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• Scheme that can achieve perfect quantum state transfer is devised.
• The scheme is state-independent and applicable to any spin-interaction models.
• The scheme allows perfect transfer of arbitrary multispin states.
• Applications to two typical models are considered in detail.
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a b s t r a c t

In combination with the theories of open system and quantum
recovering measurement, we propose a quantum state transfer
scheme using spin chains by performing two sequential opera-
tions: a projective measurement on the spins of ‘environment’ fol-
lowed by suitably designed quantum recoveringmeasurements on
the spins of interest. The scheme allows perfect transfer of arbitrary
multispin states through multiple parallel spin chains with finite
probability. Our scheme is universal in the sense that it is state-
independent and applicable to any model possessing spin–spin in-
teractions. We also present possible methods to implement the
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required measurements taking into account the current experi-
mental technologies. As applications,we consider two typicalmod-
els for which the probabilities of perfect state transfer are found to
be reasonably high at optimally chosen moments during the time
evolution.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Efficient and on-demand transfer of quantum states from one location to another is an essen-
tial prerequisite in processing quantum information. For long-distance quantum communication and
quantum cryptography photons are the best carriers that can freely fly back and forth between dif-
ferent remote locations. However, photons turn out not suited for distributed quantum computation
when nearby quantumprocessors need to be connected to build up a powerful quantum computer be-
cause one faces challenging problems associatedwithmapping states of the processor qubits to states
of photons at the sending location and vice versa at the receiving location [1–3]. In an on-chip archi-
tecture quantum computer, short-distance quantum state transfer from one processor to another can
preferably be realized by the natural dynamical evolution of permanently coupled spins in spin chains
that connect the two processors, circumventing the problems of interfacing with the flying photons
as encountered in long-distance quantum communication.

The first quantum state transfer mechanism using a spin chain was proposed by Bose [4] in which
an unknown quantum state encoded in a sending spin can be transferred to a desired receiving spin
by means of natural evolution of the spins in the chain. However, due to the amplitude damping
effect caused by the spin chain, perfect quantum state transfer cannot be achieved for arbitrary
length of the spin chain [5]. In the last few years, a number of approaches, such as engineered
couplings [6–12], Gaussian wave-packet encoding [13–15], employment of global pulses for specific
spin chain Hamiltonian [16], weak coupling of the sending and receiving qubits to a quantum many-
body system [11,17,18] and employment of measurement [19–23] have been proposed to achieve
perfect or near-perfect quantum state transfer. Recently, Yao et al. [24,25] have proposed a high-
fidelity quantum state transfer through certain classes of random, unpolarized (infinite temperature)
spin chains. Subsequently, the practicality of such spin chain wiring has been analyzed in diamond
quantum technologies [26] and a scheme for high-dimensional quantum state transfer has also been
considered [27]. Furthermore, Burgarth and Bose have suggested a dual-rail channel by adding an
auxiliary spin chain to improve transfer capability of the state of a single spin [28–30]. If enough
measurements can be carried out, their protocol will achieve conclusively perfect quantum state
transfer whose success probability might reach 1. Although many strategies have been made to
improve quantum state transfer, they apply only to special situations. For example, the engineering of
couplings [6–12] is valid only in those physical implementations where interaction strengths can be
tuned to appropriate values, as opposed to being ‘‘given’’ [30]. The schemes using global pulses [16] are
restricted to a spin chain with a nearest neighbor Ising coupling. Concerning the diversity of practical
settings, it is meaningful to develop a general approach that is not only independent of the concrete
spin–spin interactions but also provides finite-probability perfect state transfer.

It has been recognized that the quantum state transfer along a spin chain has some similarity to the
open systemdynamics. For example, the effect of Heisenberg anti-ferromagnetic chain can be thought
as a depolarizing channel [31], while a ferromagnetic spin chain acts essentially as an amplitude
damping quantumchannel converting an input stateρ(0) toρ(t) = K0(t)ρ(0)K

Ď
0 (t)+K1(t)ρ(0)K

Ď
1 (t),

where K0(t) = |0⟩ ⟨0| + |csr(t)| |1⟩ ⟨1| and K1(t) =

1 − |csr(t)|2 |0⟩ ⟨1|, with |0⟩ (|1⟩) denoting the

spin-down (spin-up) state, are the Kraus operators with csr(t) the transition amplitude of an spin-up
state from a sending site s to a receiving site r of the spin chain [4]. Hence, we can draw lessons from
the open system theory to fight against the ‘‘environment noise’’ on the state transfer process, yet
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the separation between system and environment in the spin chains’ case is rather delicate. Namely, at
eachmoment of time, one spin, the spin of concern, serves as systemand all the other spins as environ-
ment. For example, at t = 0 the sth spin, in which quantum information is encoded, is the system but
at a later desired t > 0 the rth spin, whose state we wish to be identical to that of the sth spin, will be
treated as the system. In the context of open system dynamics, a number of controlling schemes have
been developed to fight against the environmental noises (cf. [32] and references therein). Aiming at
the suppression of decoherence of a single qubit in the amplitude damping channel, a scheme using
prior weak measurement [33] followed by posterior quantum reversal measurement has been pro-
posed [34] and experimentally demonstrated [35]. The idea of usingweak and quantum reversalmea-
surements has also been generalized to improve quantum state transfer through spin chains [36,37].
However, the fidelity of the recovered state is found to be inversely proportional to the success prob-
ability. In particular, complete restoration of the initial state occurs with zero probability, i.e., perfect
state transferwith finite probability is impossible. As shown in [38], if the non-unitary evolution of the
interested system can be randomly decomposed into many unitary quantum processes (i.e., each of
the Kraus operators is proportional to a unitary operator), then the recovery of an unknown quantum
state would be possible by performing a measurement on the environment followed by a quantum
restoration operation on the system conditioned on the environment measurement outcome. Com-
pared to the schemes based on weak and quantum reversal measurements [34,35], an advantage of
the latter is that it can achieve a complete restoration of the initial state with a nonzero probability.
Unfortunately, the evolution of the spin chain in terms of the Kraus operators K0 and K1 does not sat-
isfy this ‘unitary random decomposition’ condition. Nevertheless, still motivated by this idea [32,38],
we develop an efficient strategy to restore the transferred state along the spin chains.

In this paper, we present a general scheme that aims at controlling the dynamics of the spin chains
so as to achieve perfect quantum state transfer with finite success probability. After encoding neces-
sary quantum information into the state of the spins at the sending site and preparing the spins at all
the other sites in their spin-down states, the natural evolution is let to start. Later, at an intended time
t > 0, at which we decide to retrieve the original information from the spins at a receiving site, we
measure the environment (i.e., perform a projective measurement on all the spins except those at the
receiving site). If, with some finite probability, we find the environment in a state with all its spins
being in spin-down states, we proceedwith a proper action, otherwisewe fail. It is worthy noting that,
in the case of success, the spins at the receiving site would appear in a state as though a weak mea-
surement [33] were made on them, namely, the input state was transferred to the receiving site with
only partial collapse. Since, unlike projective measurements, a weak measurement can be undone,
we are able to completely restore the original state with a finite success probability. In fact, undoing
weak measurements is viable and experimental realizations have been reported in various physical
contexts [35,39–41]. Concerning feasibility of perfect state transfer the present method of ‘strongly’
measuring the environment at time t > 0 gains a pronounced advantage over that of ‘weakly’ mea-
suring the system at t = 0 [36,37] because in the latter method perfect state transfer is achieved only
asymptotically with vanishingly small probability.

This paper contains 4 sections. After this introduction section, Section 2 describes in detail the
scheme for finite-probability perfect transfer of an arbitrary M-spin state through M independent
spin-chains. For clarity, the cases ofM = 1 and anyM ≥ 2 are considered separately. In Section 3 the
scheme developed in Section 2 is applied to twomodels with different types of spin–spin interactions
in a spin chain. It is shown that in each model there can be found optimal times during the evolution
at which success probabilities of perfect state transfer are remarkably high. A comparison between
the two models is also demonstrated in terms of perfect state transfer success probabilities. Finally,
conclusion is drawn in Section 4.

2. The scheme

As was already known, the intrinsic dynamics of coupled spins in spin chains allows a state of
spins at a sending site to be transferred to other spins at a receiving site, but the resulting averaged
fidelity is generally much less than 1. It has also been shown recently in [37] that the transferability
of bipartite entanglement via dual-rail quantum channel served by two parallel spin chains is state-
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dependent [37]. Here, we propose a method of how to use multiple spin chains to transfer arbitrary
multispin states both perfectly and with well finite success probability. The key idea behind our
scheme is the observation that, when at t > 0 during the time evolution the environment ismeasured
and a certain outcome is obtained, then the system at that time is projected onto a state that still
contains partial information of the system state at t = 0 and, thus, proper operations could be
designed to manipulate the system so that the original quantum information will be recovered fully.
Our scheme to be presented here is universal in the sense that it applies to any multispin states and
to any types of spin–spin interactions.

2.1. The case of single-spin states

First, let us for clarity consider the scheme for finite-probability perfect transfer of a single-spin
state through a 1D spin- 12 graph containing N coupled spins. The state of interest, which is encoded
in an sth spin at time t = 0 and needed to be transferred to an rth spin (r ≠ s; s, r ∈ {1, 2, . . . ,N}),
has the most general form

|ψ1(0)⟩s =

1
j=0

αj |j⟩s , (1)

with
1

j=0 |αj|
2

= 1 to satisfy the normalization, while all the other spins are in their spin-down
states. The total state of all the N spins at t = 0 can be written as

|Ψ1(0)⟩ = |ψ1(0)⟩s |0 . . . 00 . . . 0⟩1...s−1s+1...N = α0 |0⟩ + α1 |s⟩ , (2)
where the notations |0⟩ ≡ |0 . . . 0⟩1...N and |s⟩ ≡ |0 . . . 1 . . . 0⟩1...s...N are introduced for short. To
keep the consideration generic at this stage we do not specify any concrete model for the interaction
between spins in the chain, but, as inmost situations, we do assume that the spin-chain’s Hamiltonian
H conserves the total number of spin-up states. Such an assumption implies that the state (2) will
evolve at time t > 0 to

|Ψ1(t)⟩ = α0 |0⟩ + α1

N
k=1

csk(t) |k⟩ , (3)

with csk(t) = ⟨k| exp(−iHt) |s⟩ being the transition amplitude of a spin-up state from the sth site to
the kth site whose actual value is model-dependent.

Our scheme runs as follows. Suppose that at a desired time t > 0 during the natural evolution we
need to use the spin at a receiving site r whose state we wish to be identical to that at the sending site
s at t = 0. Aiming at that target, wemeasure the environment spins which at that time t comprises all
the spins other than the rth one. This measurement may either consist of (N − 1)measurements on
(N − 1) individual spins of the environment to find out the exact state (|0⟩ or |1⟩) of a spin or be just
a single coarse-grained ‘collective’ measurement on all the spins of the environment to find out the
‘total’ state without knowledge of the precise state of each spin. In both kinds of the above-mentioned
measurements we are interested in two outcomes: nup = 0 corresponding to finding no spins being in
state |1⟩ or to finding the environmental ‘total’ state being in |0 . . . 00 . . . 0⟩1...r−1,r+1...N and nup = 1
otherwise. If the outcome is nup = 1, we fail because the spin at site r is projected onto |0⟩r , erasing
all the information of the original state at site s. Yet, if the outcome is nup = 0, which happens with a
probabilityP1(t) = |α0|

2
+ |α1csr(t)|2, (4)

the spin r is projected onto stateψ1(t)

r =

1P1(t)

α0 |0r⟩ + α1|csr(t)|eiϕsr (t) |1r⟩


. (5)

Note that in Eq. (5) we have decomposed csr(t) as |csr(t)|eiϕsr (t) with ϕsr(t) being a relative phase
that has arisen during the evolution due to a governing Hamiltonian. The merit of measuring the
environment is that the rth spin state

ψ1(t)

r associated with the outcome nup = 0 contains some
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information about the input state at site s in terms α0 and α1. It means that the input state at the
sensing site after being transferred to the receiving site was only partially collapsed and is therefore
possible to be restored with a finite probability by a suitable operation. The partial collapse of a
quantum system is also referred to as a weak measurement [33–35] on the system. After obtaining
the outcome nup = 0, what makes the state

ψ1(t)

r , Eq. (5), different from the input state |ψ1(0)⟩s,

Eq. (1), is the presence of |csr(t)| and ϕsr(t) in it. As for ϕsr(t),we can remove it by applying on the rth
spin a unitary phase-shift operator of the form

U =


1 0
0 e−iϕsr (t)


, (6)

thus transforming
ψ1(t)


r toψ1(t)


r =

1P1(t) (α0 |0⟩r + α1|csr(t)| |1⟩r) . (7)

To get rid of |csr(t)| we perform on the spin a recovering measurement described by two operators
Ra and Rb


R+
a Ra + R+

b Rb = I

of the forms

Ra =


1 − |csr(t)|2 |0⟩ ⟨0| , (8)

Rb = |csr(t)| |0⟩ ⟨0| + |1⟩ ⟨1| . (9)

The outcome ‘‘a’’ occurs with probability Pa(t) = (1 − |csr(t)|2)|α0|
2/P1(t), in which situation the

spin state is irreversibly collapsed into |0⟩r and all the information is lost. Otherwise, if the outcome
is ‘‘b’’, which occurs with probability Pb(t) = |csr(t)|2/P1(t), the state of spin r at time t > 0 becomes
identical to that of spin s at t = 0, i.e., perfect quantum state transfer is achieved. The total success
probability (for obtaining the outcomes nup = 0 in measuring the environment and ‘‘b’’ in measuring
spin r) is

P1(t) = P1(t)Pb(t) = |csr(t)|2, (10)

which is obviously greater than zero and may be quite high in models with large enough modulus of
transition amplitude |csr(t)|.

In the following, taking the current experimental technology into account, we present two possible
methods to realize the recovering measurement. We note that Rb can be decomposed as

Rb ≡ NOT · W0 · NOT (11)

where

NOT = |0⟩ ⟨1| + |1⟩ ⟨0| (12)

and

W0 = |0⟩ ⟨0| + |csr(t)| |1⟩ ⟨1| . (13)

This decomposition suggests an indirect way to realize the above quantum recovering measurement
as follows. First, the spin is bit-flipped by a NOT . Then, it is measured by two measurement operators
W0 andW1 =


1 − |csr(t)|2 |1⟩ ⟨1|. If the outcome corresponds to application ofW1, the state recov-

ering process fails. Otherwise, if the outcome corresponds to application of W0 (null-outcome), the
qubit is bit-flipped again by another NOT . Such probabilistic measurements, i.e., null-outcome weak
measurement and its reversal have been successfully implemented in various physical contexts, such
as for the superconducting phase qubit [39], all-optical apparatuses [40] and atomic ions [41]. The
quantum recovering measurement mentioned above can also be done rather directly by letting the
spin go through an empty filter. The filter should have the following ‘selective’ properties: it is trans-
parent for spins in spin-up states, but with the probability 1 − |csr(t)|2 absorbs spins in spin-down
states. If so, when we check the filter and find a spin there, we fail. Luckily enough, however, if the
filter remains empty we are sure that perfect transfer of the state of interest has been fulfilled from
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site s to site r . The use of such ‘selective’ filtering was known as the Procrusteanmethod andwas used
for probabilistically producing a Bell state from a non-maximally entangled qubit pair. It is straight-
forward to verify that in both above indirect and direct implementations of the quantum recovering
measurement the total success probability of perfect quantum state transfer is the same.

2.2. The case of multispin states

Next, we proceed to deal with multispin states. To transferM-spin states from one processor/reg-
ister to another, the processors/registers are connectedbyM 1D spin- 12 graphsnamedA(1), A(2), . . . and
A(M). Each graph has N spins. The spins in graph A(m) (m = 1, 2, . . . and M) are labeled
A(m)1 , A(m)2 , . . . and A(m)N . The requirement of availability ofM graphs at the same time causes no prob-
lems at all. In fact, it is even easier to produce a whole bunch of independent spin graphs rather
than just a single one [42–44]. The graphs do not interact with each other so their total Hamiltonian
reads

H = ⊕
M
m=1 HA(m) , (14)

where HA(m) is the Hamiltonian of graph A(m). The working dynamics is of course governed by the
Hamiltonians. But, in this section, we would like to develop a qualitative theory of quantum state
transfer which is valid for graphs with any kinds of spin–spin interactions. In the next section we will
specify the model by explicitly studying concrete types of the Hamiltonian.

The M-spin state to be transferred is encoded in M spins A(1)s , A(2)s , . . . and A(M)s and has the most
general form

|ψM(0)⟩A(1)s ...A(M)s
=

1
k1,k2,...,kM=0

αk1k2...kM |k1⟩A(1)s
|k2⟩A(2)s

. . . |kM⟩
A(M)s

, (15)

with the normalization condition
1

k1,k2,...,kM=0 |αk1k2...kM |
2

= 1. In terms of the abbreviated notations
|0⟩A(m) ≡ |0 . . . 0⟩A(m)1 ...A(m)N

and |j⟩A(m) ≡ |0 . . . 1 . . . 0⟩A(m)1 ...A(m)j ...A(m)N
, the total initial state of the M

graphs can be written as

|ΨM(0)⟩ ≡ |ΨM(0)⟩A(1)...A(M)
= α00...00 |0⟩A(1) |0⟩A(2) . . . |0⟩A(M−1) |0⟩A(M)

+α10...00 |s⟩A(1) |0⟩A(2) . . . |0⟩A(M−1) |0⟩A(M)
+α01...00 |0⟩A(1) |s⟩A(2) . . . |0⟩A(M−1) |0⟩A(M)
+ · · ·

+α00...01 |0⟩A(1) |0⟩A(2) . . . |0⟩A(M−1) |s⟩A(M)
+α11...00 |s⟩A(1) |s⟩A(2) . . . |0⟩A(M−1) |0⟩A(M)
+ · · ·

+α10...10 |s⟩A(1) |0⟩A(2) . . . |s⟩A(M−1) |0⟩A(M)
+ · · ·

+α00...11 |0⟩A(1) |0⟩A(2) . . . |s⟩A(M−1) |s⟩A(M)
+ · · ·

+α11...11 |s⟩A(1) |s⟩A(2) . . . |s⟩A(M−1) |s⟩A(M) . (16)

As usual, each of the Hamiltonians HA(m) , though being not specified, is assumed to conserve the
total number of spin-up states. Also, we assume for simplicity identical dynamics in all the graphs,
i.e., HA(1) ≡ HA(2) ≡ · · · ≡ HA(M) . Therefore, at time t > 0 state (16) will evolve to

|ΨM(t)⟩ ≡ |ΨM(t)⟩A(1)A(2)...A(M)
= α00...00 |0⟩A(1) |0⟩A(2) . . . |0⟩A(M−1) |0⟩A(M)
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+

N
j=1

csj(t)

α10...00 |j⟩A(1) |0⟩A(2) . . . |0⟩A(M−1) |0⟩A(M)

+α01...00 |0⟩A(1) |j⟩A(2) . . . |0⟩A(M−1) |0⟩A(M)
+ · · ·

+ α00...01 |0⟩A(1) |0⟩A(2) . . . |0⟩A(M−1) |j⟩A(M)


+

N
j,j′=1

csj(t)csj′(t)

α11...00 |j⟩A(1)

j′A(2) . . . |0⟩A(M−1) |0⟩A(M)

+ · · ·

+α10...10 |j⟩A(1) |0⟩A(2) . . .
j′A(M−1) |0⟩A(M)

+ · · · .

+ α00...11 |0⟩A(1) |0⟩A(2) . . . |j⟩A(M−1)

j′A(M)
+ · · ·

+

N
j,j′,...,j′′,j′′′=1

csj(t)csj′(t) . . . csj′′(t)csj′′′(t)α11...11 |j⟩A(1)

×
j′A(2) . . . j′′A(M−1)

j′′′A(M) , (17)

in which csj(t) ≡ cA
(1)

sj (t) ≡ · · · ≡ cA
(M)

sj (t). To achieve perfect transfer of the M-spin state (15)
to that of M spins A(1)r , A

(2)
r , . . . and A(M)r , we measure the environment which at time t is a set

of all the spins in the M graphs except A(1)r , A
(2)
r , . . . and A(M)r . Also in the case of multispin states,

measurements on the environment may be of two kinds. For the first kind, M(N − 1) measure-
ments on M(N − 1) individual spins of the environment are performed to find out which exact
state each spin is in. For the second kind, all the spins of the environment are measured jointly
to find out their ‘total’ state without the need to know which one in which state. Here, again
we are only interested in two outcomes: nup = 0 corresponding to finding no spins at all be-
ing in state |1⟩ for the first kind of measurement or to finding the environment being in the ‘total’
state |0 . . . 00 . . . 0 . . . 0 . . . 00 . . . 0⟩A(1)1 ...A(1)r−1A

(1)
r+1...A

(1)
N ...A(M)1 ...A(M)r−1A

(M)
r+1...A

(M)
N

for the second kind of mea-

surement and nup = 1 otherwise. The measurement is regarded successful only if the outcome is
nup = 0,which happens with a probabilityPM(t) = |α00...00|

2
+ (|α10...00|

2
+ |α01...00|

2
+ · · · |α00...01|

2)|csr(t)|2

+ (|α11...00|
2
+ · · · + |α10...10|

2
+ · · · + |α00...11|

2)|csr(t)|4

+ · · · + |α11...11|
2
|csr(t)|2M . (18)

As for the unmeasured spins A(1)r , A
(2)
r , . . . and A(M)r , they are correspondingly projected onto stateψM(t)


A(1)r ...A(M)r

=
1PM(t)


α00...00 |00 . . . 00⟩ + |csr(t)|eiϕsr (t) [α10...00 |10 . . . 00⟩

+ α01...00 |01 . . . 00⟩ + · · · + α00...01 |00 . . . 01⟩]
+ |csr(t)|2e2iϕsr (t) [α11...00 |11 . . . 00⟩ + · · · + α00...11 |00 . . . 11⟩]
+ · · ·

+ |csr(t)|NeNiϕsr (t)α11...11 |11 . . . 11⟩

A(1)r A(2)r ...A(M−1)

r A(M)r
. (19)

Similarly to the single-graph case, the phase ϕsr(t) that has arisen during the evolution can be re-
moved by individually phase-shifting theM spins by a unitary operator (6). As a consequence of such
phase-shifts, state

ψM(t)

A(1)r A(2)r ...A(M)r

becomesψM(t)

A(1)r ...A(M)r

=
1PM(t) {α00...00 |00 . . . 00⟩ + |csr(t)| [α10...00 |10 . . . 00⟩
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+ α01...00 |01 . . . 00⟩ + · · · + α00...01 |00 . . . 01⟩]
+ |csr(t)|2 [α11...00 |11 . . . 00⟩ + · · · + α00...11 |00 . . . 11⟩]
+ · · ·

+ |csr(t)|Nα11...11 |11 . . . 11⟩

A(1)r A(2)r ...A(M−1)

r A(M)r
. (20)

Finally, we perform on each of spins A(1)r , A
(2)
r , . . . and A(M)r a quantum recovering measurement

described by the operators ((8)) and (9). If all the outcomes are ‘‘b’’, which occur with probability
Pb...b(t) = |csr(t)|2M/PM(t), the state of spins A(1)r , A

(2)
r , . . . and A(M)r at t > 0 turns out to be exactly

that of spins A(1)s , A
(2)
s , . . . and A(M)s at t = 0. The total success probability is clearly equal to

PM(t) = PM(t)Pb...b(t) = |csr(t)|2M . (21)

Since spin–spin interaction is necessarily present in any model for transferring spin states, the quan-
tity |csr(t)| is guaranteed always greater than zero. Our scheme, therefore, guarantees quantum state
transfer to be perfect with a well finite probability, as opposed to previous schemes [36] in which
perfect transfer of quantum states appears possible only asymptotically with vanishingly small prob-
ability.

3. Application

So far we have presented our general scheme to realize perfect state transfer though spin chains
without invoking concrete types of spin–spin interactions. Although the perfect state transfer process
in our scheme is state-independent, its success probability depends on the transition amplitude
csr(t) which is model-dependent. As the quantity |csr(t)| is greater than zero in any model with
whatever spin–spin interactions, the success probability of our scheme is guaranteed to greater
than zero too. Yet, we are still concerned with the characters of success probability depending on
various parameters, such as the evolution time, the length of spin chains and the concrete interactions
between spins. Therefore, in this section we apply our scheme to two models with typical types
of spin–spin interaction in a spin chain. The first model we consider is that with ferromagnetic
Heisenberg interactions between nearest neighbor spins of equal strengths. For each spin-chain
A(m) (m = 1, 2, . . . ,M), which is a linear open ended chain consisting of N spins, the underlying
interaction Hamiltonian is given by

HXYZ = −
J
2

N−1
j=1

(σ j
xσ

j+1
x + σ j

yσ
j+1
y + σ j

zσ
j+1
z )− h

N
j=1

σ j
z + E0, (22)

where E0 denotes the spin-chain ground state energy, σ j
x(y,z) are the x(y, z) Pauli matrices for the jth

spin, J > 0 the coupling strength between nearest neighbors, and h a common uniformmagnetic field
used to prevent thermal excitations. Setting E0 = 0 for simplicity, the Hamiltonian (22) can be exactly
diagonalized yielding the eigenstates and eigenenergies {|µ⟩ , Eµ;µ = 1, 2, . . . ,N} of the form [4]

|µ⟩ = aµ
N
j=1

cos
 π
2N
(µ− 1)(2j − 1)


|j⟩ , (23)

with aµ =

√
2 + δµ,1(1 −

√
2)


/
√
N and

Eµ = 2h + 2J

1 − cos

π
N
(µ− 1)


. (24)

Then the transition amplitude for each spin-chain takes the same form as

cXYZsr (t) ≡

r|e−itHXYZ |s


=

N
µ=1

⟨r|µ⟩ ⟨µ|s⟩ e−iEµt . (25)
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Fig. 1. (Color online) The success probability PM (t) for perfectly transferring an arbitrary M-spin state via M spin-chains as a
function of scaled time Jt within themodel described by the interactionHamiltonian (22) for (a):M = 1 anddifferent spin-chain
lengths N and (b): differentM and the same spin-chain lengths N = 10.

For concreteness, in what follows we are interested in the case when the sender is located near one
end of the chains and the receiver near the other end, i.e., s = 1 and r = N apply. The interested
transition amplitude is thus

cXYZ1N (t) =

N
µ=1

a2µ cos
 π
2N
(µ− 1)


cos

 π
2N
(µ− 1)(2N − 1)


e−iEµt . (26)

Another relevant model we would like to consider is described by the so-called XY Hamiltonian of
the form

HXY =
J
2

N−1
j=1

(σ j
xσ

j+1
x + σ j

yσ
j+1
y )+ E0. (27)

Setting again E0 = 0, the corresponding eigenstates and eigenenergies {|ν⟩ , Eν; ν = 1, 2, . . . ,N} of
the Hamiltonian (27) can be derived as [45]

|ν⟩ =


2

N + 1

N
j=1

sin

πνj

N + 1


|j⟩ (28)

and

Eν = −2J cos

πν

N + 1


. (29)

Using Eqs. (28) and (29) the transition amplitude for s = 1 and r = N reads

cXY1N (t) ≡ ⟨N| e−itHXY |1⟩ =
2

N + 1

N
ν=1

sin

πν

N + 1


sin


πνN
N + 1


e−iEν t . (30)

Time-dependences of the success probabilities for perfect transfer of single-spin and multispin
states are plotted in Fig. 1 using themodel Hamiltonian (22) and in Fig. 2 using themodel Hamiltonian
(27), respectively. In bothmodels the probabilities oscillate in time showing peaks of different heights
at different moments. We observe that the position of peaks changes dramatically with the chains’
length N (see Figs. 1(a) and 2(a)), but unchanged with the number M of spins in the state to be
transferred (see Figs. 1(b) and 2(b)), and, in addition, the whole probability profile is, on average,
lowered with increasingM or/and N, a fact that could be expected physically. Generally, the receiver
should carry out his/her proper operations at an optimal time topt corresponding to the highest peak in
order to achieve the best performance. Though the optimal time in eachmodel is specifically sensitive
only to N , it is difficult to derive topt in the form of an analytic function of N . Instead, for a concrete
model, it is rather sufficient to determine it numerically. For instance, as seen fromFigs. 1 and 2,within
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Fig. 2. (Color online) The success probability PM (t) for perfectly transferring an arbitrary M-spin state via M spin-chains as a
function of scaled time Jt within themodel described by the interactionHamiltonian (27) for (a):M = 1 anddifferent spin-chain
lengths N and (b): differentM and the same spin-chain lengths N = 10.

Fig. 3. (Color online) The success probability PM (t) for perfectly transferring an arbitrary M-spin state via M spin-chains as
a function of scaled time Jt for the spin-chain lengths N = 15 using the interaction Hamiltonian (22) (dotted curves) and the
interaction Hamiltonian (27) (solid curves) with (a):M = 1 and (b):M = 3.

the time period up to Jt = 50, topt ≃ 22.55/J for the model (22) whereas topt ≃ 47.15/J for the model
(27) when N = 5, but when N = 10, topt ≃ 36.55/J for the model (22) whereas topt ≃ 6.12/J for the
model (27). Also remarkable is the fact that success probabilities at optimal times may be quite high.

To compare the twomodels, we show P1(t) in Fig. 3(a) and P3(t) in Fig. 3(b) as functions of Jt for the
same N = 15 in both the models. With regard only to the success probability of perfect state transfer,
the model (27) seems better than the model (22). However, regarding an overall evaluation, it might
not be so, if taking also into account other factors such as fabrication feasibility and stability of the
spin-chains.

4. Conclusion

In conclusion, we have studied the problem of transferring quantum states through spin-chains
which serve as quantum channels to connect different processors within a powerful quantum
computer. This problem was dealt with previously by many authors, either by making use of the
spin-chains’ natural evolution or by combining it with null-outcome weak measurements performed
on the interested spins at the beginning and the end of the evolution. However, these strategies
only provide low fidelity of the transferred state with respect to the desired one or near-perfect
state transfer with tiny success probability. Here, motivated by theory of open systems, we have
proposed another strategy that allows ones to perfectly transfer an arbitrary multispin state with
apparently finite success probability. The key idea behind the strategy is that after the sender encoded
the input state in the spins at his/her site the whole system is let to evolve naturally until an
optimal time at which the receiver measures the environment followed by quantum recovering
measurements on individual spins at his/her site. The nice feature is that conditioned on an outcome
of the environment’s measurement, which happens with a finite probability, the receiver is able to
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design appropriate measurements to perform on his/her spins to convert them to be in the state
identical to that of the sender, i.e., perfect state transfer is achieved with finite probability. We
have developed the general theory showing that the perfection is state-independent and holds in
any model with non-zero transition amplitudes, but the success probability is model-dependent.
By considering two models with typical spin–spin interactions we have seen in both models that,
besides reproducing the common tendency of decrease of the probability of perfect state transferwith
increasing the chain length or/and the number of spins in the to-be-transferred state, the success
probability can be reasonably high at an optimal time. This is the merit of the present scheme
compared to all the previous ones. We have also discussed methods to implement the necessary
recovering measurements. Our scheme is thus feasible within today’s experiment technologies and
would be useful in future practical applications.
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