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On-demand measurement-based schemes to control coherence transfer between interacting qubits inside
a dissipative environment are considered. The measurements employed are of the types of quantum weak
measurement and quantum reversal measurement of which one is carried out at the beginning of the system
evolution t = 0 and the other at a later intended time t > 0. The relevant questions are which type of measurement
should be performed at t = 0 and which type at t > 0, as well as which strength of the second measurement
should be chosen in dependence on the strength of the first measurement to optimally achieve a demand? We
answer such questions in this work as to meet two concrete demands, namely, to make optimal (i) the transfer of
coherence from the sth qubit to the rth qubit and (ii) the preservation of coherence at the sth qubit. Particularly,
independent of the coherence degree of the sth qubit at t = 0, the coherence degree of either the rth qubit or
the sth qubit at any t > 0 can be made arbitrarily close to the maximum value equal to 1/2, but at the cost of
vanishingly reduced success probability. As an application, we discuss the coherence transfer between two qubits
of a bipartite system. We also analyze the influence of the controlling schemes for optimal coherence transfer on
the degree of entanglement created at t > 0 between the two qubits.
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I. INTRODUCTION

According to the quantum mechanics postulates, quantum
(strong) measurement cannot be undone: once the wave
function of an original state collapses, it is gone forever.
However, if the measurement is weak [1,2], it turns out to
be possible to resuscitate the measured state, yet with a
less-than-one probability [3,4]. Thus, a weak measurement
contrasts with an ordinary (strong) projective one in that it is
probabilistically reversible because of its unsharpness (i.e., it
does not totally collapse the measured system). Hence, after a
weak measurement, the measured state could be recovered
by a proper action called quantum reversal measurement.
The scheme for such a reversal measurement has been
demonstrated experimentally for a superconducting phase
qubit [5,6] as well as for a single-photon qubit [7]. The idea
of combined usage of a prior weak measurement followed by
a posterior reversal measurement has been developed to cope
with decoherence of a quantum system due to zero-temperature
energy relaxation [8] and experimentally demonstrated in an
optical system [9]. A prior weak measurement on a qubit before
it is exposed to a dissipative environment moves the qubit
towards its ground state to strengthen the robustness of the
system against the decoherence process. A posterior reversal
measurement after the system undergoes the decoherence can,
in principle, make the system arbitrarily close to the initial
state, but at a cost of decreased probability. As for a bipartite
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system, the quantum entanglement contained therein serves
as a key resource in quantum information processing and
quantum computing. Therefore, protection of entanglement
from degradation becomes increasingly important. As shown
in Ref. [10], the change of the initial entangled state of two
qubits due to prior weak measurements on each of them can be
exactly recovered with a less-than-one probability by means
of proper posterior reversal measurements. However, if the
two qubits experience two independent amplitude-damping
channels, the reversal measurements alone can only partially
improve the damped entanglement under most conditions. In
Ref. [11], a scheme using weak measurements before and
reversal measurements after the amplitude-damping deco-
herence is proposed and experimentally realized to protect
entanglement. Namely, the scheme in Ref. [11] shows that the
decayed entanglement can be greatly enhanced and the sudden
vanishing of entanglement can be effectively circumvented. In
addition, in Ref. [11], the concept of maximal improvement of
entanglement is introduced. Furthermore, an optimal condition
for the strength of prior weak measurements, the strength of
posterior reversal measurements, and the decoherence time
have been established under which the system’s entanglement
can be maximally improved [12,13].

In this work, we study the possibility of taking advantage
of weak and reversal measurements to control the coherence
dynamics of N interacting qubits embedded in a common
dissipative environment. We design efficient schemes to realize
different demands, namely, (i) to maximally transfer the
coherence from one to the other qubit and (ii) to maximally
preserve the initial coherence of a definite qubit. For each
demand, we find the optimal conditions to be satisfied by
the strengths of the weak and reversal measurements. As
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a concrete application, we study the control of coherence
dynamics in a bipartite system consisting of two qubits (qubit
A and qubit B), which corresponds to the case of N = 2 of
our general schemes. In such a system, one may wish, under
certain circumstances, to enhance the transfer of coherence
from qubit A to qubit B, while, under other circumstances, to
preserve the initial coherence of qubit A.

We structure our paper as follows. Section II consists of two
parts. In Sec. II A we present the general scheme to maximally
transfer the coherence from one qubit to another one and
in Sec. II B we present the general scheme to maximally
preserve the coherence of a definite qubit. In Sec. III, we
derive the exact solution for a bipartite system surrounded by a
dissipative environment using a nonperturbative approach and
apply our schemes to this model. The influence of each of the
controlling schemes on the bipartite entanglement dynamics is
also analyzed. In Sec. IV, the possible experimental realization
of the schemes is briefly discussed. Finally, Sec. V is the
conclusion.

II. THE CONTROLLING SCHEMES

The model we consider consists of N interacting qubits
surrounded by a dissipative environment. The Hamiltonian Ĥ

of the total system is composed of three parts,

Ĥ = Ĥ0 + ĤI + ĤJ , (1)

where Ĥ0, ĤI , and ĤJ represent, respectively, the free
Hamiltonian, the qubit-environment interaction and the qubit-
qubit interaction. At the initial time t = 0, we assume that
only one qubit, which we call, without loss of generality,
the sth qubit (s ∈ {1,2, . . . ,N}), possesses some coherence,
i.e., its initial state is |ψ(0)〉s = c0(0)|0〉s + c1(0)|1〉s , with
|c0(0)|2 + |c1(0)|2 = 1, while all the other N − 1 qubits
and the environment E are in their ground states. For
convenience, we denote by |0〉S(E) the ground state of the
N -qubit system (the multimode environment) and by |j〉S
(j = 1,2, . . . ,s, . . . ,r, . . . ,N) we denote the state in which
only qubit j is excited to the state |1〉j . The total initial state
of the qubit system S and the environment E can then be
expressed as |�(0)〉SE = [c0(0)|0〉S + c1(0)|s〉S] ⊗ |0〉E. For
the above closed qubit-environment system, the total excitation
number is conserved. Therefore, the single excitation at the sth
qubit can either hop to another qubit j or be transformed to
a mode of the environment. In the following, we present the
general schemes to realize two tasks, namely, to optimally
transfer the coherence from the sth qubit to the rth qubit
(r �= s) and to optimally retain the coherence of the sth qubit.

A. Optimal control for coherence transfer

Besides the obvious detrimental effect of the environment,
the intermediate qubits are also the obstacles to inhibit the
coherence transfer between two sites r and s. In this sense, the
initial coherence degree of the sth qubit cannot be recovered at
the rth site without external manipulation. However, as will be
seen, our scheme allows one not only to retrieve the coherence
degree of the sth site at the rth site, but also to make the
coherence at the rth site exceed that at the sth site with a
finite success probability. Therefore, the merit of our scheme

is twofold: one is to fight against the dissipative effects of the
environment and the other is to further increase the coherence
degree at the rth site over the initial value.

To start our scheme, we perform a weak measurement on
the sth qubit with strength p before launching the interaction
of the whole system. Mathematically, a weak measurement
WX(p) with strength p (0 � p < 1) maps the state |n〉X of
qubit X as

WX(p)|n〉X →
√

(1 − p)n|n〉X, (n = 0,1). (2)

Thus, the weak measurement Ws(p) transforms
the state of qubit s to |ψ(p,0)〉s = [c0(0)|0〉s +
c1(0)

√
1 − p|1〉s]/

√
P1(p) with P1(p) = 1 − p|c1(0)|2

the probability of success, defined as the probability of
not completely collapsing the state by the measurement. As
shown above, the weak measurement drives a qubit towards its
ground state, making it more robust in the later decoherence
process and thus less coherence of the qubit will be lost
to the dissipative environment. Therefore, the first weak
measurement plays an important role in the whole scheme to
enhance the coherence transfer or preservation. With given
strength of the first weak measurement and “strength” (in
terms of the evolution time) of dissipation, an optimal strength
of the second measurement can be constructed to achieve a
definite demand. The initial state of the total system after the
weak measurement can be described as

|�(p,0)〉SE = 1√
P1(p)

[c0(0)|0〉S + c1(0)
√

1 − p|s〉S] ⊗ |0〉E.

(3)

Governed by the Hamiltonian (1), the state (3) evolves at t > 0
into

|�(p,t)〉SE = 1√
P1(p)

{[
c0(0)|0〉S + c1(0)

√
1 − p Fr (t)|r〉S

+ c1(0)
√

1 − p

N∑
i(�=r)=1

Fi(t)|i〉S
]

⊗ |0〉E

+ c1(0)
√

1 − p b(t)|0〉S ⊗ |1〉E
}
, (4)

where |1〉E denotes the collective excited state of the environ-

ment, while Fj (t) and b(t) =
√

1 − ∑N
j=1 |Fj (t)|2 denote the

transition amplitudes of the excitation to the j th qubit and to
the environment.

As time goes on, the coherence of the rth qubit be-
comes nonzero and we are able to manipulate it at any
time by applying the second measurement on it. It is
cautioned that the type of second measurement is situation
dependent: it is either a quantum reversal measurement if
|c1(0)

√
1 − p Fr (t)|2/P1(p) < 1/2 or a weak measurement

if |c1(0)
√

1 − p Fr (t)|2/P1(p) � 1/2. A quantum reversal
measurement RX(pr ) with strength pr (0 � pr < 1) on the
state |n〉X of qubit X corresponds to the map

RX(pr )|n〉X →
√

(1 − pr )n⊕1|n〉X, (5)

with ⊕ being an addition mod 2. If
|c1(0)

√
1 − p Fr (t)|2/P1(p) < 1/2, the quantum reversal

013852-2



On-DEMAND CONTROL OF COHERENCE TRANSFER . . . PHYSICAL REVIEW A 89, 013852 (2014)

measurement Rr (pr ) will be performed on the rth qubit, transforming the state (4) to

|�I(p,t,pr )〉SE = 1√
PI(p,t,pr )

{[
c0(0)

√
1 − pr |0〉S+c1(0)

√
1 − p Fr (t)|r〉S +

N∑
i(�=r)=1

c1(0)
√

(1 − p)(1 − pr ) Fi(t)|i〉S
]

⊗ |0〉E

+ c1(0)
√

(1 − p)(1 − pr ) b(t)|0〉S ⊗ |1〉E
}
, (6)

with PI(p,t,pr ) = (1 − pr )[1 − p|c1(0)|2] + (1 − p)pr |c1(0)|2|Fr (t)|2 the success probability of the combined process of both
Ws(p) at t = 0 and Rr (pr ) at t > 0. Otherwise [i.e., if |c1(0)

√
1 − p Fr (t)|2/P1(p) � 1/2], the weak measurement Wr (pr ) will

be performed on the rth qubit, which transforms the state (4) to

|�II(p,t,pr )〉SE = 1√
PII(p,t,pr )

{[
c0(0)|0〉S + c1(0)

√
(1 − p)(1 − pr ) Fr (t)|r〉S +

N∑
i(�=r)=1

c1(0)
√

1 − p Fi(t)|i〉S
]

⊗ |0〉E

+ c1(0)
√

1 − p b(t)|0〉S ⊗ |1〉E
}
, (7)

with PII(p,t,pr ) = 1 − p|c1(0)|2 − |c1(0)|2(1 − p)pr |Fr (t)|2
the success probability of the combined process of both Ws(p)
at t = 0 and Wr (pr ) at t > 0.

The coherence degree of the rth qubit being in the states
(6) or (7) can be expressed as

C(I,II)
r (p,t,pr ) = |c0(0)c1(0)|√(1 − p)(1 − pr )|Fr (t)|

PI,II(p,t,pr )
. (8)

From the manipulation procedure described above, there are
two parameters, p and pr , that we can manage at will.
The optimal strength p(I,II)

r of the second measurement that
maximizes the coherence degree of the rth qubit at time t can
be derived from the conditions

∂C(I,II)
r (p,t,pr )

∂pr

∣∣∣∣
p

(I,II)
r

= 0 and

(9)
∂2C(I,II)

r (p,t,pr )

∂p2
r

∣∣∣∣
p

(I,II)
r

< 0,

from which we obtain

p(I)
r = 1 − 2|c1(0)|2|Fr (t)|2(1 − p) − |c1(0)|2p

1 − |c1(0)|2|Fr (t)|2(1 − p) − |c1(0)|2p , (10)

and

p(II)
r = 2(1 − p)|c1(0)|2|Fr (t)|2 + p|c1(0)|2 − 1

(1 − p)|c1(0)|2|Fr (t)|2 . (11)

The optimal coherence degree of the rth qubit at time t, in
accordance with the two optimal conditions (10) and (11), has
the same form,

Copt
r (p,t) = |c0(0)|

2
√

1 − |c1(0)|2[(1 − p)|Fr (t)|2 + p]
, (12)

but the two corresponding success probabilities differ:

P
opt
I (p,t) = 2|c1(0)|2(1 − p)|Fr (t)|2 (13)

and

P
opt
II (p,t) = 2[1 − p|c1(0)|2 − (1 − p)|c1(0)|2|Fr (t)|2].

(14)

It is interesting to observe from Eq. (12) that regardless
of the initial coherence degree of the sth qubit, we always
have limp→1 C

opt
r (p,t) = 1/2, which is the largest possible

coherence degree of a superposition state of a two-level system,
but the success probability of such ideal performance is tending
to zero, as is evident from (13). Nevertheless, this implies that
our scheme can provide near maximal transfer of coherence
from qubit s to qubit r with a finite success probability.

B. Optimal control for coherence preservation

Different from the previous section, in this section we would
like to control the dynamics so that the initial coherence degree
of the sth qubit is maintained as much as possible at any desired
time during the evolution. Our optimal control scheme again
requires two steps of operation: a prior weak measurement
on the sth qubit at t = 0 and a posterior measurement also
on the sth qubit (not on the rth qubit as in the previous
section) at t > 0. To achieve the goal, the type of second
measurement should be chosen appropriately. As already
known from the previous section, after the operation of Ws(p)
at t = 0, the total system state takes the form (3), which
evolves into the form (4) at time t > 0. Now, at the desired
time t, what type of second measurement is to be performed
depends on the sign of |c1(0)

√
1 − pFs(t)|2/P1(p) − 1/2

[not |c1(0)
√

1 − pFr (t)|2/P1(p) − 1/2 as in the previous
section]. Namely, if |c1(0)

√
1 − pFs(t)|2/P1(p) − 1/2 < 0,

then Rs(pr ) is the right choice, otherwise Ws(pr ) should be
chosen. Indeed, the coherence preservation of the sth qubit can
be thought of as the coherence transfer discussed in Sec. II A
with r = s. Therefore, the formula of the optimal coherence
degree of qubit s is the same as that in Eq. (12), but with a
replacement of Fr (t) with Fs(t):

Copt
s (p,t) = |c0(0)|

2
√

1 − |c1(0)|2[(1 − p)|Fs(t)|2 + p]
. (15)

The corresponding success probabilities, denoted as P
opt
III (p,t)

and P
opt
IV (p,t) with respect to the two types of second

measurements, can be constructed in the same way from (13)
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and (14) as

P
opt
III (p,t) = 2|c1(0)|2(1 − p)|Fs(t)|2 (16)

and

P
opt
IV (p,t) = 2[1 − p|c1(0)|2 − (1 − p)|c1(0)|2|Fs(t)|2].

(17)

Quite surprisingly, as seen from Eq. (15), we could make
the coherence degree of the sth qubit at t > 0 to be almost
maximum (i.e., almost equal to 1/2) regardless of its value
at t = 0 by using p very close to one. Of course, this would
succeed only with a vanishingly small probability.

III. APPLICATION TO THE BIPARTITE SYSTEM

So far we have presented the general controlling schemes
without specifying the concrete physical models of the qubits’
system and the environment. In this section, we apply the
schemes to a system of two qubits to manipulate the coherence
transfer therein. The system may be modeled as two two-level
atoms A and B coupled to each other by a dipole-dipole-like
interaction: qubit A can formally be regarded as the donor of
the coherence and qubit B can be regarded as the acceptor. In
practice, we can consider Rydberg atoms that possess clean
two levels and interact via dipolar couplings. The environment
surrounding the two qubits is modeled as a bath of harmonic
oscillators with a specified spectral density. The three parts of
the Hamiltonian in (1) are given as follows (� = 1). The first
part,

Ĥ0 = ωAσ̂
(A)
+ σ̂

(A)
− + ωBσ̂

(B)
+ σ̂

(B)
− +

∑
k

ωkâ
+
k âk, (18)

with σ̂
(X)
± (ωX) being the inversion operators (transition fre-

quencies) of the qubit X = A,B and âk (â†
k) being the

annihilation (creation) operator for the bath’s kth mode with
frequency ωk, is the free Hamiltonian. The second part,

ĤI = (
αAσ̂

(A)
+ + αBσ̂

(B)
+

)∑
k

gkâk + H.c., (19)

describes the qubit-environment interaction with constant
couplings gk. As the interaction of a qubit to the environment
depends on the value of the bath field at the qubit’s position, a
dimensionless real constant αX is introduced to individualize
the qubit: the actual coupling strength between the Xth
qubit and the kth mode is thus characterized by αX|gk|. For
simplicity, we assume that αX are real numbers. Finally, the
third part,

ĤJ = J
(
σ̂

(A)
+ σ̂

(B)
− + σ̂

(A)
− σ̂

(B)
+

)
, (20)

with a constant (real) coupling J, is the interaction Hamilto-
nian between the qubits.

At the initial time t = 0, we assume that only the donor
qubit A possesses some degree of coherence, i.e., its ini-
tial state is |ψ(0)〉A = c0(0)|0〉A + c1(0)|1〉A, with |c0(0)|2 +
|c1(0)|2 = 1, while the acceptor qubit B and the environment
E are in their ground states |0〉B and |0〉E = ⊗k|0k〉E,

respectively. Governed by the Hamiltonians (18)–(20), the
initial state |�(0)〉ABE = c0(0)|000〉ABE + c1(0)|100〉ABE of

the total system evolves at t > 0 into

|�(t)〉ABE = [c0(0)|00〉AB + c1(0)FA(t)|10〉AB

+ c1(0)FB(t)|01〉AB]|0〉E
+

∑
k

c1(0)bk(t)|001k〉ABE, (21)

where |1k〉 denotes the bath state with one excitation in mode
k. The exact solution of the system evolution can be derived
via the formal procedure [14]. In the interaction picture, we
obtain the motion equations for the involved coefficients as

∂FA(t)

∂t
= −iαA

∑
k

gke
−i(ωk−ω0)t bk(t) − iJFB(t), (22)

∂FB(t)

∂t
= −iαB

∑
k

gke
−i(ωk−ω0)t bk(t) − iJFA(t), (23)

∂bk(t)

∂t
= −ig∗

k e
i(ωk−ω0)t [αAFA(t) + αBFB(t)], (24)

where we assumed ωA = ωB = ω0 for simplicity. By inte-
grating Eq. (24) with the initial condition bk(0) = 0 and
inserting its solution into Eqs. (22) and (23), we obtain two
integro-differential equations for FA(t) and FB(t) as

∂FA(t)

∂t
= −

∫ t

0
dt ′

∑
k

|gk|2e−i(ωk−ω0)(t−t ′)

× [
α2

AFA(t ′) + αAαBFB(t ′)
] − iJFB(t), (25)

∂FB(t)

∂t
= −

∫ t

0
dt ′

∑
k

|gk|2e−i(ωk−ω0)(t−t ′)

× [
αAαBFA(t ′) + α2

BFB(t ′)
] − iJFA(t). (26)

In Eqs. (25) and (26), the sum
∑

k |gk|2e−i(ωk−ω0)(t−t ′) is
recognized as the bath correlation function f (t − t ′) =
E〈0|A(t)A†(t ′)|0〉E, with A(t) = ∑

k gkbke
−i(ωk−ω0)t . In the

large-number-of-mode limit, that sum can be replaced by an
integral

∫
dωS(ω)e−i(ω−ω0)(t−t ′), where S(ω) is referred to as

the bath effective spectral density. Then, Eqs. (25) and (26)
become

∂FA(t)

∂t
= −

∫ t

0
dt ′f (t − t ′)

[
α2

AFA(t ′) + αAαBFB(t ′)
]

− iJFB (t), (27)

∂FB(t)

∂t
= −

∫ t

0
dt ′f (t − t ′)

[
αAαBFA(t ′) + α2

BFB(t ′)
]

− iJFA(t). (28)

To specify the structure of the bath, we consider a Lorentzian
spectral density of the form [15–17]

S(ω) = W 2

π

λ

(ω0 − δ − ω)2 + λ2
, (29)

where λ is half width at half height of the bath field spectrum
profile, W measures the qubit-environment coupling, and δ is
the detuning between the bath center frequency ωc and the
qubit transition frequency ω0. Taking the Laplace transform of
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both sides of Eqs. (27) and (28), with S(ω) given in (29), we
obtain

F̃A(l) =
[
l(l + λ − iδ) + R2β2

B

]
(l2 + J 2)(l + λ − iδ) + R2l − 2iR2βAβBJ

, (30)

F̃B(l) = −[R2βAβB + iJ (l + λ − iδ)]

(l2 + J 2)(l + λ − iδ) + R2l − 2iR2βAβBJ
, (31)

where F̃A(B)(l) is the Laplace transform of FA(B)(t), αT =√
α2

A + α2
B, βA(B) = αA(B)/αT , and R = WαT . Note that β2

A +
β2

B = 1, by definition. Inverse Laplace transforming Eqs. (30)
and (31) yields the explicit time-dependent solutions:

FA(B)(t) =
∑
m

lim
l→lm

(l − lm)F̃A(B)(l)e
lmt , (32)

with lm being an mth pole of F̃A(B)(l). In particular, for βA =
βB = 1/

√
2, we can derive exact analytical expressions for

FA(B)(t) as

FA(t) = 1
2eiJ t [Q(t) + 1], (33)

FB(t) = 1
2eiJ t [Q(t) − 1], (34)

where

Q(t) = e−(λ−iδ+3iJ )t/2

[
cosh(�t/2)

+ λ − iδ − iJ

�
sinh(�t/2)

]
, (35)

with � =
√

(λ − iδ − iJ )2 − 4R2.

Without any controls, the degree of coherence of qubit
A (B) can be characterized by CA(t) = |c0(0)c1(0)FA(t)|
[CB(t) = |c0(0)c1(0)FB(t)|]. The entanglement amount be-
tween qubits A and B can be assessed by Wootters’s concur-
rence [18] as EAB(t) = 2|c2

1(0)FA(t)FB(t)|. From Eq. (35), we
see that limt→∞ Q(t) = 0. Hence, for the case of βA = βB =
1/

√
2, we have CA(t → ∞) = CB(t → ∞) = 1

2 |c0(0)c1(0)|,
implying a balanced distribution of the initial coherence
of qubit A among qubits A and B in the long-time limit,
while the steady entanglement takes the form EAB(t → ∞) =
1
2 |c1(0)|2. In other words, one-half of the initial coherence
of the donor qubit will be transferred to the acceptor qubit
eventually, while another half is trapped in the donor qubit. As
for βA �= βB, it can be verified numerically that both |FA(t)|
and |FB(t)| will decay to zero, implying that the coherence
of both qubits A and B as well as their entanglement will
eventually vanish.

We first exhibit the optimal control of the coherence transfer
from the donor qubit A to the acceptor qubit B with our scheme
described in Sec. II A. The optimal coherence degree C

opt
B (p,t)

of qubit B and the corresponding success probabilities are
formally given in Eqs. (12)–(14) by setting s = A and r = B.
In Fig. 1, we plot the time dependence of the coherence degree
of qubit B and the success probabilities resulting from our
control scheme. Figures 1(a) and 1(b) demonstrate that at
any desired time during the evolution, the coherence degree
of qubit B, i.e., C

opt
B (p,t), is pronouncedly increased by our

scheme as compared to the situation without any controls (p =

pr = 0), in both the weak and strong system-environment
coupling regimes. Also pronounced is the effect that C

opt
B (p,t)

is getting larger for increasing p. Because of the presence
of interaction between qubits A and B dictated by ĤJ in
Eq. (20), the dynamics experiences damped oscillation even in
the weak system-environment coupling regime [cf. Fig. 1(a)].
The oscillation amplitude is reduced when p is bigger
since the “stronger weak” measurement preserves a stronger
coherence at qubit B and inhibits the coherence exchange
between the two qubits. As for the strong-coupling regime,
additional oscillation caused by environmental memory effect
comes into play, which interferes with that due to qubit-qubit
interaction, resulting in irregular damped oscillations, as seen
from Fig. 1(b). Interestingly, the oscillations’ interfering in
the strong-coupling regime makes the saturation time much
shorter than that in the weak-coupling regime. Figures 1(c) and
1(d) show the corresponding success probabilities. Generally,
the probability decreases with increasing p and tends to zero in
the limit of p → 1. It is worthwhile to note that the probability
exhibits large-amplitude transient oscillations before reaching
the steady value. In fact, the coherence is exchanged between
the two qubits during the evolution and, therefore, if at the
time we perform the second control action the coherence is
mostly located at qubit B, then the probability of successfully
enhancing the coherence degree of qubit B is certainly large,
and vice versa. This can be confirmed from two factors. The
first one is the consistency of the oscillations of coherence
and the success probability [cf. the one-to-one correspondence
between the peaks and valleys in Figs. 1(a) and 1(c) as well as
in Figs. 1(b) and 1(d)]. The second one is that the oscillation
amplitude of the success probability shrinks for a larger p, as
in this case the coherence exchange is inhibited. In the inset of
Fig. 1(c), we show the alternation of the manner of the second
measurement: for a small prior weak measurement strength
p = 0.1, the situation of |c1(0)

√
1 − pFB(t)|2/P1(p) � 1/2

occurs just for an initial short period of time, during which the
second measurement should be a weak measurement instead
of a reversal measurement.

Intuitively, if the coherence degree of qubit B increases,
then the coherence degree of qubit A would decrease. To see
whether it is true under our controlling actions, we derive
the expression for the coherence degree of qubit A when the
optimal conditions of p(I)

r in Eq. (10) and p(II)
r in Eq. (11) are

satisfied, which has the form

CA(p,t) = |c0(0)c1(0)||FA(t)|√1 − p

2 − 2|c1(0)|2[|FB(t)|2(1 − p) + p]
. (36)

From this expression, it follows limp→1 CA(p,t) = 0, which
is consistent with limp→1 C

opt
B (p,t) = 1/2. We plot CA(p,t)

versus λt and p in Figs. 2(a) and 2(b). Generally, the coherence
degree of qubit A is largely diminished compared to the
situation with no controls.

Although controlling entanglement is not our purpose in
this work, one is wondering about how the optimal control for
A → B coherence transfer affects the entanglement between
the two qubits as compared to the case without any controls.
In terms of concurrence, the entanglement amount between
qubits A and B with respect to the two types of posterior
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FIG. 1. The optimal coherence degree of the acceptor qubit B, C
opt
B (p,t) in Eq. (12), and the corresponding success probability vs scaled time

λt for various strengthes p of the null-outcome prior weak measurement on the donor qubit A in the (a),(c) weak qubit-environment coupling
regime with R/λ = 0.4 and (b),(d) strong-coupling regime with R/λ = 4. The other parameters are chosen as c0(0) = 1/2, c1(0) = √

3/2,

J/λ = 0.8, βA = βB = 1/
√

2, and δ = 0.

measurements is

E
(I,II)
AB (p,t,pr ) = 2|c1(0)|2(1 − p)

√
1 − pr |FA(t)FB(t)|

PI,II(p,t,pr )
,

(37)

which depends explicitly on t, p, and pr. Replacing pr by p(I)
r

or p(II)
r in Eq. (37) yields a single formula,

E
opt
AB(p,t) = |FA(t)||c1(0)|√1 − p√

1 − [|FB(t)|2(1 − p) + p]|c1(0)|2
, (38)

that depends only on t and p. Note that the superscript
“opt” in E

opt
AB(p,t) just indicates the optimal control for

A → B coherence transfer, but not the optimal control for
entanglement itself. Figures 2(c) and 2(d) show that, compared
to the case without controlling (i.e., p = pr = 0), the A-B
entanglement amount may be larger for a small value of p or
smaller for a large value of p. Nevertheless, as can be expected,
in the limit of p → 1, the entanglement E

opt
AB(p,t) should tend

to zero, consistent with the behaviors of coherence degrees of
qubits A and B in this limit.

Next, we would like to demonstrate the control scheme
described in Sec. II B, by which the coherence degree of
qubit A is maintained as much as possible at any desired
time during the evolution. Figures 3(a) and 3(b) reveal that,
by our method of optimal controlling, the coherence degree

of qubit A becomes larger than that without any controls (i.e.,
p = pr = 0) at any desired time t, for any p > 0 and any ratio
R/λ. More concretely, at a given time t and for a given value
of R/λ, the coherence degree of qubit A increases with p.

Concerning the coherence degree of qubit B [i.e., CB(p,t)]
and the A-B entanglement [i.e., E

(III,IV)
AB (p,t,pr )] under the

conditions of the optimal strengths of posterior measurements,
we have

CB(p,t) = |c0(0)c1(0)||FB(t)|√1 − p

2 − 2|c1(0)|2[|FA(t)|2(1 − p) + p]
(39)

and

E
opt
AB(p,t) = |FB(t)||c1(0)|√1 − p√

1 − [|FA(t)|2(1 − p) + p]|c1(0)|2
. (40)

As followed from Eq. (39), limp→1 CB(p,t) = 0, implying
that in the limit p → 1, the coherence degree of qubit A is
approaching the maximum value 1/2, which will be trapped in
qubit A without being transferred to qubit B. As for the amount
of A-B entanglement, measured by the concurrence E

opt
AB(p,t)

in Eq. (40), it may be greater or smaller than that without
controls depending on p, similar to the situation discussed in
the previous section.
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FIG. 2. The same as in Fig. 1, but for the coherence degree of the donor qubit A, CA(p,t) in Eq. (36) and the A-B entanglement amount
E

opt
AB (p,t) in Eq. (38), under the condition for optimal control of coherence transfer.

IV. EXPERIMENTAL REALIZATION

In this section, we would like to briefly review the possible
experimental realization of our schemes. Indeed, the two
main components here, i.e., the weak measurement and
the quantum reversal measurement, have been realized in
various contexts. A reversal of the weak measurement was
demonstrated experimentally in a superconducting phase qubit
[5,6] as well as in a single-photon qubit [7]. Very recently, an

experimental recovery of a qubit from partial collapse was
demonstrated using a single trapped and laser-cooled 40Ca+

[19]. The demonstration features a qubit implementation that
permits both partial collapse (weak measurement) and coher-
ent manipulation with high fidelity [19]. In this experiment
[19], the initial states were prepared by first optically pumping
to |0〉, then applying a π/2 or π pulse, when necessary, to
the radio-frequency coil. They tested a set of four different
initial states and employed quantum process tomography

FIG. 3. The optimal coherence degree of the donor qubit, C
opt
A (p,t) in Eq. (15) vs scaled time λt for various p in the (a) weak and (b)

strong system-environment coupling regimes with R/λ = 0.4 and R/λ = 4, respectively. The other parameters are chosen as c0(0) = 1/
√

10,

c1(0) = 3/
√

10, J/λ = 0.8, βA = 1/2, βB = √
3/2, and δ = 0.
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[1,20] protocol to fully characterize state preparation, the
weak measurement, and the reversal process [19]. By using
all-optical apparatuses, the decoherence suppression of a
single qubit via weak measurement and quantum reversal
measurement was also achieved experimentally in Ref. [9].
The protection of entanglement of two qubits from inde-
pendent decoherences via the combined weak measurements
and reversal measurements was realized also by exploiting
all-optical apparatuses [11].

As for the considered bipartite system, the two qubits
interact with the same environment; therefore, the contexts
of cavity QED experiments with trapped ions and circuit
QED experiments would be more suitable. Field coupling
and coherent quantum state storage between two Josephson
phase qubits were realized via a microwave cavity on a chip
[21,22]. Therefore, within current technologies, our schemes
could be realized, say, for solid-state or superconducting phase
qubits [5]. For the phase qubit, the weak measurement can
be implemented by allowing the state |1〉 to tunnel out of the
quantum well with the probability p, while the state |0〉 cannot
tunnel out [6]. As for the quantum reversal measurement with
the mathematical expression in Eq. (5), it is straightforward to
verify that

√
(1 − pr )n⊕1|n〉X ≡ NOT · WX(pr ) · NOT|n〉X,

with NOT the NOT gate and WX(pr ) the weak measurement on
X with strength pr. This identity suggests a practical way to
implement a RX(pr ): first bit-flip the X system, then perform
aWX(pr ) on it, and finally bit-flip it again. For the phase qubit,
this process consists of a π pulse, second weak measurement,
and one more π pulse.

V. CONCLUSION

In conclusion, we proposed two general schemes to control
the coherence dynamics of N interacting qubits embedded
in a dissipative environment by means of suitably choosing
a combination of quantum weak measurement and quantum
reversal measurement. We are interested in the situation
when at t = 0, only the sth qubit possesses some degree of
coherence. While the first scheme aims at optimal transfer of
coherence from the sth qubit to the rth qubit, the aim of the
second scheme is to preserve the coherence of the sth qubit.
In both of the schemes, two sequential measurements are to
be performed. The first measurement is a weak measurement
with strength p to be performed on the sth qubit at the
time (t = 0) the system starts to evolve. Later, at a desired
moment t > 0 during evolution, the second measurement with

strength pr is to be carried out on the rth (sth) qubit in
the first (second) scheme. However, the second measurement
should be chosen either as a quantum reversal measurement
or as a weak measurement depending on the system’s state
at the desired time t. For a given strength p of the prior
weak measurement, we established the explicit conditions for
the second measurement strengths pr to achieve an optimal
on-demand control mentioned above. In theory, when pr

satisfies the established condition, the coherence degree of the
rth (sth) qubit at the desired time t in the first (second) scheme
can be made arbitrarily close to 1/2 by choosing the strength
p of the first weak measurement close enough to 1. However,
as a rule, in the limit of p → 1, the success probability is
tending to zero. As an application, we apply our general
schemes to the simplest case of N = 2, i.e., the case with
two qubits embedded in a dissipative environment modeled as
a structured bath with Lorentzian spectral density. We also
examined the influence of the controlling schemes on the
entanglement dynamics of the pair of qubits. We found out that
depending on the value of the prior weak measurement strength
p, the entanglement degree can be increased or decreased in
comparison to the situation without any controls. Of course,
when p → 1, the entanglement is shown to vanish, consistent
with the individual qubit’s coherence behavior in this limit.
Within current technology, our control schemes would be
applicable in several experimental settings including cavity
QED, circuit QED, superconducting rings, etc. Furthermore,
we suggest that it might be possible to apply them also in
artificial molecular systems when quantum coherence turns
out to play an important role [23–28]. For example, a photo
cell was proposed [28] based on the nanoscale architecture
of photosynthetic reaction centers that explicitly harnesses
the quantum coherence. Whether the setup of our schemes
could be adopted to preserve the coherence (or facilitate its
transfer) of the interested system in the dissipative environment
deserves further investigation.
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