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Transferring quantum states between nearby quantum processors is important for building up a powerful 
quantum computer. In this paper, we propose a controllable scheme to transfer bipartite entangled states 
using two open-ended spin- 1

2 chains in parallel as a dual-rail quantum channel. We perform two sets
of operations, one on one end of the chains at the beginning of the system evolution and the other on 
the other end of the chains at the time the transferred entanglement needs to be picked up. Among the 
operations employed in the scheme there are weak measurements with controllable strengths. By suitably 
choosing the strengths of these weak measurements, the entanglement transferability is pronouncedly 
improved, compared to that due to the spin chains’ natural dynamics. In principle, the entanglement 
amount at the receiving site can be made arbitrarily close to that at the sending site, i.e., perfect 
entanglement transfer could be achieved asymptotically.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The transfer of quantum states is undoubtedly very impor-
tant in future’s quantum information processing technology [1]. 
For long-distance quantum communication, photons are the most 
suited candidates to play the role of quantum information carri-
ers flying from one to another in a faraway spatial location. For 
example, in quantum key distribution, the photons encoding a se-
cret key via their polarization freedoms can easily travel along 
long optical fibers or through free space and can then be readily 
measured at an arriving location. However, in distributed quantum 
computation [2–4], not only transferring quantum states between 
quantum computers is important but also interfacing a quantum 
computer (say, arrays of spins or trapped ions) with optics is nec-
essary. An idea to avoid such interfacing problems is to use the 
same physical systems for both the quantum computers and the 
quantum channels. For short distances, it is more suitable to adopt 
the collective phenomena, such as the natural dynamical evolution, 
of a permanently coupled chain of quantum systems to connect 
different nearby quantum processors or registers to build up a 
powerful quantum computer. In fact, by using a 1D spin chain 
as the data bus, Bose proposed a quantum state transfer pro-
tocol in which an unknown state can be efficiently transferred 
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from one to another spin with certain fidelity via the spin chain’s 
natural evolution [5]. Nevertheless, for a spin chain governed by 
a uniformly coupled Heisenberg Hamiltonian [5], perfect quan-
tum state transfer is only possible for systems with two or three 
spins [6]. Subsequently, a number of approaches, such as engi-
neered couplings [7–13], Gaussian wave-packet encoding [14–16], 
employment of specific pulses [17], weak coupling of the send-
ing and receiving qubits to a quantum many-body system [12,18,
19] and so on, have been proposed to achieve perfect or near 
perfect quantum state transfer. In addition to these strategies, Bur-
garth and Bose also suggested a dual-rail channel by adding an 
auxiliary spin chain to improve transfer capability of single-spin
states [20–22]. With enough measurements carried out, their pro-
tocol will achieve conclusively perfect quantum state transfer with 
a success probability close to 1. The adding of an additional spin 
chain is actually not problematic and is even much easier in many 
experiments [23–25] that realize a whole bunch of parallel uncou-
pled chains rather than just a single one.

As is well known, entanglement is a key resource to realize 
various intriguing tasks in quantum information processing and 
quantum computing [1]. The capability of on-demand transfer of 
entanglement through spin chains is, of course, significant [26,27]. 
In particular, it is practically interesting to obtain entanglement 
between two independent spins at a receiving site through the 
process of transferring the entanglement as a whole prepared be-
tween two spins at a sending site. To achieve this task, the dual-
rail channel based on using two parallel spin chains (cf. Fig. 1) is 
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Fig. 1. The schematic setup for entanglement transfer through two parallel spin- 1
2

chains each contains N spins. An entangled state to be transferred is encoded in 
spins A1 and B1 on each of which the sender performs a weak measurement be-
fore the system starts to evolve. Later, at a desired moment of time, the receiver 
performs a suitable set of operations on spins AN and B N to get them in the in-
tended entangled state.

a naturally occurring setting. However, with respect to the issue of 
entanglement transfer, the answer to the question “Can the entan-
glement of an arbitrarily prepared bipartite entangled state be per-
fectly transferred through a pair of parallel spin chains?” is still not 
known completely. Our study in this work shows that in fact not 
all the bipartite entangled states can be transferred via two paral-
lel spin chains. More concretely, we find out that there are states 
of two spins that are initially entangled at a sending site but later 
become always unentangled at a receiving site (i.e., the two spins 
at the receiving site remain separable during the entire time evolu-
tion). Also, there are states whose entanglement can be transferred 
to a destination, but during the system’s natural evolution their 
entanglement appears with some delay [28], then suddenly van-
ishes, and after some time reappears again, etc. Here we propose a 
controllable scheme that allows us to improve the entanglement 
transfer in terms of the dual-rail protocol, especially to renew 
the transferability of those states whose entanglement cannot be 
transferred by natural evolution. Namely, we find that for bipartite 
entangled states of the form α|00〉 + β|11〉 (|0〉 ≡ |↓〉: spin-down 
state, |1〉 ≡ |↑〉: spin-up state and |α|2 +|β|2 = 1), a large weight of 
the |11〉 component hinders its entanglement transfer. Therefore, 
in our scheme, we first lower the weight of the |11〉 component 
by means of weak measurements [29–39] with strength p on each 
of the two spins at the sending site. The weak measurement differs 
from the projective measurement in that the former does not com-
pletely collapse the system’s measured state. Actually, such kind of 
measurements has been experimentally realized in several physi-
cal contexts [40–45]. Next, we let the system evolve as it should. 
And, finally, at a desired receiving site, we perform on each spin 
another weak measurement with strength q. By suitably choosing 
q we shall be able to transfer entanglement of any bipartite entan-
gled states. In principle, the entanglement degree at the receiving 
site can be made in our scheme exactly equal to that at the send-
ing site, i.e., perfect entanglement transfer could be achieved.

We structure our paper as follows. After this Introduction, 
in Section 2 we deal with a solvable model consisting of two par-
allel open-ended spin- 1

2 chains each of which is characterized by 
nearest neighbor interactions and under a common uniform mag-
netic field. By means of dual-rail encoding, the process of entan-
glement transfer along the chains is investigated. It is shown that, 
due to natural evolution, not any entangled states can transfer 
their entanglement and the entanglement transfer, if it happens, 
cannot be perfect. Then, in Section 3, we propose a controllable 
scheme to circumvent such limitations imposed by the system’s 
natural dynamics. By performing appropriate prior and posterior 
unsharp measurements, the entanglement transferability is con-
siderably enhanced and, in principle, can be made asymptotically 
perfect. Finally, we conclude in Section 4.
2. Dual-rail transfer of entanglement

Consider, for generality, two 1D spin- 1
2 graphs A and B , each 

of which contains N spins. The spins in graph A (B) are labeled 
A1, A2, ... and AN (B1, B2, ... and B N ). There are no interactions 
between the graphs so the total Hamiltonian of the system can be 
written as [20]

H = H (A) ⊗ I(B) + I(A) ⊗ H (B), (1)

where H (S) (S = A, B) is the Hamiltonian of spin graph S and I(S)

the identity operator. The authors of Refs. [46–48] studied spin 
rings, so for precise analytical formulation they had to introduce 
the cyclic boundary conditions which are a good approximation 
only for rings with a large radius. Here we are interested in lin-
ear open-ended spin chains (see Fig. 1), which represent the most 
natural geometry for an information transfer channel. Assuming 
the nearest neighbor Heisenberg interactions of equal strength and 
the common uniform magnetic field h, the Hamiltonians H (A) and 
H (B) in Eq. (1) are identical in form, i.e., for both S = A and B ,

H (S) = − J

2

N−1∑
j=1

(
σ

j
x σ

j+1
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j
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z σ
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) − h
N∑

j=1

σ
j

z , (2)

where σ j
x(y,z) are the x(y, z) Pauli matrices for the jth spin and 

J > 0 the coupling strength between nearest neighbors.
Let the two-spin entangled state to be transferred has the form∣∣ψ(0)

〉
A1 B1

= cos θ |0〉A1 |0〉B1 + eiφ sin θ |1〉A1 |1〉B1 , (3)

with 0 < θ < π/2 and 0 < φ < π . Unlike the transfer of single-
spin states, the transfer of two-spin entangled states would be 
more subtle since the entanglement dynamics due to decoher-
ence is very rich and sensitive to the form of the entangled state 
to be transferred (see, e.g., [28]). Hence, we should consider the 
whole range of possible values of φ and θ to explore the depen-
dence of entanglement transferability on those parameters. The 
form (3) of the input state means that a dual-rail encoding is 
adopted: information is encoded in states of the first spin pair 
A1 B1 of the two chains. As for the other spins, they are all pre-
pared in the unexcited (i.e., spin-down) state |0〉 ≡ |↓〉. As H (S)

commutes with 
∑N

j=1 σ
j

z , there exists at most one excitation (i.e., 
one spin-up state) in each chain. For convenience, we denote by 
|0〉(S) = |0...0...0〉S1...S j ...SN the state with all the spins being un-

excited and by |j〉(S) = |0...1...0〉S1...S j ...SN (j = 1, 2, ..., s, ..., r, ..., N)

the state with only spin j being excited. The eigenstates |m̃〉(S)

and eigenenergies Em = E(A)
m = E(B)

m of the Hamiltonian (2) rel-
evant to our problem can be derived as [5] |m̃〉(S) = {[√2 +
δm,1(1 −√

2)]/√N} ∑N
j=1 cos[π(m − 1)(2 j − 1)/2N]|j〉(S) and Em =

2h + 2 J {1 − cos[π(m − 1)/N]}, with m = 1, 2, ..., N . Since the two 
parallel spin chains do not have any direct interactions, the excita-
tion transfer in each chain can be dealt with independently. In this 
case, the transition amplitude of an excitation from a sth to an rth 
site in each chain takes the same form as

c(S)
sr (t) = (S)〈r|e−iH(S)t |s〉(S)

=
N∑

m=1

(S)〈r|m̃〉(S)(S)〈m̃|s〉(S)e−iEmt . (4)

As the values of c(A)
sr (t) and c(B)

sr (t) of the two identical chains are 
the same for all possible s and r, we ignore their superscripts (A)

and (B) throughout the paper. For concreteness, we set s = 1 and 
r = N in the following (i.e., the sender and the receiver are located 
near the opposite ends of the chains).
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In terms of the aforementioned notations |0〉(S) and |j〉(S) , the 
initial state of the whole system reads∣∣Ψ (0)

〉 ≡ ∣∣Ψ (0)
〉(A)(B)

= cos θ |0〉(A)|0〉(B) + eiφ sin θ |1〉(A)|1〉(B), (5)

which at time t > 0 evolves to∣∣Ψ (t)
〉 ≡ ∣∣Ψ (t)

〉(A)(B)

= cos θ |0〉(A)|0〉(B)

+ eiφ sin θ

N∑
j=1

N∑
k=1

c1 j(t)c1k(t)|j〉(A)|k〉(B). (6)

The reduced density operator of the Nth spin pair can be obtained 
from Eq. (6) as

ρAN B N (t) = ρ00,00(t)|00〉AN B N 〈00| + ρ01,01(t)|01〉AN B N 〈01|
+ ρ10,10(t)|10〉AN B N 〈10| + ρ11,11(t)|11〉AN B N 〈11|
+ ρ00,11(t)|00〉AN B N 〈11| + ρ11,00(t)|11〉AN B N 〈00|,

(7)

where

ρ00,00(t) = cos2 θ + sin2 θ
(
1 − ∣∣c1N(t)

∣∣2)2
, (8)

ρ01,01(t) = ρ10,10(t) = sin2 θ
∣∣c1N(t)

∣∣2(
1 − ∣∣c1N(t)

∣∣2)
, (9)

ρ11,11(t) = sin2 θ
∣∣c1N(t)

∣∣4
(10)

and

ρ11,00(t) = ρ∗
00,11(t) = sin θ cos θ eiφc2

1N(t). (11)

In deriving the above expressions we have made use of the equal-
ity 

∑N
j=1 |c1 j(t)|2 = 1.

We first analyze the closeness of the transferred state ρAN BN (t)
to the initial state |ψ(0)〉A1 B1 〈ψ(0)| by the fidelity F (t) which 
is defined as F (t) = A1 B1 〈ψ(0)|ρAN BN (t)|ψ(0)〉A1 B1 . By virtue of 
Eqs. (3) and (7), we have obtained

F (t) = cos2 θ + ∣∣c1N(t)
∣∣4

sin2 θ, (12)

when the magnetic field was chosen appropriately as in Ref. [5] to 
ensure a maximal fidelity. Obviously, the fidelity F (t) depends not 
only on the excitation transition probability |c1N (t)|2 but also on 
the initial state in terms of θ . To assess the mean quality of the 
state transfer process we then average F (t) over all the possible 
values of θ and φ to obtain the averaged fidelity Fav(t) in the form

Fav(t) = 1

2

(
1 + ∣∣c1N(t)

∣∣4)
, (13)

which remains of course a function of the length N of the spin 
chains. In Fig. 2 we plot the maximum averaged fidelity F Max

av ver-
sus N within a certain time interval. Since during the system’s 
natural evolution the maximal value of |c1N (t)|2 (and so of F Max

av ) 
can be reached at different times for different N , we have cho-
sen a quite long time interval of t ∈ [0, 1000/ J ]. As seen from 
the figure, the quantum state transfer is near perfect for N = 4
in which case F Max

av ≈ 0.9997, pretty good for N = 5, 7, 8 in which 
case F Max

av > 0.9 and not so good for other values of N .
However, since fidelity tells nothing about inseparability of the 

transferred state, to evaluate the performance of entanglement 
transfer through the two spin chains we need another figure of 
merit, the one that measures the amount of entanglement at any 
Fig. 2. The maximum averaged fidelity F Max
av achieved within a time interval 

[0, 1000/ J ] as a function of the chain length N . The horizontal line at 0.9 is just to 
guide the eye.

site. In what follows, as such a figure of merit, we shall use con-
currence [49], which for the spins at the sending site is C A1 B1 (0) =
sin(2θ) and for the spins at the receiving site is

C AN B N (t) = 2 sin θ
∣∣c1N(t)

∣∣2
max

{
0, C̃ AN B N (t)

}
(14)

with

C̃ AN B N (t) = cos θ − (
1 − ∣∣c1N(t)

∣∣2)
sin θ. (15)

Clearly, the possession of entanglement at site N is determined 
by the sign of C̃ AN BN (t): the spin pair AN B N is entangled if 
C̃ AN BN (t) > 0, otherwise it is unentangled. We now show that 
character of the dual-rail transfer of entanglement is qualitatively 
distinguished for three different classes of the input states of the 
form (3). Analytically, C̃ AN BN (t) > 0 iff

cot θ > 1 − ∣∣c1N(t)
∣∣2

. (16)

Since |c1N(t)|2 is a transition probability, it must satisfy the in-
equalities 0 < |c1N(t)|2 < 1. The RHS of Eq. (16) is therefore also 
bounded between zero and one. As for the LHS of Eq. (16), it de-
creases with increasing θ and is evidently not smaller than one 
for 0 < θ ≤ π/4. This implies that C̃ AN BN (t) is always positive 
for θ ∈ (0, π/4]. However, the behavior of C̃ AN BN (t) is delicate for 
θ > π/4. The transition probability |c1N (t)|2 itself oscillates with 
time as the system is evolving. Denoting by |cmax

1N (t)|2 the maxi-
mum value of |c1N (t)|2 during the time evolution, it can be verified 
that C̃ AN BN (t) is always non-positive for θ ≥ θmax with

θmax = arctan

(
1

1 − |cmax
1N (t)|2

)
. (17)

Finally, for θ lying in between π/4 and θmax, ̃C AN BN (t) may be pos-
itive within some time intervals sandwiched between other time 
intervals within which C̃ AN BN (t) turns out to be non-positive.

Physically, the above analysis indicates that the dual-rail trans-
fer of entanglement is state-dependent. For those input states 
(of the form (3)) that have θ as small as 0 < θ ≤ π/4 some amount 
of entanglement is always transferred from the first to the last end 
of the spin chains. Nevertheless, for those states that have θ as 
large as θmax ≤ θ < π/2 the entanglement transfer does not occur 
at all. This property can be interpreted as strong vulnerability of 
the large-weight |11〉 component of state (3) due to decoherence 
brought about by the two spin chains which act as efficient am-
plitude damping quantum channels. For intermediate values of θ , 
such as π/4 < θ < θmax, the entanglement transfer is somewhat 
delayed at first, then suddenly becomes active for some period of 
time, then suddenly ceases the action for another period of time 
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Fig. 3. Density plot of the concurrence of the spin pair AN B N as a function of θ and J t when (a) N = 6 for which θmax ≈ 2.94π
8 and (b) N = 17 for which θmax ≈ 2.49π

8 . 
In both (a) and (b) there is no entanglement at all in the region with θ > θmax. Note that the values of θmax in this figure were derived only within the time interval [0, 30/ J ].
and so on. In other words, within this intermediate domain of θ , 
the spin pair AN B N undergoes alternating entanglement sudden 
birth and entanglement sudden death during the course of time. 
All the above-mentioned features of the dual-rail transfer of en-
tanglement through two parallel spin chains can be visualized in 
Fig. 3 where we plot the concurrence C AN BN (t) versus J t and θ for 
a couple of fixed values of N .

3. Controllable scheme

As learned from the previous section, not all the two-spin en-
tangled states can transfer their entanglement from the first to the 
last spin pair by virtue of the system’s natural evolution. More-
over, because of intrinsic amplitude damping effect along the spin 
chains, even in case entanglement is transferable the degree of en-
tanglement at the receiving site is always lower than that at the 
sending site, i.e., the entanglement transfer is always imperfect.

To enhance the transfer process of entanglement [27,46] or 
quantum correlations [48] a so-called phase-shift control via 
Aharonov–Casher effect [50] or Dzyaloshinskii–Moriya interac-
tion [51] was employed for the spin rings, which, however, does 
not apply to the open-ended chains considered here. In this sec-
tion, we propose another strategy to control the evolution so that 
the entanglement transfer is improved considerably. Our scheme in 
principle allows transferring 100% amount of entanglement from 
one end to the other end of the spin chains. Of interest is the 
fact that using our scheme all the entangled states of the form (3)
(including those with θ > θmax) could perfectly transfer their en-
tanglement down the spin chains. Concretely, we shall perform 
two sets of operations, one at the sending site before the sys-
tem’s evolution starts and the other at the receiving site after 
some desired period of time during the evolution. The first set 
of operations comprises measurements that aim at reducing the 
vulnerability of the input state to the decoherence caused by the 
subsequent evolution. As for the second set of operations, we could 
design it so as to recover the input state and thus the transferred 
amount of entanglement would be perfect.

Let us now go into detail. At time t = 0 we perform on each of 
the spins A1 and B1 a weak measurement WS (p) (S = A1 or B1) 
with strength p (0 ≤ p < 1). Such a weak measurement can be im-
plemented by watching an outside detector which indirectly mea-
sures the spin state. If the detector produces a click, the measured 
state is irreversibly destroyed, but if there are no clicks (null out-
come), the measured state is only partially collapsed and could be 
recovered to the original state with some probability. In essence, 
null-outcome weak measurements are fuzzy ones and it is their 
fuzziness what we exploit to improve the entanglement transfer in 
a controllable fashion. Mathematically, a weak measurement with 
strength p corresponds to the map

WS(p)|n〉S → (1 − p)n/2|n〉S , (18)
where |n〉S (n = 0, 1) is a basic state of spin S . Consider again the 
state (3) of the first spin pair and we wish to transfer the entan-
glement contained in that state to the Nth spin pair as perfectly 
as possible. First, before the system starts to evolve, we perform 
on each of the spins A1 and B1 a weak measurement WS (p). The 
measurements are regarded as successful when we obtain the null 
outcomes in which case the measured state (3) becomes

∣∣ψ(0, p)
〉 = WA1(p)WB1(p)

∣∣ψ(0)
〉
A1 B1

= 1√
P1(0, p)

[
cos θ |00〉 + (1 − p)eiφ sin θ |11〉]A1 B1

,

(19)

with

P1(0, p) = cos2 θ + (1 − p)2 sin2 θ (20)

the success probability. Note that the measurement strength p is 
controllable through adjusting the time of detecting the spin state. 
Therefore, the state of the whole system right after the weak mea-
surements with null outcomes can be written in the form

∣∣Ψ (0, p)
〉 = 1√

P1(0, p)

[
cos θ |0〉(A)|0〉(B)

+ (1 − p)eiφ sin θ |1〉(A)|1〉(B)
]
, (21)

which then starts their course of evolution. Governed by the 
Hamiltonian (1), the state (21) evolves at time t > 0 to

∣∣Ψ (t, p)
〉 = 1√

P1(0, p)

[
cos θ |0〉(A)|0〉(B)

+ (1 − p)eiφ sin θ

N∑
j=1

N∑
k=1

c1 j(t)c1k(t)|j〉(A)|k〉(B)

]
,

(22)

with c1n(t) = |c1n(t)|eiϕn(t) the transition amplitudes which are 
model-dependent. Suppose that after some time t we need to use 
the Nth spin pair the entanglement amount of which we want 
to be as much as possible to that of the first spin pair. For that 
purpose we perform at the desired time t the second set of op-
erations as follows. We first bit-flip both spins AN and B N , then 
carry out on each of them a null-outcome weak measurement with 
strength q, and finally bit-flip them again. Such operations trans-
form state (22) to
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∣∣Ψ (t, p,q)
〉 = ⊗

S=AN ,BN

NOTSWS(q)NOTS
∣∣Ψ (t, p)

〉
= 1√

P2(t, p,q)

[
(1 − q) cos θ |0〉(A)|0〉(B)

+ (1 − p)eiφ sin θ

×
(

c1N(t)|N〉(A) + √
1 − q

N−1∑
j=1

c1 j(t)|j〉(A)

)

×
(

c1N(t)|N〉(B) + √
1 − q

N−1∑
k=1

c1k(t)|k〉(B)

)]
,

(23)

where NOTS |n〉S = |1 − n〉S and

P2(t, p,q) = (1 − q)2 cos2 θ

+ (1 − p)2[1 − q
(
1 − ∣∣c1N(t)

∣∣2)]2
sin2 θ (24)

the total success probability (i.e., the probability of obtaining the 
null-outcomes by both the weak measurements implemented at 
t = 0 and t > 0). The pragmatic benefit of our scheme is the 
ability in choosing the strengths of each of the weak measure-
ments. Given the strength p of the first weak measurements and 
the time t the system has evolved, we are able to determine the 
strength q of the second weak measurements in order to improve 
the entanglement transferability. If we choose q to satisfy the con-
dition

q = qr = 1 − (1 − p)
∣∣c1N(t)

∣∣2
, (25)

then the state (23) will have the form∣∣Ψr(t, p)
〉 ≡ ∣∣Ψ (t, p,qr)

〉
= 1√

P r
2(t, p)

{
(1 − p)

∣∣c1N(t)
∣∣2|Φ〉(A)(B)

+
[
(1 − p)3/2c1N(t)

N−1∑
k=1

c1k(t)
(|N〉(A)|k〉(B)

+ |k〉(A)|N〉(B)
) + (1 − p)2

∣∣c1N(t)
∣∣

×
N−1∑

j,k=1

c1 j(t)c1k(t)|j〉(A)|k〉(B)

]

× eiφ sin θ
∣∣c1N(t)

∣∣}, (26)

where

|Φ〉(A)(B) = cos θ |0〉(A)|0〉(B) + ei[φ+2ϕN (t)] sin θ |N〉(A)|N〉(B) (27)

and

P r
2(t, p) ≡ P2(t, p,qr)

= (1 − p)2
∣∣c1N(t)

∣∣4[
1 − (1 − p)

(
1 − ∣∣c1N(t)

∣∣2)2
sin2 θ

]
.

(28)

It is important to observe from the RHS of Eq. (26) that the 
first term scales as (1 − p) while the second and the third 
ones as (1 − p)3/2, and the fourth one as (1 − p)2. There-
fore, in the limit of p → 1 only the first term contributes, i.e., 
|Ψr(t, p)〉 → |Φ〉(A)(B) . Observe also that, compared with the input 
state (5), state |Φ〉(A)(B) has an additional relative phase 2ϕN (t)
which is brought in during the transfer process. We can, how-
ever, phase-shift each spin of the Nth pair by the unitary operator 
PS(−ϕN (t)) = {{1, 0}, {0, e−iϕN (t)}} to remove such a discrepancy 
in the relative phase. Thus we can in principle make the state of 
the Nth spin pair arbitrarily close to the input state of the first 
pair (i.e., perfect transfer of the two-spin state (3) from the first 
to the last spin pair can be achieved), by approaching p close 
enough to 1. It is worthy to note at this point that the entan-
glement amount contained in state |Φ〉(A)(B) does not depend on 
the relative phase, so the above-mentioned phase-shift operations 
can be skipped if our concern is only with the process of entan-
glement transfer.

Based on the formulae obtained above when the two set of op-
erations have been applied, we now analyze how the transfer of 
entanglement is improved by our scheme as p increases. Concern-
ing the transfer of entanglement of the state (3), we have known 
in the previous section that by natural evolution the transfer char-
acter depends on the state’s parameters. That is, for 0 < θ ≤ π/4
some amount of entanglement can always be transferred, though 
the transfer is not perfect (i.e., the entanglement amount at the 
receiving site is always smaller than that at the sending site), for 
π/4 < θ < θmax the entanglement of Nth spin pair undergoes a 
sequence of alternating sudden birth and sudden death, and for 
θmax ≤ θ < π/2 the entanglement transfer does not occur at all. 
Here, we shall show that by our scheme all those three situations 
can be improved. The concurrence C AN BN (t), Eq. (14), of the spin 
pair AN B N at time t > 0 due to natural evolution now becomes

Cr
AN B N

(t, p) = 2 sin θ max
{

0, C̃ r
AN B N

(t, p)
}
, (29)

with

C̃ r
AN B N

(t, p) = cos θ − (1 − p)(1 − |c1N(t)|2) sin θ

1 − (1 − p)(1 − |c1N (t)|2)2 sin2 θ
. (30)

Transparently, in the ideal case of p → 1, the concurrence
Cr

AN BN
(t, p → 1) is approaching sin(2θ) = C A1 B1 (0), that happens 

independently of the value of θ and of the chain’s length N . This 
means that perfect entanglement transfer could in principle be 
achieved at any desired time t , for whatever the parameters of the 
input state (3) and the number of spins in the parallel chains. This 
also implies that the approaching of Cr

AN BN
(t, p → 1) to C A1 B1 (0)

remains in theory valid in the thermodynamic limit N → ∞. An-
other salient pragmatic advantage of our scheme is that, for values 
of θ > π/4, for which due to natural evolution the entanglement 
of AN B N may suffer alternating sudden births and sudden deaths 
or may not exist at all, we are still able to manipulate the sys-
tem’s dynamics so that entanglement is always transferable (even 
for θ ≥ θmax). At that aim we have to perform the first weak mea-
surements with a strength p larger than a minimum value pmin, 
which is determined from Eqs. (29) and (30) as

pmin = 1 − cot θ

1 − |cmin
1N (t)|2 , (31)

where |cmin
1N (t)|2 is the minimum excitation transition probability 

from the first to the Nth spin within the evolution time. Gener-
ally, |cmin

1N (t)|2 ≈ 0 regardless of N , hence pmin ≈ 1 − cot θ , i.e., pmin
increases with increasing θ , as could be expected. For instance, 
if θ = 5π/16 ≈ 0.98, then pmin ≈ 0.33 and if θ = 3π/8 ≈ 1.18, 
then pmin ≈ 0.59.

Fig. 4(a) displays the time evolution of the improved concur-
rence of the spin pair AN B N in dependence on p for N = 6 and 
θ = π/4. Evidently, at any given moment t during the time evolu-
tion the concurrence Cr

AN BN
(t, p) increases, i.e., the entanglement 

transfer is improved, with increasing p. Fig. 4(b) is similar to 
Fig. 4(a), but for θ = 5π/16 ≈ 0.98 < θmax ≈ 1.16. Without control-
ling (i.e., just by natural evolution) the entanglement of the spin 
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Fig. 4. Time evolution of the improved concurrence Cr
AN BN

(t, p), Eq. (29), with N = 6 in dependence of p under the condition (25) for (a) θ = π/4, (b) θ = 5π/16 and 
(c) θ = 3π/8.

Fig. 5. Time evolution of the success probability P r
2(t, p), Eq. (28), with N = 6 in dependence of p under the condition (25) for (a) θ = π/4, (b) θ = 5π/16 and (c) θ = 3π/8.
pair AN B N suffers from a delayed appearance followed by blank 
periods in the course of evolution. However, with proper control-
ling, these weaknesses can be circumvented for p > pmin ≈ 0.33, 
as seen from Fig. 4(b). Most interesting result is shown in Fig. 4(c) 
for the situation when θ = 3π/8 ≈ 1.18 > θmax ≈ 1.16. In this sit-
uation entanglement transfer is absolutely impossible by natural 
evolution, but turns out to be absolutely possible in our scheme 
if p is chosen so that p > pmin ≈ 0.59, as visualized in Fig. 4(c). 
Although the advantage of our scheme in enhancing the entangle-
ment transferability is pronounced, it is not for free. The price to 
pay is that our scheme is probabilistic. Generally, a higher entan-
glement transferability, which corresponds to a larger value of p, 
is accompanied by a lower success probability, as shown in Fig. 5
for P r

2(t, p), Eq. (28), versus J t and p. For a definite p the success 
probabilities also vary with evolution time and there exist time 
windows within which the probabilities are very small. There-
fore, in order to achieve a reasonably high success probability it 
is important to choose the time to implement the second set of 
operations on the Nth spin pair. We also note that the success 
probabilities are not sensitive to the input states at the sending 
site in terms of θ , as seen from Fig. 5, where the shapes of P r

2(t, p)

are quite similar for different values of θ .

4. Conclusion

In this work, we have studied the transfer of entanglement 
contained in entangled states of the form |ψ〉 = cos θ |0〉|0〉 +
eiφ sin θ |1〉|1〉, Eq. (3), through two identical open-ended spin- 1

2
chains with nearest neighbor interactions within each chain. The 
state |ψ〉 is encoded by a sender in the two leftmost spins of 
the chains and will be retrieved by a receiver at the two right-
most spins of the chains. The desired target is that the entangle-
ment amount contained in the receiver’s state would be as close 
as possible to that contained in the sender’s state. We examined 
the entanglement transferability due to the system’s natural dy-
namics and found out that for θ in between π/4 and some θmax
entanglement transfer is not always possible, for θ ≥ θmax no en-
tanglement at all can be transferred, and only for 0 < θ ≤ π/4
the transfer occurs but not perfectly. To enhance the entanglement 
transferability we keep making use of the system’s dynamics but 
manage it by performing null-outcome weak measurements with 
strength p on the sender’s state before the evolution starts and 
other null-outcome weak measurements with strength q on the 
receiver’s state at a later suitable time. By suitably choosing q, con-
ditioned on p and the time the state is retrieved by the sender, 
our scheme allows to make entanglement always transferable for 
any value of θ , provided that p is chosen to be greater than some 
pmin whose value depends on θ . In general, the amount of entan-
glement of the receiver’s state is pronouncedly improved by our 
scheme in comparison to that without any controls. In particu-
lar, perfect entanglement transfer could be, in principle, achieved 
asymptotically for any φ, θ and N .
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