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Abstract In this paper, we study some higher-order nonclassical properties and intermodal
entanglement that may arise in the so called two-mode photon-added displaced squeezed
state. We derive analytical expressions for the degree of sum squeezing and difference
squeezing, which are interesting kinds of two-mode squeezing, as well as for the degree
of antibunching to any orders. We also examine the degree of entanglement between the
two modes using the existing Hillery-Zubairy criterion. Based on the derived expressions
we analyze in detail the behavior of these nonclassical effects and entanglement depending
on the parameters involved.

Keywords Photon-added states · Sum squeezing · Difference squeezing · Higher-order
antibunching · Entanglement

1 Introduction

The single-mode photon-added coherent state was for the first time introduced by Agarwal
and Tara [1] more than two decades ago. This state was considered as a nonlinear coher-
ent state (NCS) [2, 3] and its various nonclassical properties were studied in detail [4–8].
The NCS embraces a wide class of states. As was commonly recognized, adding photons
to a nonclassical state (such as K-quantum nonlinear coherent state [9], negative binomial
state [10], etc.) makes it become a NCS characterized by its own specific nonlinear function.
Experimental schemes for adding photons were realized in 2004 [11, 12], making a remark-
able impact on potential application to quantum optics, quantum information and quantum
computation [13–15]. The extension to two-mode states known as two-mode photon-added
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squeezed vacuum states [16] and two-mode photon-added displaced squeezed states [17]
was also done. In principle, the two-mode photon-added squeezed vacuum state is a special
case of the general two-mode photon-added displaced squeezed state, which in term of Fock
states reads

|ζ, ηa, ηb,m,n〉 = a†mb†nDabSab|0a,0b〉√
〈0a,0b|S†

abD
†
abb

nama†mb†nDabSab|0a,0b〉
, (1)

where a, b (a†, b†) are the bosonic annihilation (creation) operators of two independent
boson modes, |0a,0b〉 is the two-mode vacuum state, while Dab and Sab are the two-mode
displacement and squeeze operators defined respectively by [17]

Dab = DaDb, Dx = exp
(
ηxx

† − η∗
xx

)
, (2)

Sab = exp
(
ζ ∗ab − ζa†b†

)
, (3)

where ζ = reiθ , ηa = |ηa|eiϕa , ηb = |ηb|eiϕb , with r , θ , ϕa and ϕb being real numbers. In what
follows, for definiteness, we shall study the case with n = 0 (i.e., only photons of mode a

are added), for which the state (1) has the explicit form

|ζ, ηa, ηb,m,0〉 = a†mDabSab|0a,0b〉√
m! cosh2m rL0

m(−|ηa |2sech2r)

, (4)

which we still call the two-mode photon-added displaced squeezed (TMPADS) state, and
Lk

m(x) is the associated Laguerre polynomial:

Lk
m(x) =

m∑
j=0

(−x)j (m + k)!
j !(j + k)!(m − j)! . (5)

From Eqs. (2) and (3), it is simple to verify the following operatoric identities

S
†
abD

†
aba

†DabSab = a† cosh r − be−iθ sinh r + η∗
a, (6)

S
†
abD

†
abb

†DabSab = b† cosh r − ae−iθ sinh r + η∗
b. (7)

For the TMPADS state given by Eq. (4) we have obtained the mean value of a general
product of operators albkb†t a†v as

〈
albkb†t a†v

〉 =
m+l∑
i=0

k∑
p=max[0,k−t]

min[i,p]∑
q=0

(m + l)!(m + v)!k!t !
m!(m + l − i)!(i − q)!(k − p)!(p − q)!q!

×
∑
�

(cosh r)2(i+k−p−m)−�(− sinh r)2q−�

(m + v − i + �)!(p + t − k − q + �)!(q − �)!

× |ηa |2m−2i+l+v+�|ηb|2p−2q+t−k+�ei(l−v−�)ϕa ei(k−t−�)ϕb ei�θ

L0
m(χ)

, (8)

where � in the sum
∑

� runs from � = max[i − m − v, q − p − t + k] to � = q and
χ = −|ηa |2sech2r . Several usual nonclassical effects of the TMPADS state were previously
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studied in [17]. In this paper, we show that these states can also possess higher-order non-
classical properties such as sum squeezing, difference squeezing and antibunching. We de-
rive the general analytic expressions for such sum and difference squeezing as well as for
higher-order antibunching. Using these expressions we determine the parameters’ domain
in which the sum squeezing and the difference squeezing are possible and how they behave
compared to each other. We study the characteristic properties of the higher-order antibunch-
ing effect and also prove that the TMPADS state is two-mode entangled.

2 Sum squeezing

Sum squeezing is a multi-mode property of a nonclassical state [18, 19]. For two arbitrary
modes a and b, the sum squeezing is associated with a so-called two-mode quadrature op-
erator Vφ of the form

Vφ = 1

2

(
eiφa†b† + e−iφab

)
, (9)

where φ is an angle made by Vφ with the real axis in the complex plane. A state is said to
be sum squeezed for a φ if

〈
(�Vφ)2

〉
<

1

4
〈Na + Nb + 1〉, (10)

where 〈(�Vφ)2〉 = 〈V 2
φ 〉− 〈Vφ〉2, Na = a†a and Nb = b†b. From Eq. (10), we can define the

degree of sum squeezing S in the following manner

S = 4〈(�Vφ)2〉 − 〈Na + Nb + 1〉
〈Na + Nb + 1〉 . (11)

It is clear that sum squeezing only occurs if S < 0, but S has a lower bound equal to −1.
Hence, the closer the value of S to −1 the higher the degree of sum squeezing. By substi-
tuting Vφ in Eq. (9) into Eq. (11), we obtain S in the form of antinormally ordered operators
as

S = 2[�(e−2iφ〈a2b2〉) − 2�2(e−iφ〈ab〉) + 〈aa†bb†〉 − 〈aa†〉 − 〈bb†〉 + 1]
〈aa†〉 + 〈bb†〉 − 1

, (12)

with �(z) is the real part of a complex number z. Using Eq. (8) in Eq. (12) we readily have
S for the TMPADS state of Eq. (4) as

S = 2
[
(m + 1) cosh2 r

(
sinh2 r + |ηb|2

)
L0

m+1(χ) + |ηaηb|2 cos(2ϕ2)L
2
m(χ)

− (
(m + 2) cos(ϕ1 + ϕ2) + (m + 1) cos(ϕ1 − ϕ2)

)|ηaηb| sinh(2r)L1
m(χ)

+ sinh2 r
(
(m + 1)(m + 2) cos(2ϕ1) cosh2 r + (m + 1)2 cosh2 r − 1

)
L0

m(χ)

− |ηb|2L0
m(χ) + 2|ηaηb| cos(ϕ1 − ϕ2) tanh rL1

m−1(χ) − m sinh2 rL0
m−1(χ)

− 2
(
(m + 1) cosϕ1 sinh(2r)L0

m(χ)/2 − |ηaηb| cosϕ2L
1
m(χ)

)2
/L0

m(χ)
]

× [
(m + 1) cosh2 rL0

m+1(χ) + (
sinh2 +|ηb|2

)
L0

m(χ) + m sinh2 rL0
m−1(χ)

− 2|ηaηb| cos(ϕ1 − ϕ2) tanh rL1
m−1(χ)

]−1
, (13)

where ϕ1 = φ − θ and ϕ2 = φ − ϕa − ϕb .
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Fig. 1 The sum squeezing
degree S as a function of ϕ1 and
ϕ2 with |ηa | = 2, |ηb| = 5 and
r = 0.5 for m = 1 photon added

Fig. 2 The sum squeezing
degree S as a function of ϕ2 with
|ηa | = 2, |ηb| = 5, r = 0.5 when
ϕ1 = 0 for m = 1 (the solid line),
m = 5 (the dashed curve) and
m = 10 (the dashed-dotted curve)

Fig. 3 The sum squeezing
degree S as a function of |ηa | and
|ηb| with ϕ1 = ϕ2 = 0, r = 0.35
for m = 1

Let us first consider the angle dependence of the sum squeezing. We plot in Fig. 1 the sum
squeezing degree S, Eq. (13), as a function of the angles ϕ1 and ϕ2 with |ηa | = 2, |ηb| = 5
and r = 0.5 for m = 1. We can see that the TMPADS state exhibits a maximum degree of
sum squeezing under simultaneous conditions

ϕ1 = 2k1π and ϕ2 = 2k2π, (14)

with k1, k2 ∈ {0,±1,±2, . . .}. These conditions for maximum degree of sum squeezing hold
also for higher values of m as depicted in Fig. 2 which uses the same values of |ηa |, |ηb|
and r as in Fig. 1 but ϕ1 is fixed at 0 and m = 1, 5, 10. Visually, S becomes most negative
at ϕ2 = . . . ,−2π,0,2π, . . . , for any m. We next examine the dependence on the modal
displacement parameters |ηa | and |ηb|. In order to best visualize the effect of sum squeezing
we concentrate on the situation when ϕ1 and ϕ2 satisfy the conditions (14). Thus, we set
ϕ1 = ϕ2 = 0 and plot S in Fig. 3 as a function of |ηa | and |ηb| for r = 0.35 and m = 1. As
seen from Fig. 3, no sum squeezing arises at all when either |ηa| < 1 or |ηb| < 1. However,
the dependence on |ηa | and |ηb| appears to be more delicate. If mode b is displaced by a
fixed value of |ηb|, then it is possible for the TMPADS state to be sum squeezed only in
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Fig. 4 The sum squeezing degree S as a function of the displacement parameter in (a) mode a (|ηb| is fixed
at 20); (b) mode b (|ηa | is fixed at 5) with ϕ1 = ϕ2 = 0, r = 0.5 for m = 1 (the solid line), m = 5 (the dashed
curve) and m = 10 (the dashed-dotted curve)

Fig. 5 The sum squeezing
degree S as a function of r with
ϕ1 = ϕ2 = 0, and |ηa | = 2.5,
|ηb| = 5 for m = 1 (the solid
line), m = 5 (the dashed curve)
and m = 10 (the dashed-dotted
curve)

a certain interval of |ηa|, which is almost independent of the number of added photons m

(see Fig. 4(a)). Contrastingly, if we fix |ηa |, the displacement parameter in mode a, and vary
|ηb|, then S, as a function of |ηb|, is quite sensitive to m. This sensitivity is evident from
Fig. 4(b): with increasing m the interval of |ηb|, within which S is negative, widens and the
value of |ηb|, at which S gets minimum, moves to the high-value side.

Finally, we study the dependence on the squeeze parameter r with |ηa| and |ηb| kept
constant in the case of ϕ1 = ϕ2 = 0. Figure 5 illustrates such a dependence for several values
of m. As observed from Fig. 5, when r is increasing the degree of sum squeezing is first
increasing (i.e., S is getting more negative) until a critical value r1, but afterwards it is
becoming smaller and smaller (i.e., S is getting less negative) and, eventually disappears
(i.e., S turns out to be positive) if r is beyond another critical value r2. Of interest is the
property that the actual values of both r1 and r2 decrease with increasing m.

3 Difference squeezing

Another interesting kind of multi-mode squeezing is the so-called difference squeezing [18,
20, 21]. In the two-mode situation it is associated with a “collective” operator Wφ of the
form

Wφ = 1

2

(
eiφab† + e−iφa†b

)
, (15)

where φ is an angle made by Wφ with the real axis in the complex plane. A state is said to
be difference squeezed for a φ if

〈
(�Wφ)2

〉
<

1

4
|〈Na − Nb〉|. (16)
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Fig. 6 The difference squeezing
degree D as a function of γ1 and
γ2 with |ηa | = 2, |ηb| = 5 and
r = 0.5 for m = 1 photon added

Like in the case of sum squeezing, we can make use of Eq. (16) to define degree of difference
squeezing as

D = 4〈(�Wφ)2〉 − |〈Na − Nb〉|
|〈Na − Nb〉| . (17)

Hence, a state is difference squeezed if −1 ≤ D < 0. Taking again Eq. (8) into account in
the definition (17) we readily obtain for the TMPADS state

D = [
(m + 1) cosh2 r

(
2
(
cosh2 r + |ηb|2

) − 1
)
L0

m+1(χ)

+ (m + 1)2 sinh2(2r)L0
m(χ)/2 − (|ηb|2 + cosh2 r

)
L0

m(χ)

+ 2|ηaηb| cos(γ1 − γ2) tanh rL1
m−1(χ) − m sinh2 rL0

m−1(χ)

− 2|ηaηb|
(
(m + 1) cos(γ1 − γ2) sinh(2r)L1

m(χ) − |ηaηb| cos(2γ2)L
2
m(χ)

)

− 2|ηa|3
(
2|ηb| cos(γ1 + γ2) tanh rL3

m−1(χ) − |ηa| cos(2γ1) tanh2 rL4
m−2(χ)

)

− 4|ηa|2
(|ηa | cosγ1 tanh rL2

m−1(χ) − |ηb| cosγ2L
1
m(χ)

)2
/L0

m(χ)
]

× ∣∣(m + 1) cosh2 rL0
m+1(χ) − (

cosh2 r + |ηb|2
)
L0

m(χ)

− m sinh2 rL0
m−1(χ) + 2|ηaηb| cos(γ1 − γ2) tanh rL1

m−1(χ)
∣∣−1 − 1, (18)

where γ1 = φ − θ + 2ϕa and γ2 = φ + ϕa − ϕb . In terms of such γ1 and γ2, the degree of
difference squeezing is maximal under the simultaneous conditions

γ1 = 2k1π and γ2 = 2k2π, (19)

with k1, k2 ∈ {0,±1,±2, . . .}. This is seen from Fig. 6 which is a plot of D as a function
of γ1 and γ2 with |ηa| = 2, |ηb| = 5, r = 0.5 and m = 1. The dependence of D on |ηa |
(|ηb|) when |ηb| (|ηa |) is fixed is shown in Fig. 7(a) (Fig. 7(b)) for γ1 = γ2 = 0 (to make
the squeezing most favorable), r = 0.5 and different values of m. As it should be, the roles
of |ηa| and |ηb| are asymmetric in the TMPADS state defined by Eq. (4). Although the
minimum of D gets “deeper” for a greater m (i.e., for adding more photons), its position
moves to the left in Fig. 7(a) but to the right in Fig. 7(b). Also, for a fixed |ηb| the interval of
|ηa | within which D < 0 is quite restricted (see Fig. 7(a)), while such an interval of |ηb| for
a fixed |ηa| is much more spread (see Fig. 7(b)). From Fig. 8, a plot of D as a function of
r with other parameters kept constant, we can realize that difference squeezing exists only
with small values of r , a feature similar to sum squeezing. The distinction is, however, that
the maximum achievable degree of difference squeezing seems increasing with m (namely,
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Fig. 7 The difference squeezing degree D as a function of the displacement parameter in (a) mode a (|ηb|
is fixed at 10); (b) mode b (|ηa | is fixed at 2) with γ1 = γ2 = 0, r = 0.5 for m = 1 (the solid line), m = 5 (the
dashed curve) and m = 10 (the dashed-dotted curve)

Fig. 8 The difference squeezing
degree D as a function of r with
γ1 = γ2 = 0, and |ηa | = 2,
|ηb| = 10 for m = 1 (the solid
line), m = 5 (the dashed curve)
and m = 10 (the dashed-dotted
curve)

minD(m = 10) < minD(m = 5) < minD(m = 1) in Fig. 8), whereas this is not the case
for sum squeezing for which minD(m = 5) < minD(m = 1), minD(m = 10) as in Fig. 5.

4 Higher-order antibunching

The notion of higher-order antibunching was introduced by Lee [22, 23] and it has been
adopted to investigate several nonclassical states [24–26]. Recently, some experiment
schemes based on hybrid photodetectors and time multiplexed detection to detect the higher-
order antibunching are proposed [27–29]. According to Lee, a criterion for the existence of
higher-order antibunching in a two-mode radiation field is defined by the coefficient R(l, k)

as

R(l, k) ≡ 〈N(l+1)
a N

(k−1)
b 〉 + 〈N(k−1)

a N
(l+1)
b 〉

〈N(l)
a N

(k)
b 〉 + 〈N(k)

a N
(l)
b 〉 − 1 < 0, (20)

with l ≥ k and N(n)
a := a†nan. The quantity 〈N(l)

a N
(k)
b 〉 can be expressed in terms of antinor-

mally ordered operators as [30],

〈
N(l)

a N
(k)
b

〉 =
l∑

j=0

[l!]2(−1)j

j ![(l − j)!]2

k∑
i=0

[k!]2(−1)i

i![(k − i)!]2

〈
al−j

(
a†

)l−j
bk−i

(
b†

)k−i 〉
, (21)
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Fig. 9 The coefficients R(1,1)

(the solid line), R(3,1) (the
dashed curve) and R(5,2) (the
dashed-dotted curve) as functions
of ϕ with |ηa | = 0.1, |ηb| = 0.7,

r = 0.8 for m = 3

with 〈al−j (a†)l−j bk−i (b†)k−i〉 having the explicit form

〈
al−j bk−ib†k−ia†l−j

〉 =
m+l−j∑

t=0

k−i∑
p=0

min[t,p]∑
q=0

∑
�

(m + l − j)!2(k − i)!2
L0

m(χ)(m + l − j − t)!

× (cosh r)2(t+k−i−p−m)−�(− sinh r)2q−�

m!(t − q)!(k − i − p)!(p − q)!q!

× |ηa |2m−2t+2l−2j+�|ηb|2p−2q+�ei�ϕ

(m + l − j − t + �)!(p − q + �)!(q − �)! , (22)

where the sum over � runs from � = max[t − m − l + j, q − p] to � = q and ϕ = θ −
ϕa −ϕb . Based on the above formulae we can calculate R(l, k) for any orders l, k and m. To
observe the antibunching properties easily, we find values of ϕ at which the effect displays
most pronouncedly. In Fig. 9 we show R(1,1) (the solid line), R(3,1) (the dashed curve)
and R(5,2) (the dashed-dotted curve) as functions of ϕ with |ηa | = 0.1, |ηb| = 0.7, r = 0.8
and m = 3. It is obvious that the antibunching is strongest along the directions determined
by

ϕ = (2k + 1)π, (23)

with k = 0, ±1, ±2, . . . . Then we can choose a fixed value of ϕ = π for further considera-
tion. With such a choice of ϕ, we plot R(1,1) in Fig. 10(a) and R(4,2) in Fig. 10(b) versus
r with |ηa | = 0.1, |ηb| = 0.7 and various values of m. For given l and k, the antibunching
at fixed values of |ηa | and |ηb| becomes less pronounced with increasing m. Also, the TM-
PADS state may get antibunched starting from a certain value of r depending on l, k,m, but
it always becomes bunched asymptotically in the limit of large r (i.e., limr→∞ R(l, k) = 0
for any l, k and m).

Next, to get more insight into the higher-order antibunching effect, we examine R(l, k)

by varying the orders of l and k but keeping the same value of m. As an example, Figs. 11
and 12 display different R(l, k) versus r with fixed |ηa|, |ηb| and ϕ = π , for m = 1 and
m = 3. It is interesting that neither l nor k alone decides the actual degree of antibunching.
For a given k the antibunching gets stronger with increasing l (Fig. 11(a)), but for a given l

the antibunching gets weaker with increasing k (Fig. 11(b)). These observations combined
with the behavior in Fig. 12 with both l and k variable suggest that the difference l − k plays
a role: the TMPADS state would be more antibunched with a greater value of l − k and this
feature holds for all m.
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Fig. 10 The coefficients (a) R(1,1) and (b) R(4,2) as functions of r with |ηa | = 0.1, |ηb| = 0.7 and ϕ = π

for m = 2 (the solid line), m = 4 (the dashed curve) and m = 6 (the dashed-dotted curve)

Fig. 11 The coefficient R(l, k) as a function of r with |ηa | = 0.1, |ηb| = 0.7, ϕ = π , m = 1 for different
values of l and k: (a) k = 3 and l changes from 3 to 6, (b) l = 4 and k changes from 1 to 4

Fig. 12 The coefficient R(l, k)

as a function of r with
|ηa | = 0.1, |ηb| = 0.7, ϕ = π and
m = 3 for different values of l

and k

5 Intermodal entanglement

Very interesting in a two-mode quantum state is the possible entanglement between the
modes since this can be exploited to perform a nonlocal job just by local operations com-
bined with classical communication. In this section we examine whether our state (4) ex-
hibits intermodal entanglement and, if it does, how much the entanglement is. For that pur-
pose a certain criterion to detect entanglement is needed. Indeed, bipartite entanglement
criteria in the form of inequalities were introduced in [31, 32] which are developed fur-
ther by several authors [33–36] and were applied to detect entanglement of some two-mode
systems [13, 37, 38]. Here we employ the criterion given by Hillery-Zubairy in Ref. [34],
according to which the two modes of a two-mode state is mutually entangled if the following
inequality

E = 〈Na〉〈Nb〉 − |〈ab〉|2 < 0 (24)
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Fig. 13 The entanglement
parameter E as a function of r

with |ηa | = 1, |ηb| = 0,
ϕa = π/2 and ϕb = θ = 0 for
m = 1,5,10,15, respectively

is satisfied. For the TMPADS state (4), we have

E = (m + 1) cosh2 r
L0

m+1(χ)

L0
m(χ)

[
sinh2 r + |ηb|2 + m sinh2 r

L0
m−1(χ)

L0
m(χ)

]

− m sinh2 r
L0

m−1(χ)

L0
m(χ)

− |ηaηb|2
(

L1
m(χ)

L0
m(χ)

)2

− sinh2 r − |ηb|2

− 1

4
(m + 1)2 sinh2 2r − (m + 1)|ηaηb| sinh 2r cos(ϕa + ϕb − θ)

×
[

L0
m+1(χ)L1

m−1(χ)

(L0
m(χ))2

− sech2r

m + 1

L1
m−1(χ)

L0
m(χ)

− L1
m(χ)

L0
m(χ)

]
. (25)

To see whether E < 0 we analyze it with regard to the parameters involved. Thus we
plot E in Fig. 13 as a function of r with |ηa | = 1, |ηb| = 0, ϕa = π/2 and ϕb = θ = 0 for
several values of m. It is clear from Fig. 13 that E is negative for any values of r and m.
More concretely, E gets more negative not only for a larger value of r but also for a greater
value of m. The latter implies that adding more photons to a mode of a two-mode state may
improve the degree of intermodal entanglement. In this context, we would like to mention a
recent preprint [39] in spirit of which we plan to follow for our TMPADS.

6 Conclusion

We have investigated sum squeezing, difference squeezing and higher-order antibunching
effects that may arise in the TMPADS state defined by Eq. (4). It has been shown that all
these effects can coexist in certain domains of the parameters. The behaviors of sum squeez-
ing and difference squeezing are common in some aspects. Both kinds of squeezing are most
favorable under the angular conditions (14) and (19), which turn out identical in terms of
actually involved angles, i.e., θ − ϕa − ϕb = 2kπ , with k = 0,±1,±2, . . . . Their depen-
dences on |ηa| and |ηb| are similar qualitatively: when |ηb| (|ηa |) is fixed, both S and D

are negative in a restricted (an extended) domain of |ηa | (|ηb|) and the squeezing degree
increases with the number of added photons m. For their dependences on r , both kinds of
squeezing exist only for small values of r , but sum squeezing degree does not simply in-
crease with m, while difference squeezing degree does. As for higher-order antibunching,
it is most favorable under a different angular condition (23), which in terms of actually
involved angles reads θ − ϕa − ϕb = 2(k + 1)π , with k = 0,±1,±2, . . . . That is to say,
when the sum and difference squeezing is most pronounced, the antibunching is least pro-
nounced and vice versa. Also, it is worth noting that the degree of higher-order antibunching
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decreases with the number of added photons, as opposed to the degree of sum and differ-
ence squeezing. An interesting feature we have found out is that the degree of higher-order
antibunching is determined not by l and k separately, but rather by their difference l − k.
Quantitatively, the greater the difference l − k the more antibunched the TMPADS state is.
Moreover, the more antibunched the TMPADS state is the more nonclassical the TMPADS
state has. Generally, it would mean that such higher-order criteria can be more suitable to
detect weak nonclassicalities, a fact to justify the relevance of studying higher-order non-
classical properties [28, 29]. Finally, we used a simple entanglement criterion (24) proposed
by Hillery-Zubairy to show that the intermodal entanglement of the TMPADS state exists
for the whole range of the parameters r and m: its degree increases with r and/or m. Last
but not least, let us briefly describe the important issue of how to generate the quantum state
of our concern, i.e., the state (4). While the squeeze operator Sab is available by means of an
optical nondegenerate parametric downconverter, the displacement operator Dab = DaDb

can be realized quite easily by a beam-splitter with high transmittivity and a strong coherent
beam. However, the most challenging task is how to add photons to the squeezed displaced
state, that is, how to implement the action of a†m on the state DabSab|0a,0b〉. Fortunately
enough, techniques have been found recently that allow to accomplish in the lab not only
addition of photons to but also substraction of photons from a given state by means of beam-
splitters and photodetectors (for details see, e.g., a good overview [40] and the references
therein).
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