing to any outside
parties.

It is worth noting that in the second step Alice and Bob
used the adaptive measurement strategy. Namely, the choice
of bases for measuring qubits A′

1 and B′

2 depends essentially
on the outcomes of the prior measurements on qubits A1 and
B2, respectively. Clearly from equation (11), if the outcomes
of Alice’s and Bob’s measurements are klk ′l ′, then the three
unmeasured qubits C, A2 and B1 are projected onto the
state |Dklk ′l ′〉CA2B1 (see equations (12)–(27)) with an equal
probability of 1/16. Note also that at this stage Alice and
Bob are still unable to complete the task without Charlie’s
participation since their qubits A2 and B1 are still entangled
with qubit C. The role of the controller Charlie will be seen in
the next step.
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In the third step, Charlie measures qubit C in the basis(
|−〉C
|+〉C

)
=

1
√

2

(
1 −1
1 1

) (
|0〉C
|1〉C

)
, (28)

then publicly announces the outcome m = 1 if qubit C is
found in the state |+〉C and m = 0 if it is in the state |−〉C.
Depending on the outcomes klk ′l ′m of all the measurements
described above, the state of qubits A2 and B1, with an equal
probability of 1/32, collapses into |9klk ′l ′m〉A2B1 , which have
the following explicit forms:

|900000〉A2B1
= |900111〉A2B1

=
(
x |0〉 + yeiϕ

|1〉
)

A2
⊗
(
a |0〉 + beiφ

|1〉
)

B1
,

(29)

|900001〉A2B1
= |900110〉A2B1

=
(
x |0〉 − yeiϕ

|1〉
)

A2
⊗
(
a |0〉 − beiφ

|1〉
)

B1
,

(30)

|900010〉A2B1
= |900101〉A2B1

=
(
x |0〉 − yeiϕ

|1〉
)

A2
⊗
(
a |0〉 + beiφ

|1〉
)

B1
,

(31)

|900100〉A2B1
= |900011〉A2B1

=
(
x |0〉 + yeiϕ

|1〉
)

A2
⊗
(
a |0〉 − beiφ

|1〉
)

B1
,

(32)

|901000〉A2B1
= |901011〉A2B1

=
(
yeiϕ

|0〉 − x |1〉
)

A2
⊗
(
a |0〉 + beiφ

|1〉
)

B1
,

(33)

|901100〉A2B1
= |901111〉A2B1

=
(
yeiϕ

|0〉 − x |1〉
)

A2
⊗
(
a |0〉 − beiφ

|1〉
)

B1
,

(34)

|901001〉A2B1
= |901010〉A2B1

=
(
yeiϕ

|0〉 + x |1〉
)

A2
⊗
(
a |0〉 − beiφ

|1〉
)

B1
,

(35)

|901101〉A2B1
= |901110〉A2B1

=
(
yeiϕ

|0〉 + x |1〉
)

A2
⊗
(
a |0〉 + beiφ

|1〉
)

B1
,

(36)

|910000〉A2B1
= |910111〉A2B1

=
(
x |0〉 + yeiϕ

|1〉
)

A2
⊗
(
beiφ

|0〉 − a |1〉
)

B1
,

(37)

|910001〉A2B1
= |910110〉A2B1

=
(
x |0〉 − yeiϕ

|1〉
)

A2
⊗
(
beiφ

|0〉 + a |1〉
)

B1
,

(38)

|910100〉A2B1
= |910011〉A2B1

=
(
x |0〉 + yeiϕ

|1〉
)

A2
⊗
(
beiφ

|0〉 + a |1〉
)

B1
,

(39)

|910010〉A2B1
= |910101〉A2B1

=
(
x |0〉 − yeiϕ

|1〉
)

A2
⊗
(
beiφ

|0〉 − a |1〉
)

B1
,

(40)

|911000〉A2B1
= |911111〉A2B1

=
(
yeiϕ

|0〉 − x |1〉
)

A2
⊗
(
beiφ

|0〉 − a |1〉
)

B1
,

(41)

|911001〉A2B1
= |911110〉A2B1

=
(
yeiϕ

|0〉 + x |1〉
)

A2
⊗
(
beiφ

|0〉 + a |1〉
)

B1
,

(42)

|911011〉A2B1
= |911100〉A2B1

=
(
yeiϕ

|0〉 − x |1〉
)

A2
⊗
(
beiφ

|0〉 + a |1〉
)

B1

(43)and

|911010〉A2B1
= |911101〉A2B1

=
(
yeiϕ

|0〉 + x |1〉
)

A2
⊗
(
beiφ

|0〉 − a |1〉
)

B1
.

(44)

As is evident from equations (29)–(44), for any possible
collection klk ′l ′m of outcomes, |9klk ′l ′m〉A2B1 turns out to be
a product state, but it is not yet readily in the desired form
|ψA〉A2 ⊗ |ψB〉B1 . So, a final step, the fourth step, is needed
for Alice and Bob to locally reconstruct the target state.

In the fourth step, Alice (Bob) should apply a proper
unitary operator RA

ll ′m

(
RB

kk ′m

)
, if it exists, on qubit A2(B1)

to transform its state to |ψA〉A2(|ψB〉B1). That is, to be
successful, Alice (Bob) needs to know not only the outcome
of Bob’s (Alice’s) measurement in the second step, but
also the outcome of Charlie’s measurement in the third
step, certifying the controller’s role in our protocol. Should
Charlie, by some important reasons, decline to carry out
the measurement or to disclose the measurement outcome,
the task remains unfulfilled. Carefully analyzing the data
in equations (29)–(44), we have, for any possible outcomes
klk ′l ′m, come up with the general formulae for RA

ll ′m and
RB

kk ′m as

RA
ll ′m = σ l

xσ
l⊕l ′⊕m
z (45)

and

RB
kk ′m = σ k

x σ
k⊕k ′

⊕m
z , (46)

where σx is the X-Pauli matrix (σx | j〉 = | j ⊕ 1〉; j = {0, 1}).
Since Alice and Bob are always able to reconstruct the desired
state by the operators RA

ll ′m and RB
kk ′m defined above, our

controlled bidirectional remote state preparation protocol is
deterministic, i.e. the success probability is 1.

4. Conclusion

To summarize, we have put forward an idea of how two distant
parties (Alice and Bob) can simultaneously exchange their
quantum states securely, deterministically and under the same
control (by Charlie) using only local operations and classical

4
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communication. Since each party knows his/her own state, we
call our protocol deterministic controlled bidirectional remote
state preparation. The local operations involved in the main
steps (i.e. from the second step) are simple single-qubit von
Neumann measurements. The original quantum channel (5)
whose qubits should be a priori distributed through space
among the participants consists only of five qubits which are
here assumed to be provided off-line in the linear cluster
state. The actually working quantum channel (6), though it
consumes two more auxiliary qubits and two controlled-NOT
gates, can be made locally in the preliminary step (i.e. the first
step). The reason for extending the original to the working
quantum channel is to make room for adaptive measurements
as described in the second step, thanks to which unit success
probability is achieved. The classical message each of Alice
and Bob has to broadcast costs 2 bits, whereas that of Charlie
costs just 1 bit, resulting in the total classical communication
of 5 bits. Taken altogether, the presented protocol is feasible
within the reach of current technologies.
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