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We use the approach of “transitionless quantum driving” proposed by Berry to construct shortcuts to the
population transfer and the creation of maximal entanglement between two �-type atoms based on the cavity
quantum electronic dynamics system. An effective Hamiltonian is designed by resorting to an auxiliary excited
level, a classical driving field, and an extra cavity field mode to supplement or substitute the original reference
Hamiltonian, and steer the system evolution along its instantaneous eigenstates in an arbitrarily short time,
speeding up the rate of population transfer and creation of maximal entanglement between the two atoms inside
a cavity. Numerical simulation demonstrates that our shortcuts are robust against the decoherences caused by
atomic spontaneous emission and cavity photon leakage.
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I. INTRODUCTION

Controlling the dynamics of quantum systems is of crucial
importance for many practical purposes. A widely used
method is to drive the system with external time-dependent
interactions, making the total Hamiltonian H0(t) depend
explicitly on time. The change in time is managed to be slow
to allow adiabatic passage from an initial state to a target state.
Under the adiabatic following condition, it is likely that the
instantaneous eigenstates of H0(t) are the moving states. That
is, each evolves along itself all the time without transition to
other ones [1].

However, that is not precise. In fact, transitions be-
tween different time-dependent instantaneous eigenstates may
still happen with nonzero probabilities which become non-
negligible if the controlling parameters do not change slowly
enough, reducing fidelity of the evolved state with respect
to the target one. Thus, controlling quantum states based on
adiabatic passage is by its nature a long process [2]. If the
required evolution time is too long, the method may be useless,
because decoherence, noise, or losses would spoil the intended
dynamics. This limits application ranges in practice, especially
in the field of quantum computing and quantum-information
processing where speed is of primary concern. Therefore,
accelerating the dynamics towards the perfect final outcome
is a nice idea and perhaps the most reasonable way to
actually fight against the decoherence, noise, or losses that
are accumulated during a long operation time.

So far various schemes for shortcuts to slow an adiabatic
passage method for arriving at a target state from an initial
state have been proposed in theory [3–20] and implemented in
experiment [21–26]. To be useful, such nonadiabatic shortcuts
must, of course, be reliable, fast, and robust.

Notably, as pointed out by Berry [1], a nearly Hamil-
tonian H (t), which is associated with any given refer-

*xia-208@163.com
†jsong@hit.edu.cn
‡nban@iop.vast.ac.vn

ence Hamiltonian H0(t), exists that derives instantaneous
eigenstates of H0(t) exactly, i.e., transitions between them
do not occur at all during the whole duration of system
evolution regardless of the rate of change. In other words,
the instantaneous eigenstates of H0(t) can be regarded as truly
moving eigenstates of H (t). Because of such feature of the
driving, Berry called it “transitionless quantum driving” and
H (t) the “counter-diabatic driving” (CDD) Hamiltonian. More
importantly, Berry also worked out a general “transitionless
tracking algorithm” to reverse engineer H (t) from H0(t).
Recently, transitionless quantum drivings in Berry’s spirit
have been experimentally demonstrated in the effective two-
level system [26]. Furthermore, Chen et al. [14] have also
put forward another reverse-engineering approach using the
Lewis-Riesenfeld (LR) invariant to carry the eigenstates of a
Hamiltonian from a specified initial to a final configuration,
then to design the transient Hamiltonian from the LR invariant.
Although different in form, those driving methods are shown
to be essentially equivalent to each other by properly adjusting
the reference Hamiltonian [15].

It is worth noticing that although the reverse-engineering
approach has been applied to achieve accelerated population
transfer between two internal states of a single atom in different
systems, fast population transfer between two atoms inside a
common environment has not been studied adequately, to our
knowledge. In view of the requirements for scalable quantum
computing and quantum-information processing, it is desirable
to extend the approach to multi-qubit systems. In this context,
the LR invariant approach for ultrafast quantum-state transfer
between two �-type atoms based on the cavity quantum elec-
tronic dynamics (CQED) system has just been studied in [20].

In this paper, we present an alternative nonadiabatic
proposal to speed up the population transfer and the creation of
maximal entanglement between two atoms inside a cavity in
the spirit of Berry’s transitionless quantum driving approach.
Different from the previous schemes [14–18] where the CDD
Hamiltonian derived from the original reference Hamiltonian
can be realized experimentally in terms of a time-dependent
magnetic field between two levels of a single atom, in our
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system with two atoms in a common cavity the reverse
engineered CDD Hamiltonian is not readily available within
the model under consideration. To circumvent this, we take
into account one more auxiliary excited level for each atom,
an extra external laser field, and an extra cavity field mode to
experimentally realize our shortcut schemes to adiabatic pas-
sage and construct the auxiliary interaction Hamiltonian that
provides us with the extra shortcut interaction. Though the ex-
tra shortcut interaction derived from the reference Hamiltonian
can speed up the population transfer and the rate of maximally
entangled state creation, the perfect shortcut performance
is slightly deteriorated since the derivation of the auxiliary
effective Hamiltonian is based on the large detuning condition.
Still, our extra shortcut interaction can considerably accelerate
the slow adiabatic passage and the performance based on it is
robust, thus promising to be realized experimentally.

Our paper is structured as follows. In Sec. II, we describe
the theoretical model for two �-type atoms embedded in a
single-mode cavity. In Sec. III, we construct a shortcut passage
for population transfer between two atoms. In Sec. IV, the
shortcut for generating maximal entanglement between two
atoms is achieved. In Sec. V, the influences of decoherence on
the shortcut for population transfer and maximal entanglement
generation are considered. The conclusion appears in Sec. VI.

II. MODEL

The model we consider consists of two �-type atoms
embedded in a single-mode cavity, as sketched by solid bars
and solid arrows in Fig. 1. The transitions |g〉1 ↔ |s〉1 and
|g〉2 ↔ |s〉2 are resonantly driven by two time-dependent
classical fields �1(t) and �2(t), which are 3π/2-dephased
from each other, while each transition |f 〉i ↔ |s〉i (i = 1,2)
is resonantly coupled to a cavity mode with a coupling
constant gi. Under the rotating-wave approximation (RWA),
the time-dependent interaction Hamiltonian for the whole
system reads (� = 1):

H0(t) = �1(t)|s〉1〈g| − i�2(t)|s〉2〈g|
+

∑
i=1,2

gia|s〉i〈f | + H.c., (1)

where a is the annihilation operator of the cavity mode.
If the initial state is |g〉1|f 〉2|0〉c, with |0〉c being the

vacuum state of the cavity, the whole system evolves
within a single-excitation subspace spanned by five basic
states

|φ1〉 = |g〉1|f 〉2|0〉c, (2)

|φ2〉 = |s〉1|f 〉2|0〉c, (3)

|φ3〉 = |f 〉1|f 〉2|1〉c, (4)

|φ4〉 = |f 〉1|s〉2|0〉c, (5)

and

|φ5〉 = |f 〉1|g〉2|0〉c. (6)

Ω

Ω

Δ Δ

FIG. 1. �-type configuration for the ith atom consists of one
excited state |s〉i and two ground states |g〉i and |f 〉i . The transition
|g〉i ↔ |s〉i is resonantly driven by a time-dependent classical field
with Rabi frequency �i(t), while |f 〉i ↔ |s〉i is resonantly coupled
to a cavity mode a with a coupling constant gi. The auxiliary excited
state |e〉i is nonresonantly coupled to |g〉i by a time-dependent
classical field with Rabi frequency �̃i(t) and to |f 〉i by a cavity
mode b with a coupling constant g̃i . �1,2 are finite detunings.

We assume gi = g in this paper for simplicity. For our purposes
we also assume the weak-driving fields specified by

|�1,2(t)| � g. (7)

Then, at an instant time t the eigenstates |ψn(t)〉 and eigenval-
ues λn(t) of H0(t), which obey the equation H0(t)|ψn(t)〉 =
λn(t)|ψn(t)〉, can be derived analytically. For the
former,

|ψ1(t)〉 =
(

�2
1(t) + �2

2(t) + �2
1(t)�2

2(t)

g2

)−1/2

×
(

− i�2(t)|φ1〉+ i�1(t)�2(t)

g
|φ3〉+�1(t)|φ5〉

)
,

(8)

|ψ2(t)〉 � i�1(t)√
2
[
�2

1(t) + �2
2(t)

] |φ1〉 − i

2
|φ2〉

+ i

2
|φ4〉 + �2(t)√

2
[
�2

1(t) + �2
2(t)

] |φ5〉, (9)

|ψ3(t)〉 � i�1(t)√
2
[
�2

1(t) + �2
2(t)

] |φ1〉 + i

2
|φ2〉

− i

2
|φ4〉 + �2(t)√

2
[
�2

1(t) + �2
2(t)

] |φ5〉, (10)

|ψ4(t)〉 �
(

�2
1(t) + �2

2(t)

g2
+ 8

)−1/2

×
(

− i
�1(t)

g
|φ1〉 + i

√
2|φ2〉

− 2i|φ3〉 + i
√

2|φ4〉 + �2(t)

g
|φ5〉

)
, (11)
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and

|ψ5(t)〉 �
(

�2
1(t) + �2

2(t)

g2
+ 8

)−1/2

×
(

− i
�1(t)

g
|φ1〉 − i

√
2|φ2〉

− 2i|φ3〉 − i
√

2|φ4〉 + �2(t)

g
|φ5〉

)
, (12)

and, for the latter, λ1 = 0, λ2 � −
√

[�2
1(t) + �2

2(t)]/2, λ3 �√
[�2

1(t) + �2
2(t)]/2, λ4 � −√

2g, and λ5 � √
2g, respec-

tively. Note that the eigenstate |ψ1(t)〉 with zero eigenvalue
λ1 = 0 is a dark state.

Here, starting from the atomic state |g〉1|f 〉2, we are con-
cerned with two problems. The first problem is how to transfer
population simultaneously in the two atoms, i.e., |g〉1 → |f 〉1

and |f 〉2 → |g〉2, or, in other words, how to drive the two
atoms from the initial state |g〉1|f 〉2 to the target state |f 〉1|g〉2.

The second problem is how to create maximum entanglement
between the two atoms. As is well known, the adiabatic
passage method does well with these problems. Namely, when
the adiabatic condition [2] |〈ψn	=1(t)|∂tψ1(t)〉| � |λn	=1|, with
∂t ≡ ∂/∂t, is satisfied, state |ψ1(0)〉 would follow |ψ1(t)〉
closely. This assumption in Eq. (7) neglects the probability
of populating state |φ3〉 during the entire process of evolution.
Then, by judiciously tailoring the classical fields �1(t) and
�2(t), either of the two above-mentioned problems can be
solved successfully. Although the adiabatic passage method
is one-step implementation, it usually takes quite a long
time,which is undesirable. If one attempts to quicken the
process a little bit, the adiabatic following condition may be
violated and transition to states other than |ψ1(t)〉 may happen,
leading to a wrong (unintended) final state. In the next sections
we shall consider fast and robust shortcuts to adiabaticity for
the two above problems.

III. SHORTCUT FOR SIMULTANEOUS POPULATION
TRANSFER IN TWO ATOMS

Because the instantaneous eigenstates {|ψn(t)〉}, Eqs. (8)–
(12), are not solutions of the Schrodinger equation
i∂t |ψn(t)〉 = H0(t)|ψn(t)〉, there is a finite, though small,
probability that the system starts from state |ψn(0)〉 and
ends up in state |ψm	=n(t)〉, even under the adiabatic follow-
ing condition. To guarantee zero transition probability for
|ψn(0)〉 → |ψm	=n(t)〉, we look for a Hamiltonian H (t) that
is related to the original Hamiltonian H0(t) but drives the
eigenstates {|ψn(t)〉} exactly, i.e., i∂t |ψn(t)〉 = H (t)|ψn(t)〉.

According to Berry’s general transitionless tracking algo-
rithm [1], one can reverse engineer H (t) from H0(t). The
algorithm results in infinitely many such Hamiltonians H (t)
which differ from each other only by phases. Disregarding the
effect of phases, the simplest Hamiltonian H1(t) that exactly
drives the set of instantaneous eigenstates of H0(t) is derived
in the form

H1(t) = i

5∑
m=1

|∂tψm(t)〉〈ψm(t)|. (13)

The addition of H0(t) to H1(t) [i.e., H (t) = H0(t) + H1(t)]
only affects the phases of the system evolution. Being
interested only in populations, we can exclude H0(t) [i.e.,
H (t) = H1(t)]. Putting Eqs. (8)–(12) into Eq. (13), we obtain,
after differentiating each of the |ψn(t)〉 and then summing up
all five terms, the following expression for H1(t):

H1(t) = C(t)(|φ1〉〈φ5| + |φ5〉〈φ1|), (14)

where

C(t) = �1(t)∂t�2(t) − �2(t)∂t�1(t)

�2
1(t) + �2

2(t) + �2
1(t)�2

2(t)/g2
. (15)

We remark, however, that for two �-type atoms in a real
experiment, the CDD Hamiltonian H1(t) in Eq. (14) does not
exist. Therefore, we shall find an alternative physically feasible
Hamiltonian which is equivalent to H1(t). Generally, the
physical realization of such Hamiltonians is case dependent.
For example, in Chen’s scheme [14] for nonadiabatic speeding
up the population transfer in two- and three-level systems of
a single atom, an auxiliary laser or microwave interactions
are involved to directly drive two internal levels of the atom.
Here we take into account an auxiliary excited level |e〉i ,
additional classical driving fields �̃i(t) and an extra cavity
field mode to realize an equivalent-to-the-CDD Hamiltonian
that indirectly drives the two interested states |φ1〉 and |φ5〉,
as shown by dashed bars and dashed arrows in Fig. 1. The
transition |f 〉i ↔ |e〉i is dispersively coupled to the auxiliary
cavity mode with a real coupling constant g̃i and a detuning
�2, while |g〉i is nonresonantly coupled to |e〉i by a laser field
with a Rabi frequency �̃i(t) and a detuning �1. Under the
RWA, the auxiliary interaction Hamiltonian is (� = 1)

H̃ (t) =
2∑

i=1

[�̃i(t)e
i�1t |g〉i〈e| + g̃ie

i�2t b†|f 〉i〈e| + H.c.],

(16)
where b† is the creation operation for the auxiliary cavity
mode. We assume g̃i = g and �̃i(t) = �̃(t) in this paper for
simplicity.

Let the system be initially in state |φ1〉. In the large
detuning regime �1,�2 � �̃(t),g, and |δ| ≡ |�1 − �2| �
η(t) ≡ 1

2 ( 1
�1

+ 1
�2

)g�̃(t), the atoms can mutually exchange
energy in such a way that the level |e〉 and the auxiliary cavity
field mode b are only virtually excited [27,28]. Then H̃ (t) can
effectively be described by the Hamiltonian

H̃eff(t) = η2(t)

δ
(S+

1 S−
2 + S+

2 S−
1 ), (17)

where S+
j = |f 〉j 〈g|and S−

j = |g〉j 〈f |, with j = 1,2. The
effective Hamiltonian (17) is equivalent with the CDD Hamil-
tonian H1(t) in Eq. (14) when

η2(t)

δ
= C(t). (18)

Hence, the Rabi frequency of the auxiliary laser field that
generates a Hamiltonian equivalent to the CDD Hamiltonian
can be determined from the original frequencies �1(t) and
�2(t) as

�̃(t) = 2�1�2

�1 + �2

√
[�1(t)∂t�2(t) − �2(t)∂t�1(t)]δ

[�2
1(t) + �2

2(t)]g2 + �2
1(t)�2

2(t)
. (19)
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FIG. 2. (Color online) Dependence on t/T of �1(t)/�0 (solid
red line) and �2(t)/�0 (dashed green line), where �1(t) and �2(t)
are defined by Eqs. (20) and (21), for the population transfer, with τ =
0.22T .

We remark that, compared to the scheme in Ref. [27], we
will prepare the maximal entanglement in the ground states
of two atoms, which is robust against the atomic spontaneous
emission. Moreover, different from the scheme in Ref. [27],
the auxiliary Hamiltonian (17) can serve as a supplement
or it can function independently for our time-dependent
CDD Hamiltonian. When the auxiliary Hamiltonian functions
independently, our system reduces to the interaction between
two simple three-level atomic systems and a field mode which
could be realized with the current cavity QED technology.
Thus, based on the CDD Hamiltonian (17), our proposals for
fast population transfer and creation of two-atom maximal
entanglement are not sensitive to fluctuations of the experiment
parameters. Especially, there is no need to precisely control the
operation time in our present scheme.

We now demonstrate that the simultaneous population
transfer |g〉1|f 〉2 → |f 〉1|g〉2 in the two atoms governed
byH̃(t) is much speeded up as compared to the adiabatic
passage governed by H0(t). Let the Rabi frequencies �1(t)
and �2(t) in the original Hamiltonian H0(t) depend on time as

�1(t) =
{

�0 sin4[π (t − τ )/T ] for τ � t � T + τ,

0 otherwise,
(20)

and

�2(t) =
{

�0 sin4(πt/T ) for 0 � t � T ,

0 otherwise,
(21)

with �0 being the pulse amplitude, τ the time delay, and
T the operation duration. Figure 2 shows �1(t)/�0 and
�2(t)/�0 as functions of t/T for a fixed value of the time
delay chosen for the best adiabatic passage process. With
�1(t) and �2(t) defined in (20) and (21), we contrast the
performances of population transfer from the initial state
|φ1〉 to the target state |φ5〉 based on the adiabatic passage
method governed by H0(t) and on the evolution governed by
our auxiliary interaction Hamiltonian H̃ (t) in Fig. 3, where
populations Pk(t) = 〈φk|ρ(t)|φk〉, with ρ(t) being the density
matrix associated with the governing Hamiltonian, are plotted
versus gt for a given operation duration. The result obviously
reveals that near-perfect population transfer by H̃ (t) can be
achieved even in a short evolution time [see Fig. 3(a)] for which
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FIG. 3. (Color online) Dependence on gt of the populations P1(t)
and P5(t) governed by (a) the auxiliary interaction Hamiltonian H̃ (t)
with �1 = 6g, �2 = 7g and (b) the original Hamiltonian H0(t). In
both (a) and (b) the Rabi frequencies �1(t) and �2(t) are defined by
Eqs. (20) and (21) with �0 = 0.2g, T = 50/g, and τ = 0.22T .

the adiabatic passage method breaks down [see Fig. 3(b)]. This
means that H̃ (t) indeed provides a shortcut to the adiabatic
passage.

In Fig. 4, we plot the fidelity F (T + τ ) =
(Tr

√
ρ

1/2
f ρ(T + τ )ρ1/2

f )2, with ρf being the density
matrix of the ideal final state and ρ(T + τ ) being that of
the evolved state at the end of the pulse operation, as a
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FIG. 4. (Color online) Dependence on gT of the fidelities of the
evolved state with respect to the target state using adiabatic passage
governed by the Hamiltonian H0(t) (solid blue line), by the dynamics
governed by the CDD Hamiltonian H1(t) (dotted green line), and
by the auxiliary interaction Hamiltonian H̃ (t) (dashed red line) with
�1 = 6g and �2 = 7g for the case of population transfer. The Rabi
frequencies �1(t) and �2(t) are defined by Eqs. (20) and (21) with
�0 = 0.2g and τ = 0.22T .

012326-4



SHORTCUTS TO ADIABATIC PASSAGE FOR POPULATION . . . PHYSICAL REVIEW A 89, 012326 (2014)

function of the operation time T , by using the original
Hamiltonian H0(t), the CDD Hamiltonian H1(t), and the
auxiliary interaction Hamiltonian H̃ (t). While H1(t) formally
yields a near-perfect population transfer within an arbitrarily
short time, H̃ (t) needs a finite operation time to complete the
population transfer. This is because H̃eff(t) is valid only under
the large-detuning condition, which requires longer evolution
time to achieve a full population transfer than that required in
the resonant-driving CDD Hamiltonian H1(t). For example,
here the fidelity of the evolved state would be higher than
98% when T � 30/g. As for the adiabatic passage evolution
via H0(t), it requires much more time to finish the population
transfer: it is about three times longer than that required by
H̃ (t).

IV. SHORTCUT FOR MAXIMAL ENTANGLEMENT
CREATION BETWEEN TWO ATOMS

Under the weak-driving condition in Eq. (7), one should
tailor the two Rabi frequencies �1(t) and �2(t) so that at the
beginning of the operation �1(t)/�2(t) → 0 but at the end
�1(t)/�2(t) → 1. Such requirements can be met by

�1(t) = 1

2
�

′
0 exp

−[t − (θ + 1/2)T ]2

w2T 2
(22)

and

�2(t) = �
′
0

[
exp

−[t + (θ − 1/2)T ]2

w2T 2

+ 1

2
exp

−[t − (θ + 1/2)T ]2

w2T 2

]
, (23)

with �′
0 the pulse amplitude and T the operation duration,

while θ and w are some parameters to be chosen for the
best performance of the adiabatic passage process. The time
dependences of �1(t)/�′

0 and �2(t)/�′
0 are shown in Fig. 5

versus t/T for fixed values of θ and w. With such tailored
�1(t) and �2(t), we plot in Fig. 6 the evolution of populations
P1,5(t), based on the dynamics governed by the interaction
Hamiltonian H̃ (t), Fig. 6(a), and on the adiabatic passage
governed by the original Hamiltonian H0(t), Fig. 6(b). From
Fig. 6(a), we see that at t � 30/g the interaction Hamiltonian
H̃ (t) already yields P1(t) ≈ P5(t) = 1/2. That is, the system
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FIG. 5. (Color online) �1(t)/�′
0 (solid red line) and �2(t)/�′

0

(dashed green line) versus t/T for the creation of maximal entan-
glement between two atoms, where �1(t) and �2(t) are defined by
Eqs. (22) and (23) with θ = 17/120 and w = 23/120.
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FIG. 6. (Color online) Dependence on gt of the populations P1(t)
and P5(t) governed by (a) the auxiliary interaction Hamiltonian H̃ (t)
with �1 = 6g, �2 = 7g and (b) the original Hamiltonian H0(t). In
both (a) and (b) the Rabi frequencies �1(t) and �2(t) are defined by
Eqs. (22) and (23) with �′

0 = 0.3g, θ = 17/120, w = 23/120, and
T = 30/g.

state at t � 30/g becomes (−i|φ1〉 + |φ5〉)/
√

2, signifying
creation of the atoms’ maximal entangled state

|�〉12 = 1√
2

(−i|g〉1|f 〉2 + |f 〉1|g〉2). (24)

From Fig. 6(b), however, governed by the original Hamiltonian
H0(t), P1(t � 30/g) is still quite bigger than P5(t � 30/g).

In Fig. 7 we also plot the fidelities of the evolved states
governed by H̃ (t) and H0(t), with respect to the maximally
entangled state |�〉12, as functions of the operation duration
T . Clearly from Fig. 7, to obtain the maximum entanglement
between the two atoms, a much longer operation time is
required by the adiabatic passage method than that by H̃ (t).
Thus, the results in Figs. 6 and 7 confirm that H̃ (t) indeed
accelerates the creation of maximally entangled states for the
two atoms as compared to the original Hamiltonian H0(t).
Or, in other words, the dynamics governed by H̃ (t) is a
nonadiabatic shortcut to adiabaticity governed by H0(t) for
creation of maximal entanglement between two atoms within
a cavity.

V. ROBUSTNESS OF THE SHORTCUT SCHEMES

Not only speed but also robustness against possible mech-
anisms of decoherence is important for a scheme to be
applicable in quantum-information processing and quantum
computing. In the problems of our concern here decoherences
may originate from the atomic spontaneous emission and the
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FIG. 7. (Color online) Dependence on gT of the fidelities of the
evolved state with respect to the target state using adiabatic passage
governed by the Hamiltonian H0(t) (solid blue line), the dynamics
governed by the CDD Hamiltonian H1(t) (dotted green line), and
by the auxiliary interaction Hamiltonian H̃ (t) (dashed red line) with
�1 = 6g, �2 = 7g for the case of maximal entanglement creation.
The Rabi frequencies �1(t) and �2(t) are defined by Eqs. (22) and(23)
with �′

0 = 0.3g, θ = 17/120, and w = 23/120.

cavity decay. To examine robustness of our shortcut schemes
described in the previous sections against such decoherence
mechanisms we numerically solve the master equation for the
whole system’s density matrix ρ(t), which has the form

∂tρ(t) = −i[H0(t) + H̃ (t),ρ(t)]

− κa

2
[a†aρ(t) − 2aρ(t)a† + ρ(t)a†a]

− κb

2
[b†bρ(t) − 2bρ(t)b† + ρ(t)b†b]

−
2∑

k=1

∑
m=g,f

∑
n=s,e

�k
nm

2

[
Sk+

mnS
k
mnρ(t)

− 2Sk
mnρ(t)Sk+

mn + ρ(t)Sk+
mnS

k
mn

]
, (25)

where κa (κb) is the photon leakage rate of the cavity mode a

(b), �k
nm is the kth atom’s spontaneous emission rate from

the excited state |n〉k to the ground state |m〉k and Sk
mn =

|m〉k〈n| = Sk+
nm. For simplicity, we assume �k

nm = �/2 and
κa = κb = κ in numerically solving the master equation (25)
with the initial condition ρ(0) = |φ1〉〈φ1|. In Fig. 8, we display
the dependence on the ratios �/g and κ/g of the fidelities of the
evolved state at the end of the operation time for the population
transfer [Fig. 8(a)] and the creation of maximal entanglement
[Fig. 8(b)]. The physical configuration that we consider in the
present scheme employs electric dipole transitions on the D1

line of a single 87Rb atom [29]. In a real experiment, one can
couple this atom simultaneously to two optical cavity modes
and two laser fields. Two stable hyperfine ground states are
the (F = 1,m = −1) level and the (F = 2,m = −2) level of
the 52S1/2 state, while two metastable hyperfine excited states
are the (F

′ = 1,m = −1) level and the (F
′ = 2,m = −2)

level of 52P1/2. The related cavity-QED parameters could
be achievable with, for example, microtoroidal whispering-
gallery-mode resonators [30]. In current experiments, the
parameters g = 2.5 GHz, κ = 10 MHz, and � = 10 MHz have
been reported in Refs. [30,31]. For such parameters, we can see
from Fig. 8 that fidelities higher than 98% can be achieved in
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FIG. 8. (Color online) Dependences on �/g and κ/g of the
fidelities of the evolved state at the end of the operation time with
respect to the target state that are obtained by numerically solving the
master equation (15) for (a) the population transfer with �1(t) and
�2(t) defined by Eqs. (20) and (21) with �0 = 0.2g, T = 50/g, and
τ = 0.22T and (b) the maximal entanglement creation with �1(t) and
�2(t) defined by Eqs. (22) and (23) with �′

0 = 0.3g, θ = 17/120,
w = 23/120, and T = 30/g.

both the shortcut schemes. Therefore, the schemes are robust
and might be promising within the current technology.

VI. CONCLUSION

In conclusion, we propose nonadiabatic shortcut schemes
for the population transfer and creation of maximal entangle-
ment between two atoms based on the CQED that perform
much faster than those based on the adiabatic passage method.
Using the transitionless driving approach, we analytically
derive a CDD Hamiltonian, the shortcut performance of which
is numerically demonstrated to be equivalent to our auxiliary
interaction Hamiltonian under a large detuning regime. The
speed in both the population transfer and the maximal
entanglement creation between two atoms can be improved
by about three times those based on the conventional adiabatic
passage. Also, the present schemes are shown to be robust
against the decoherences caused by the atomic spontaneous
emission and cavity decay.
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