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• A scheme using weak/reversal measurements is devised to improve quantum state transfer.
• It can suppress dissipation allowing optimal quantum state transfer in open system.
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a b s t r a c t

In this work, we present a general scheme to improve quantum
state transfer (QST) by taking advantage of quantum partially col-
lapsing measurements. The scheme consists of a weak measure-
ment performed at the initial time on the qubit encoding the state
of concern and a subsequent quantum reversal measurement at
a desired time on the destined qubit. We determine the strength
qr of the post quantum reversal measurement as a function of the
strength p of the prior weak measurement and the evolution time
t so that near-perfect QST can be achieved by choosing p close
enough to 1, with a finite success probability, regardless of the evo-
lution time and the distance over which the QST takes place. The
merit of our scheme is twofold: it not only improves QST, but also
suppresses the energy dissipation, if any.
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1. Introduction

Transferring quantum states from one to another location is an important phase in quantum
information processing and distributed quantum computing [1]. The transfer can rely either on
individual carriers, such as photons, or on collective phenomena, such as the natural dynamical
evolution of a permanently coupled chain of quantum systems. In long distance quantum
communication, photons are the most suited candidates to carry quantum states as they easily travel
far away along optical fibers or through free space and can be readilymeasured at an arriving location.
However, the interconnections of separate quantum processors or registers in a scalable, solid-state
quantum computer [2–4] require mapping quantum states between two locations over relatively
short distances. In this case, the employment of ‘‘quantum wire’’ made out of many interacting
components is more suitable for quantum states’ transferring. The first short-distance quantum state
transfer (QST) protocolwas proposed by Bose inwhich an unknown state can be efficiently transferred
through a spin chain (data bus) via natural evolution [5]. In this protocol, the unknown state is
encoded in the sth spin and will be transferred to the rth spin with certain fidelity after waiting
for a specific amount of time depending on the length of the chain [5]. Subsequently, perfect QST
in spin chains was experimentally realized using liquid nuclear magnetic resonance [6]. For a chain
of spins subject to a uniformly coupled Heisenberg Hamiltonian [5], perfect QST is only possible for
two or three qubits [7]. In order to achieve a perfect QST, several schemes have been proposed. It
was found that, by appropriately engineering the couplings in a spin chain, a perfect or near-perfect
QST can be accomplished for arbitrarily long chains [7–14]. However, the engineering of couplings
is only be applicable in those physical implementations where interaction strengths can be tuned to
appropriate values, as opposed to being ‘‘given’’ [15]. In Refs. [16,17], the QST with Gaussian wave-
packet encoding was proposed for a ring of N spins and for open ended spin chains, which have also
been suggested for communication through spin-chains under various static external fields [13,18].
The realization of wave-packet encoding should, however, involve several qubits for encoding or
continuous time control. Another approach is to couple the sending and receiving qubits weakly to
a quantum many-body system [13,19,20], which, however, will result in a slower transfer. By using
a spin chain Hamiltonian with a nearest neighbor Ising coupling, in conjunction with ‘‘global’’ pulses
(i.e., pulses that act on each spin of the chain in exactly the samemanner) at regular intervals, a perfect
transport of a state from one end to the other can be obtained [21]. Obviously, the schemes using
global pulses are restricted to Ising chains. Burgarth and Bose also suggested a dual-rail channel by
adding an auxiliary spin chain to improve transfer capability [15,22]. If enough measurements can be
carried out, their protocol will achieve conclusively perfect transfer with certain success probability
accessible to 1. Recently, Yao et al. [23,24] have proposed a high-fidelity QST through certain classes
of random, unpolarized (infinite temperature) spin chains. Subsequently, the practicality of such
spin chain wiring has been analyzed in diamond quantum technologies [25] and a high-dimensional
quantum state transfer scheme has also been considered [26]. In addition to spin chains, the schemes
to implement QST in other physical contexts have also been proposed [27].

In fact, the spin chain acts as an amplitude damping quantum channel converting the input
state ρ(0) to ρ(t) = M0ρ(0)M

Ď
0 + M1ρ(0)M

Ď
1 , where M0 = |0⟩ ⟨0| + |cr(t)| |1⟩ ⟨1| and M1 =

1 − |cr(t)|2 |0⟩ ⟨1| are the Kraus operators with cr(t) the transition amplitude of an excitation (the
|1⟩ state) from the sending site to the receiving site of a spin chain [1,5]. Motivated by this fact, we
recognize that schemes that can suppress the decoherence effects due to the zero-temperature energy
relaxation are beneficial to improve the fidelity of QST through a spin chain. Therefore, in this work,
we propose a general scheme by applying two sequential quantum measurements on the sending
and the receiving spins, respectively, to boost the QST fidelity without modulating the spins (the data
bus) between them. According to the quantummechanics postulates, quantum (strong)measurement
cannot be undone, because it totally collapses the measured system. However, if the measurement
is weak (i.e., it only partially collapses the measured system) [1,28], it turns out possible to recover
the measured state probabilistically [29,30] through another partially collapsing measurement called
quantum reversal measurement. Such schemes based on quantum partially collapsingmeasurements
have been demonstrated experimentally in various contexts, such as the superconducting phase
qubit [31], the single-photon qubit [32], and the single trapped and laser-cooled 40Ca+ [33]. The idea of
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combined usage of weak measurement and quantum reversal measurement has also been developed
to fight against decoherence of a quantum systemdue to zero-temperature energy relaxation [34] and
experimentally demonstrated in optical system [35]. Such strategy has also been adopted to protect
entanglement from degradation in various decoherence scenarios [36–39].

A weak measurement WX (p) with strength p (0 ≤ p < 1)maps the state |n⟩X (n = 0, 1) of qubit
X as

WX (p)|n⟩X →


(1 − p)n|n⟩X , (1)

whereas a quantum reversal measurement RX (q) with strength q (0 ≤ q < 1) corresponds to the
mapping

RX (q)|n⟩X →


(1 − q)1−n|n⟩X . (2)

It is straightforward to verify that NOT · WX (q) ·NOT |n⟩X ≡

(1 − q)1−n|n⟩X , with NOT the NOT gate

acting on the state |n⟩X as NOT |n⟩X = |1 − n⟩X . This identity suggests a practical way to implement
a RX (q): first bit-flip the qubit X , then perform on it a weak measurement WX (q) and, finally, bit-
flip it again. A prior weak measurement on a qubit, if successful (i.e., with ‘‘null outcome’’), reduces
amplitude of its excited state making the qubit more robust against the decoherence process. After
the qubit underwent the decoherence, a post quantum reversal measurement with suitably chosen
strength can, in theory, make the qubit state arbitrarily close to the initial one. To restore the initial
state of a quantum system, two suitable sequential measurements are to be implemented on one and
the same system. As for QST, the state should be transferred between systems, which are located at
different locations. Therefore, the above-described strategy cannot be applied in a straight way. In our
scheme, we first make a weak measurement on the sending system with strength p and later, at any
desired time t > 0, recover the transferred state by making a quantum reversal measurement with
strength q on the destined system. We derive a relationship between p, q and t so that a perfect QST
can be achieved. Our scheme is applicable not only to the usual QST in a spin chain (e.g., the Bose’s
model [5]), but also to the QST among qubits which experience energy dissipations.

2. The general scheme

We first present our general scheme to improve the fidelity of QST via a combination of
partially collapsing measurements, namely, a weak measurement, followed by a quantum reversal
measurement. The systemwe consider consists of N qubits (spin- 12 ones or two-level atoms, . . . ) with
a Hamiltonian H . Suppose that the state of concern,

|ψ(0, 0)⟩ = cos(θ/2) |0⟩ + eiφ sin(θ/2) |1⟩ , (3)
is encoded in a sth qubit and will be transferred to an rth qubit (r ≠ s; s, r ∈ {1, 2, . . . ,N}) through
the data bus served by the other in-between qubits. We assume that except the sth qubit all the other
qubits are in their ground states. For convenience, we denote by |0⟩ = |0 · · · 0⟩1···N the state with all
the qubits being unexcited and by |j⟩ = |0 · · · 1 · · · 0⟩1···j···N (j = 1, 2, . . . , s, . . . , r, . . . ,N) the state
with only qubit j being excited. To run our scheme, we perform a weak measurement on the sth qubit
with strength p before the whole system starts to evolve. By such a measurement, the state |ψ(0, 0)⟩
becomes |ψ(0, p)⟩ = Ws(p) |ψ(0, 0)⟩,

|ψ(0, p)⟩ =
1

√
P1(0, p)


cos(θ/2) |0⟩ + eiφ sin(θ/2)


1 − p |1⟩


, (4)

with P1(0, p) = cos2(θ/2) + (1 − p) sin2(θ/2) being the success probability without completely
collapsing the measured state via the weak measurement. Therefore, the state of the whole system of
N qubits after the weak measurement can be written in the form

|Ψ (0, p)⟩ =
1

√
P1(0, p)


cos(θ/2) |0⟩ + eiφ sin(θ/2)


1 − p |s⟩


. (5)

In the closed system, the excitation number (the total z component in the language of spin) of the
system is usually conserved, so does the open system if we take the environment and the system as
a whole. On the other hand, the ground state |0⟩ keeps invariant in the time evolution, therefore at
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time t > 0 the system state |Ψ (0, p)⟩ evolves to

|Ψ (t, p)⟩ =
1

√
P1(0, p)


cos(θ/2) |0⟩ + eiφ sin(θ/2)


1 − p

×


cr(t) |r⟩ +

N
k(≠r)=1

ck(t) |k⟩


, (6)

where cj(t) = |cj(t)|eiϕj(t) are time-dependent coefficients to be determined by the concretemodel. At
an arbitrary time we want to retrieve the state of concern (3) at the rth qubit, we perform a quantum
reversal measurement with strength q on the rth qubit transforming the state (6) to |Ψ (t, p, q)⟩ =

Rr(q) |Ψ (t, p)⟩,

|Ψ (t, p, q)⟩ =
1

√
P2(t, p, q)


cos(θ/2)


1 − q |0⟩ + eiφ sin(θ/2)


1 − p

×


cr(t) |r⟩ +


1 − q

N
k(≠r)=1

ck(t) |k⟩


, (7)

in which P2(t, p, q) = (1 − q) cos2(θ/2) + (1 − p) sin2(θ/2)[|cr(t)|2 + (1 − q)
N

k(≠r)=1 |ck(t)|2] is
the success probability of the two measurements without completely collapsing the system’s state.
To perfectly recover the state of concern at the rth qubit, we will judiciously determine the strength
q of the post quantum reversal measurement, depending on the prior weak measurement’s strength
p and the evolution time t . If we choose q = qr = 1 − (1 − p)|cr(t)|2, then the state (7) is changed to

|Ψ (t, p, qr)⟩ =
1

√
P2(t, p)


1 − p|cr(t)| |ψr⟩ + (1 − p)eiφ sin(θ/2)

× |cr(t)|
N

k(≠r)=1

ck(t) |k⟩


, (8)

where |ψr⟩ = cos(θ/2) |0⟩ + ei[φ+ϕr (t)] sin(θ/2) |r⟩ and P2(t, p, q) is changed to P2(t, p) = (1 −

p)|cr(t)|2 + (1 − p)2|cr(t)|2 sin2(θ/2)
N

k(≠r)=1 |ck(t)|2. Note that |ψr⟩ can be written as |ψr⟩ =

|0 · · · 0⟩1···r−1 [cos(θ/2) |0⟩ + ei[φ+ϕr (t)] sin(θ/2) |1⟩]r |0 · · · 0⟩r+1···N . Thus, in order to have the state
of the rth qubit coincide with that of the sth qubit, a phase shift realized by the unitary operator
P (−ϕr(t)) = {{1, 0}, {0, e−iϕr (t)}} should be generated for the rth qubit. In other words, our action to
be done on the rth qubit at the desired time t is P (−ϕr(t))Rr(qr), transforming the state |Ψ (t, p)⟩
in Eq. (6) toΨ (t, p, qr) =

1
√
P2(t, p)


1 − p|cr(t)| |0 · · · 0⟩1,...,r−1 |ψ(0, 0)⟩r |0 · · · 0⟩r+1···N

+ (1 − p)eiφ sin(θ/2)|cr(t)|
N

k(≠r)=1

ck(t) |k⟩


. (9)

An important observation followed from the RHS of Eq. (9) is that, the first term scales as
√
1 − p,

while the second one as (1 − p). Therefore, the state of qubit r , at any intended time and for any
qubits’ number N , can be made arbitrarily close to the state of qubit s (i.e., the state |ψ(0, 0)⟩ in
Eq. (3)) in the limit of p → 1. This implies that perfect QST from the sth qubit to the rth qubit can, in
principle, be achieved by choosing p close enough to 1.

In the following, we analyze the closeness of the transferred state to the state of concern by the
fidelity defined as F(p, t) = ⟨ψ(0, 0)| ρr(p, t) |ψ(0, 0)⟩ with ρr(p, t) the actual reduced density
matrix of the rth qubit. If no measurements are performed at all (i.e., p = q = 0) but still with
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the phase shift operation, the fidelity is
F(0, t) ≡ F(p = q = 0, t)

= cos2(θ/2)[1 − sin2(θ/2)|cr(t)|2] + sin4(θ/2)|cr(t)|2 +
1
2
sin2(θ)|cr(t)|. (10)

Yet, with the quantum partially collapsing measurements as in our scheme the fidelity takes the form

F(p, t) =
1 +

1
4 (1 − p) sin2(θ)(1 − |cr(t)|2)

1 + (1 − p) sin2(θ/2)(1 − |cr(t)|2)
. (11)

Although our scheme does not require knowledge of the state to be transferred (i.e., it is valid to
any unknown state), the fidelity turns out state-dependent. Of interest is then the averaged fidelity
Fav(p, t)which is obtained by averaging F(p, t) over all the pure states on the Bloch sphere. As a result,
we obtain

Fav(p, t) =
1

2A2
[A2

+ 2A − 2 ln(1 + A)], (12)

with A = (1 − p)(1 − |cr(t)|2). For comparison, we also derive the averaged fidelity Fav(0, t) in the
case when the system evolves naturally,

Fav(0, t) =
1
2

+
1
3
|cr(t)| +

1
6
|cr(t)|2. (13)

As for the success probability of our scheme, obviously, it is also state-dependent. The averaged
success probability is

Pav(p, t) =
1
2
(1 − p − A) (2 + A) . (14)

For ε = 1 − p ≪ 1,

Fav(p, t) = 1 −
ε

3
|cr(t)|2 + O(ε2) (15)

and
Pav(p, t) = (1 − p)|cr(t)|2 + O(ε2). (16)

As seen from Eq. (15), the averaged fidelity Fav(p, t) is approaching 1 for p tending to 1, but at the price
that the averaged success probability Pav(p, t), Eq. (16), is becoming vanishingly small. Generally, for
increasing p, Fav(p, t) is increasing and Pav(p, t) is decreasing. The merit of our scheme is that a rather
high averaged fidelity can still be reached with a reasonable averaged success probability for p not
very close to 1. The details depend on the concrete model, as we will illustrate in the next section.

3. Applications

In this sectionwe apply our general scheme described above to two physical models: one is a finite
linear spin chain under a constant magnetic field and the other is a cavity array with dissipation.

3.1. Spin chain

Consider a linear chain of N spins with the nearest neighbor Heisenberg interactions of equal
strength and under a common uniform magnetic field. The Hamiltonian is given by [5]

H = −
J
2

N−1
j=1

(σ j
xσ

j+1
x + σ j

yσ
j+1
y + σ j

zσ
j+1
z )− B

N
j=1

σ j
z, (17)

where σ j
x(y,z) are the Pauli matrices for the jth spin, J > 0 is the coupling strength between nearest

neighbors and B is themagnetic field. The eigenstates of this Hamiltonian can be obtained as [5] |m⟩ =

am
N

j=1 cos[π(m − 1)(2j − 1)/2N] |j⟩, with m = 1, 2, . . . ,N and am = [
√
2 + δm,1(1 −

√
2)]/

√
N ,

while the corresponding eigenenergies are given by Em = 2B+2J{1− cos[π(m−1)/N]}. In this case,
cr(t) = ⟨r| e−iHt |s⟩ =

N
m=1 ⟨r|m⟩ ⟨m|s⟩ e−iEmt .
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According to intrinsic dynamics governed by the Hamiltonian (17), the averaged fidelity Fav(0, t)
(with the proper phase shift performed on the rth spin) exhibits a series of maxima at different
moments and its overall oscillation is sensitive to the number N of spins in the chain. Specifically,
within a finite time interval of length Tmax = 4000/J , it was shown [5] that only for a limited number
of N (namely, N = 2, 4, 7, 8, 10, 11, 13 and 14) can the fidelity exceed 0.9. As a general tendency, the
larger the N the smaller the maximal value at which the fidelity can arrive within a finite (but long)
time interval and the longer the time it takes for achieving the maximum fidelity. Contrastingly, by
our scheme (i.e., a prior weak measurement with strength p on the sth spin followed by a reversal
measurement with strength qr = 1 − (1 − p)|cr(t)|2 and a proper phase shift on the rth spin)
the fidelity can in principle be boosted to one (i.e., perfect QST is achieved) at an arbitrary time,
independent of the chain length. The price to pay for near-perfect QST, as mentioned in Section 2,
is the tiny success probability. Nevertheless, compared to the situation of natural evolution [5], our
scheme can provide a considerably improved fidelity with a reasonable success probability. This
is demonstrated in Fig. 1, where we show the time-dependence of the averaged fidelity and the
corresponding averaged success probability on the priorweakmeasurement strength p for spin chains
with N = 6 and N = 60 when s = 1 and r = N (i.e., the encoded spin and the destined spin are
at opposite ends of the chain). As evident from Fig. 1(a) and (b), the fidelities Fav(p, t) (solid lines)
obtained in our scheme are manifestly larger than Fav(0, t) (dotted line) due to natural dynamics
and, the closer p is to 1 the better the fidelity is improved. For a fixed value of p, the improvement
in fidelity changes over time, but the tendency of oscillation of Fav(p, t) mimics that of Fav(0, t).
Moreover, the oscillation amplitudes of Fav(p, t) are largely shrunk in comparison to those of Fav(0, t),
implying that with our scheme the information of the state of concern is retained at the destined
spin most of the time without being transported to the other spins. By comparing the fidelities
Fav(0, t) (dotted lines) in Fig. 1(a) and (b) for relatively short (N = 6) and long (N = 60) spin
chains, we can see that in the former case the information of the concerned state at the first spin
is transferred to the Nth spin quickly, while in the latter case the Nth spin remains in its ground
state (Fav(0, t) = 0.5) for a long time before evolving to a state which is closest to the concerned
state (here, for N = 60, Fav(0, t) = 0.701) at t ≈ 3473.06/J . Such a sensitivity to the chain length
is not pronounced in our scheme as the fidelities Fav(p, t) (solid lines) in Fig. 1(a) and (b) show. The
corresponding averaged success probabilities plotted in Fig. 1(c) and (d) reveal that, though oscillating
in time, Pav(p = p1, t) < Pav(p = p2, t) if p1 > p2 all the time. For a definite value of p, the fidelity and
success probability peak together. Therefore, at the time the information of the concerned state is best
transferred to the destined spin (fidelity reaches the highest peak), our scheme can be implemented
with the largest success probability, and vice versa. As is particularly visualized from Fig. 1(b) and (d),
at t ≈ 3473.06/J the fidelity Fav(p, t) and the success probabilities Pav(p, t) arrive at their maximum
values simultaneously for all the chosen values of p.

3.2. Cavity array with dissipation

In the previous subsection the spins are not coupled to any dissipative environments. Our general
scheme also works for the case with dissipation. In this subsection we will show that, in addition
to improving QST, our scheme also suppresses energy dissipation, if any. Due to the possibility of
individual addressing, an array of coupled cavities is probably a promising candidate for simulating
spin chains [40–42],which also have naturally nearest neighborwithout assumption by contrast to the
dipolar spin chains [24]. In Ref. [40], a binary transmission schemewas presented by using the array of
coupled cavities with each cavity containing a three-level atom,where either atoms or photons can be
used as a channel to transfer information. The coupled cavities have been experimentally realized in
various contexts [43], including photonic crystals [44], superconducting resonators [45], and cavity-
fiber-cavity systems [46]. To implement our QST scheme in the presence of dissipation let us consider
an array of N coupled cavities described by the Hamiltonian [47] (h̄ = 1)

Hc =

N
j=1

ωc â
Ď
j âj +

N−1
j=1

J(âĎj âj+1 + âjâ
Ď
j+1), (18)
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Fig. 1. (Color online) (a)–(b) The dependence on scaled time Jt of the averaged fidelities Fav(0, t) (dotted curves), Eq. (13),
under natural evolution and Fav(p, t) (solid curves), Eq. (12), under measurement-controlled evolution for the prior weak
measurement strengths p = 0.1, 0.4, 0.7 and 0.99 (from bottom to top). (c)–(d) The averaged success probabilities Pav(p, t),
Eq. (14), for p = 0.1, 0.4, 0.7 and 0.99 (from top to bottom). In (a) and (c) the number of spins is N = 6, while in (b) and (d)
N = 60. In particular, we show in (b) the dynamics in the time interval from Jt = 3460 to Jt = 3500 during which the fidelity
Fav(0, t) reaches a highest maximum of 0.701 at Jt ≈ 3473.06.

where âĎj (âj) is the creation (annihilation) operator of the photonwith frequencyωc localized in cavity
j and J the photon hopping rate between neighboring cavities. The dissipation is accounted for by
assuming that each cavity photon interacts with an independent multimode reservoir described by
the interaction Hamiltonian [48]

Hint =

N
j=1


kj

(gkj â
Ď
j b̂kj + g∗

k âjb̂
Ď
kj
), (19)

with b̂Ďkj (b̂kj) the creation (annihilation) operator of mode kj of the reservoir jwith frequency ωkj and
gkj the interaction strength between the jth cavity photon and reservoir mode kj.

Assuming that the state of concern (3) is encoded in the photon state of cavity s, while all the other
cavities as well as all the reservoirs are prepared initially in the vacuum states, then the total system
contains up to one excitation (either a photon in a cavity or an excited mode in a reservoir), which
is conserved during the evolution. Governed by the total Hamiltonian Hc + Hint , the initial state of
the total system, |Ψ (0)⟩ = cos(θ/2) |0 · · · 0⟩ ⊗ |0 · · · 0⟩ + eiφ sin(θ/2) |0 · · · 1s · · · 0⟩ ⊗ |0 · · · 0⟩, will
evolve into

|Ψ (t)⟩ = cos(θ/2) |0 · · · 0⟩ ⊗ |0 · · · 0⟩ + eiφ sin(θ/2)

 N
j=1

cj(t)
0 · · · 1j · · · 0


⊗ |0 · · · 0⟩

+


kj

ckj(t) |0 · · · 0⟩ ⊗
0 · · · 1kj · · · 0

 , (20)
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Fig. 2. (Color online) (a) The dependence on scaled time λt of the averaged fidelities Fav(0, t) (dotted curves), Eq. (13),
under natural evolution and Fav(p, t) (solid curves), Eq. (12), under measurement-controlled evolution for the prior weak
measurement strengths p = 0.1, 0.4, 0.7, 0.99 (from bottom to top). (b) The averaged success probabilities Pav(p, t), Eq. (14),
for p = 0.1, 0.4, 0.7, 0.99 (from top to bottom). The number of cavities is N = 7. The other parameters used are J/λ = 1 and
R/λ = 0.3. The strait dashed line in (a) at 2/3 marks the highest possible fidelity achievable classically.

where |0 · · · 0⟩ (|0 · · · 0⟩) denotes the state with no photons in cavities (no excited modes in
reservoirs) and

0 · · · 1j · · · 0
 0 · · · 1kj · · · 0


the state with only one photon in cavity j (only one

excited mode kj in reservoir j). As the evolved state (20) shows, the cavity photon may hop from the
sth cavity to the jth cavity or to the jth reservoir with mode kj excited, with a probability amplitude
cj(t) or ckj(t), respectively (expressions of the interested cj(t) are given in the Appendix). From this
point of view, the N reservoirs could be thought of as another set of N nodes of the data bus although
they play detrimental roles for the QST problem. Therefore, the formulas derived previously (i.e., the
averaged fidelity Fav(p, t) (12), the averaged success probability Pav(p, t) (14)), remain applicable in
the presence of the dissipative reservoirs. In other words, our scheme applies as well to the situation
when dissipation due to environment is taken into account. We display in Fig. 2 the dynamics of the
averaged fidelity Fav(0, t) under natural evolutionwith only phase shift on the rth qubit, the averaged
fidelity Fav(p, t) due to our scheme (i.e., a prior weak measurement with strength p on the sth qubit
followed by a quantum reversal measurement with strength qr = 1− (1−p)|cr(t)|2 and a phase shift
on the rth qubit) and the corresponding averaged success probabilities Pav(p, t) for an array of N = 7
cavities for QST from the first to the last cavity. As Fig. 2(a) indicates, Fav(0, t) (dotted curves) will
eventually decay to 0.5 (that is, the 7th qubit ends up at its ground state because of the dissipation
caused by the reservoirs). This is in clear contrast to the closed spin chain discussed above where
the fidelity keeps on oscillating in time and reaches its maximal value even after a very long time
of waiting. Moreover, for the considered cavity array with dissipation, except the first peak, all the
subsequent peaks of Fav(0, t) are lower than 2/3, which is the highest possible fidelity for classical
transmission of a quantum state [49]. The advantage of our scheme is pronounced by the fact that not
only all the peaks of Fav(p, t) (solid curves in Fig. 2(a)) are always higher than those of Fav(0, t), but also
their heights can bemade all the time higher than 2/3 by choosing a proper (not so close to 1) value of
p. For example, even for p as small as 0.1, the averaged fidelity is already greater than 0.8 at any time.
The averaged success probabilities Pav(p, t) are plotted in Fig. 2(b), fromwhich it follows that Pav(p, t)
decreases with p for any evolution moments, while for a definite p the oscillations of Pav(p, t) in time
are in step with that of Fav(0, t) (dotted curves in Fig. 2(a)). In the long time limit, Pav(p, t) decays to
zero implying that the fidelity cannot be improved any more once the destined cavity has decayed to
its vacuum state. Therefore, in the presence of dissipation, a considerable improvement of the fidelity
with a reasonable success probability can be achieved by choosing a modest p.

4. Conclusion

In conclusion, we have proposed a general scheme to improve the QST by applying two quantum
partially collapsing measurements: one is weak measurement, which is performed on the sending
qubit at the initial time, and the other one is quantum reversal measurement, which is performed
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on the receiving qubit at a desired time during the system evolution. Our scheme applies to both
closed and open systems, thus, besides improving QST, energy dissipation, if any, is also suppressed.
Effectiveness of our scheme depends on the strengths of the two quantum partially collapsing
measurements. At any desired time t and for a given strength p of the prior weak measurement,
we are able to determine the strength qr of the post quantum reversal measurement so that QST
is best. It is also shown that the performance is better for larger p. In theory, the QST could be near-
perfect (i.e., with the fidelity approaching 1) at any time if p is chosen close enough to 1, at the price
of vanishingly reduced success probability. The merits of our scheme are demonstrated through two
concrete applications, one to a closed chain of spins and the other to an open array of cavities. In both
cases, the advantages of our scheme are pronouncedly seen, as compared to the cases under natural
evolution.

Finally, we would like to discuss briefly on the practical implementation of weak measurement
and quantum reversal measurement. The aim of a weak measurement is to drive the qubit toward
its ground state in a coherent way. If the measurement completely collapses the qubit to its ground
state, we discard the result. The quantum reversal measurement is in a sense opposite to the weak
measurement since it drives the qubit from its ground state toward its excited state. A practical
way to implement the quantum reversal measurement includes a bit-flip of the system followed
by a weak measurement on it, and finally bit-flip it again. In practice, implementations of the
two measurements depend on concrete physical system. A reversal of the weak measurement was
demonstrated experimentally in a superconducting phase qubit [31] as well as in a single-photon
qubit [32]. Very recently, an experimental recovery of a qubit from partial collapse was demonstrated
using a single trapped and laser-cooled 40Ca+ [33]. By using all-optical apparatuses the decoherence
suppression of a single qubit [35] as well as entanglement protection of two qubits [37] via weak
measurement and quantum reversal measurement was also achieved experimentally.
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Appendix. Derivation of cj(t) in Eq. (20)

According to the total Hamiltonian Hc + Hint , given by Eqs. (18) and (19), the equations of motion
for the time-dependent coefficients cj(t) and ckj(t), with j = 1, 2, . . . ,N , in the evolved state (20) are

i
∂cj(t)
∂t

=


kj

gkje
−i(ωkj−ω0)tckj(t)+ J[cj−1(t)+ cj+1(t)], (21)

i
∂ckj(t)

∂t
= g∗

kje
i(ωkj−ω0)tcj(t), (22)

with the conventions c0(t) = cN+1(t) = 0. Integrating Eqs. (22) with the initial conditions ckj(0) = 0
and inserting their solutions into Eqs. (21) yield a closed set of integro-differential equations for the
amplitudes cj(t):

∂cj(t)
∂t

= −

 t

0
dt ′

kj

|gkj |
2e−i(ωkj−ω0)(t−t ′)cj(t ′)− iJ[cj−1(t)+ cj+1(t)]. (23)

In the limit of large number of reservoir modes, the sum


kj
|gkj |

2e−i(ωkj−ω0)(t−t ′) can be well

approximated by the integration

dωS(ω)e−i(ω−ω0)(t−t ′), where S(ω) is the effective spectral density
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assumed for definiteness to be Lorentzian, S(ω) = (λR2/π)/[(ω − ωc)
2

+ λ2], with λ being half-
width at half-height of the field spectrum profile and R the cavity photon–reservoir coupling. Hence,
Eqs. (23) read

∂cj(t)
∂t

= −

 t

0
dt ′


dωS(ω)e−i(ω−ω0)(t−t ′)cj(t ′)− iJ[cj−1(t)+ cj+1(t)], (24)

from which we obtain

cj(t) =


m

lim
τ→τm

(τ − τm)cj(τ )eτmt , (25)

wherecj(τ ) are solutions of the Laplace-transformed Eqs. (24) and τm a pole ofcj(τ ).
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