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We propose a new and realistic 3-3-1 model with the minimal lepton and scalar contents, named the
simple 3-3-1 model. The scalar sector contains two new heavy Higgs bosons—one neutral H and another
singly charged H�—besides the standard-model Higgs boson. There is a mixing between the Z boson and
the new neutral gauge boson (Z0). The ρ parameter constrains the 3-3-1 breaking scale (w) to be
w > 460 GeV. The quarks get consistent masses via five-dimensional effective interactions, while the
leptons do so via interactions up to six dimensions. Particularly, the neutrino small masses are generated as
a consequence of the approximate lepton-number symmetry of the model. The proton is stabilized due to
the lepton parity conservation ð−1ÞL. The hadronic flavor-changing neutral currents are calculated, giving a
bound w > 3.6 TeV, and yield that the third quark generation is different from the first two. The correct
mass generation for the top quark implies that the minimal scalar sector as proposed is unique. By the
simple 3-3-1 model, the other scalars besides the minimal ones can behave as inert fields responsible for
dark matter. A triplet, doublet, and singlet dark matter are respectively recognized. Our proposals provide
the solutions for the long-standing dark matter issue in the minimal 3-3-1 model.
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I. INTRODUCTION

The standard model has been extremely successful in
describing observed phenomena, especially for the out-
standing prediction of the recently discovered Higgs boson
[1]. However, it must be extended to address unsolved
questions such as the small masses and mixing of neutrinos,
the matter-antimatter asymmetry of the Universe, dark
matter, and dark energy [2]. Therefore, we would like to
argue that the SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX (3-3-1) gauge
theory where the color group is as usual while the
electroweak group is enlarged [3–6] may be an interesting
choice for the physics beyond the standard model, espe-
cially for dark matter.
In fact, the fermion generations in the standard model are

identical which transform the same under the gauge sym-
metry, and each generation is anomaly free. The number of
fermion generations can in principle be arbitrary. All these
might be a consequence of the special weak-isospin group
SUð2ÞL—that its anomaly vanishes for every chiral fermion
representation [7]. By the new weak-isospin symmetry, the
SUð3ÞL anomaly is nontrivial that is only canceled if the
number of generations is an integer multiple of 3 [8]. Due to

the contribution of exotic quarks along with ordinary quarks,
QCD asymptotic freedom requires the number of gener-
ations to be less than or equal to 5. So the fermion generation
number is 3, coinciding with observations [2].
Moreover, the fermion generations in the new model are

nonuniversal, such that the third generation of quarks
transforms under SUð3ÞL differently from the two others.
This might provide a natural solution for the uncharacter-
istic heaviness of the top quark [9]. The quantization of
electric charge is a consequence of fermion content under
this new symmetry [10]. The model can by itself contain a
Peccei-Quinn symmetry for solving the strong CP problem
[11]. The B − L number behaves as a gauge charge (and R
parity results), since it does not commute and is nonclosed
algebraically with the 3-3-1 symmetry, which provides
insights in the known 3-3-1 model [12,13]. The neutrino
masses, possible leptogenesis [14,15], and dark matter
[12,16–19] have been extensively studied.
As a result of the new SUð3ÞL ⊗ Uð1ÞX gauge sym-

metry, the minimal interactions of the theory (including
gauge interactions, minimal Yukawa Lagrangian, and
minimal scalar potential) put the relevant particles (known
as wrong-lepton particles [12] or similar ones in other
versions) in pairs, similarly to the case of superparticles in
supersymmetry. Hence, the 3-3-1 model has been thought
to give some candidates for dark matter [16–18]. However,
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the problem is how to suppress or evade the unwanted
interactions (almost differing from the minimal inter-
actions) and the unwanted vacuums (coming from neutral
scalar candidates) that lead to the fast decay of dark matter
(for detailed reviews, see Refs. [12,19]).
It is easily realized that the new particles in the minimal

3-3-1 model [3] cannot be dark matter because they are
either electrically charged or rapidly decay, even for just
minimal Lagrangians. The 3-3-1 model with right-handed
neutrinos encounters the same issue [19]. Even the lepton-
number symmetry was first regarded as a dark matter
stability mechanism [17], but it is quite wrong, since the
generation of neutrino masses violates the lepton number.
To overcome this difficulty, Ref. [18] introduced another
lepton sector (the model was changed and called the 3-3-1
model with left-handed neutrinos). In another approach
[12], a mechanism for dark matter stability based on W
parity, similarly to R parity in supersymmetry, was given.
However, this stability mechanism works only with the
particle content of the 3-3-1 model with neutral fermions
[15]. Hence, the issue of dark matter identification and its
stability in the typical 3-3-1 models remains unsolved.
If the B − L charge is conserved, the typical 3-3-1

models are not self-consistent (since the B−L and 3-3-1
symmetries are algebraically nonclosed as mentioned
[12,13]). This also applies for other continuous symmetries
imposed, such as Uð1ÞG in Ref. [18], that do not commute
with the 3-3-1 symmetry. One way to keep the typical 3-3-1
models self-contained is that they have to possess explicitly
violating interactions of lepton number. (Notice that the
lepton number is thus an approximate symmetry, while the
baryon number is always conserved and commuted with
the 3-3-1 symmetry.) And a theory for dark matter in the
typical 3-3-1 models must take this point into account.
As a solution to the dark matter issue in the typical 3-3-1

models, we have proposed in the previous work [19] that if
one scalar triplet of the 3-3-1 model with right-handed
neutrinos is inert (Z2 odd) while all other fields are even,
the remaining two scalar triplets (well known as the normal
scalar sector) will result in an economical 3-3-1 model self-
consistently [5]. This model provides appropriate masses
for neutrinos besides the dark matter residing in the inert
triplet. In this work, we sift such outcomes for the minimal
3-3-1 model.
The minimal 3-3-1 model has traditionally been studied

to be worked with three scalar triplets ρ ¼ ðρþ1 ; ρ02; ρþþ
3 Þ,

η ¼ ðη01; η−2 ; ηþ3 Þ, χ ¼ ðχ−1 ; χ−−2 ; χ03Þ and (or not) one scalar
sextet S ¼ ðS011; S−12; Sþ13; S−−22 ; S023; Sþþ

33 Þ. The question is
which scalars are inert, while the rest (or a part of this rest)
provides a normal scalar sector appropriately for symmetry
breaking and mass generation as well as yielding a realistic
model on both sides: mathematical and phenomenological.
In this work, let us restrict our study to the cases with a
minimal normal scalar sector so that the inert sector is
enriched responsibly for dark matter. Looking in the

literature, the reduced 3-3-1 model [6] seems to be a
candidate. However, this model encounters a problem of
large flavor-changing neutral currents (FCNCs) which is
experimentally unacceptable. As an alternative approach,
we will indicate that the minimal 3-3-1 model can behave
as a so-called “simple 3-3-1 model” that is based on only
the two scalar triplets η and χ (which is different from the
reduced 3-3-1 model given in Ref. [6] due to the scalar and
fermion contents). This model will be proved to be realistic
rather than the previous version [6].
With the proposal of the simple 3-3-1 model, the rest of

the scalars (ρ, S), even the replications of η; χ, as well as
possible variants of all of them including new forms, can be
the inert sector (Z2 odd) responsible for dark matter.
However, the most basic cases that result for the desirable
inert sector can be summarized as follows:
(1) The triplet ρ is inert (S is suppressed). However, this

candidate (ρ02) cannot be dark matter due to the direct
dark matter detection constraints.

(2) The sextet S is inert (ρ is suppressed). This sextet does
not provide any realistic dark matter candidate,
similarly to the previous case. However, a variant
of it with Uð1ÞX charge X ¼ 1 yields a triplet dark
matter.

(3) An inert scalar triplet is introduced as the replication
of η (ρ and S are suppressed). In this case, we have a
doublet dark matter.

(4) An inert scalar triplet is introduced as the replication
of χ (ρ and S are suppressed). This case yields a
singlet dark matter.

Note that a combination of the cases above or the whole list
can be interplayed in a single theory based on the simple
3-3-1 model, but they will not be considered in the
current work.
The rest of this work is organized as follows: In Sec. II

we propose the simple 3-3-1 model. The physical scalars,
Goldstone bosons, and physical gauge bosons are identi-
fied. The fermion masses, proton stability, and FCNCs are
also investigated. In Sec. III, the dark matter theories that
are based on the simple 3-3-1 model are respectively
presented. The dark matter candidates of the models with
inert triplet ρ and inert sextet S are analyzed to rule them
out. We will also show that the models with inert triplets as
replications of η and χ, and the model with an X ¼ 1 inert
scalar sextet can provide realistic candidates for dark
matter. To be completed, in Sec. IV, we will give a
particular evaluation of the important dark matter observ-
ables and compare them to the experimental data. Finally,
we summarize our results and conclude this work in Sec. V.

II. SIMPLE 3-3-1 MODEL

We will reexamine the reduced 3-3-1 model [6] and the
minimal 3-3-1 model [3] that leads to a new and realistic
3-3-1 model with minimal lepton and scalar contents—
the so-called simple 3-3-1 model. To make sure of this
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point, the simple 3-3-1 model will be explicitly pointed out
to be consistent with the data. By the new approach, the
dark matter models will emerge to be studied in the next
section.

A. Proposal of the model

The gauge symmetry of the considered model is given by
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX, where the first factor is an
ordinary color group, while the rest is the extension of the
electroweak symmetry, as mentioned. The fermion content
which is anomaly free is defined as [3]

ψaL ≡
0
B@

νaL

eaL
ðeaRÞc

1
CA ∼ ð1; 3; 0Þ;

QαL ≡
0
B@

dαL
−uαL
JαL

1
CA ∼ ð3; 3�;−1=3Þ;

Q3L ≡
0
B@

u3L
d3L
J3L

1
CA ∼ ð3; 3; 2=3Þ;

uaR ∼ ð3; 1; 2=3Þ; daR ∼ ð3; 1;−1=3Þ;
JαR ∼ ð3; 1;−4=3Þ; J3R ∼ ð3; 1; 5=3Þ; ð1Þ

where a ¼ 1; 2; 3 and α ¼ 1; 2 are family indices. The
quantum numbers in parentheses are given based upon the
3-3-1 symmetries, respectively. The electric charge oper-
ator takes the form Q ¼ T3 −

ffiffiffi
3

p
T8 þ X, where Tiði ¼

1; 2;…; 8Þ are SUð3ÞL charges, while X is that of Uð1ÞX
[below, the SUð3ÞC charges will be denoted by ti]. The new
quarks possess exotic electric charges as QðJαÞ ¼ −4=3
and QðJ3Þ ¼ 5=3.
Because the third generation of quarks as imposed

transforms under SUð3ÞL differently from the first two
generations, the FCNCs due to the new neutral gauge boson
(Z0) exchange are more constrained, yielding a low bound
of some TeV for the 3-3-1 breaking scale or the Z0 mass [9].
Such a new physics scale is possibly still in the well-
defined region of the theory, limited below the Landau pole
of around 5 TeV [20]. By contrast, if the first or second
quark generation were arranged differently from the two
others like the reduced 3-3-1 model [6], the resulting theory
would be ruled out by the large FCNCs, provided that the
new physics enters below the Landau pole. Furthermore,
the theory would be invalid (or inconsistent) if one tried to
push the new physics scale far above the Landau pole in
order to prevent the FCNCs [9,21]. All these issues will
also be studied in the last part of this section.
The model can work with only two scalar triplets [6].

Upon the proposed fermion content, let us impose, how-
ever, the following two scalar triplets:

η ¼

0
B@

η01
η−2
ηþ3

1
CA ∼ ð1; 3; 0Þ; χ ¼

0
B@

χ−1
χ−−2
χ03

1
CA ∼ ð1; 3;−1Þ;

ð2Þ
with vacuum expectation values (VEVs)

hηi ¼ 1ffiffiffi
2

p

0
B@

u

0

0

1
CA; hχi ¼ 1ffiffiffi

2
p

0
B@

0

0

w

1
CA: ð3Þ

This yields a dominant tree-level mass for the top quark,
while some lighter quarks that have no tree-level mass will
get consistent masses via either effective interactions
(shown below) or radiative corrections [5]. Otherwise, if
the two scalar triplets like those in Ref. [6] which are χ and
another triplet ρ ∼ ð1; 3; 1Þ are retained for this model (in
this case, the η is suppressed), it will result a vanishing tree-
level mass for the top quark that is unnatural to be induced
by such a subleading quantum effect or effective theory.
The original study in Ref. [6] gave a comment on the

scalar triplets of this model; however, the fermion content
was never changed, so it would always face the large FCNC
problems. In recent research [22], the fermion content was
changed, but the scalar sector of the reduced 3-3-1 model
was retained, which would be encountered with a vanishing
top quark mass at the tree level. Hence, those issues have
naturally been solved by this proposal. In other words, all
the ingredients as stated above recognize a unique 3-3-1
model distinguished from the previous versions such as the
reduced and minimal 3-3-1 models [3,6] due to the
difference in the fermion and/or scalar contents. This is
a new observation of this work, which is going to be called
the “simple 3-3-1 model.”

B. Scalar sector

The scalar potential of the model is given by

Vsimple ¼ μ21η
†ηþ μ22χ

†χ þ λ1ðη†ηÞ2 þ λ2ðχ†χÞ2
þ λ3ðη†ηÞðχ†χÞ þ λ4ðη†χÞðχ†ηÞ; ð4Þ

where μ1;2 have mass dimensions, while λ1;2;3;4 are dimen-
sionless. The VEVs u; w are given from the potential
minimization as

u2 ¼ 2ð2λ2μ21 − λ3μ
2
2Þ

λ23 − 4λ1λ2
; w2 ¼ 2ð2λ1μ22 − λ3μ

2
1Þ

λ23 − 4λ1λ2
: ð5Þ

To make sure that
(1) The scalar potential is bounded from below (vacuum

stability),
(2) The VEVs u; w are nonzero (for symmetry breaking

and mass generation),
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(3) The physical scalar masses are positive,
the parameters satisfy

μ21;2 < 0; λ1;2;4 > 0;

−2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
< λ3 < Minf2λ1ðμ2=μ1Þ2; 2λ2ðμ1=μ2Þ2g:

ð6Þ

In addition, the VEV w breaks the 3-3-1 symmetry
down to the standard-model symmetry and provides
the masses for new particles, while the VEV u breaks

the standard-model symmetry as usual and gives the
masses for ordinary particles. Therefore, to keep
consistency with the standard model, we impose
w ≫ u.
Expanding η; χ around the VEVs, we get ηT ¼

ð uffiffi
2

p 0 0Þ þ ðS1þiA1ffiffi
2

p η−2 η
þ
3 Þ and χT ¼ ð0 0 wffiffi

2
p Þþ

ðχ−1 χ−−2 S3þiA3ffiffi
2

p Þ. Hence, the physical scalar fields with

respective masses are identified as follows:

h≡ cξS1 − sξS3; m2
h ¼ λ1u2 þ λ2w2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1u2 − λ2w2Þ2 þ λ23u

2w2

q
≃ 4λ1λ2 − λ23

2λ2
u2;

H ≡ sξS1 þ cξS3; m2
H ¼ λ1u2 þ λ2w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1u2 − λ2w2Þ2 þ λ23u

2w2

q
≃ 2λ2w2; H� ≡ cθη�3 þ sθχ�1 ;

m2
H� ¼ λ4

2
ðu2 þ w2Þ≃ λ4

2
w2: ð7Þ

Here, we have denoted cx ¼ cosðxÞ; sx ¼ sinðxÞ; tx ¼
tanðxÞ, and so forth, for any x angle. The ξ is the
S1-S3 mixing angle, while the θ is that of χ1-η3. They
are obtained as

tθ ¼
u
w
; t2ξ ¼

λ3uw
λ2w2 − λ1u2

≃ λ3u
λ2w

: ð8Þ

The h field is the standard-model-like Higgs boson,
while H and H� are new neutral and singly charged Higgs
bosons, respectively, which is unlike Ref. [6]. There are
eight massless scalar fields GZ ≡ A1, GZ0 ≡ A3, G�

W ≡ η�2 ,
G��

Y ≡ χ��
2 , and G�

X ≡ cθχ�1 − sθη�3 that correspond to the
Goldstone bosons of eight massive gauge bosons Z, Z0,
W�, Y�� and X� (see below). In the effective limit, u ≪ w,
we have

η≃
0
B@

uþhþiGZffiffi
2

p

G−
W

Hþ

1
CA; χ ≃

0
B@

G−
X

G−−
Y

wþHþiGZ0ffiffi
2

p

1
CA: ð9Þ

C. Gauge sector

The covariance derivative is given by Dμ ¼ ∂μþ
igstiGiμ þ igTiAiμ þ igXXBμ, where gs; g, and gX are the
gauge coupling constants, while Giμ; Aiμ, and Bμ are the
gauge bosons, as associated with the 3-3-1 groups, respec-
tively. On the other hand, in the next section we will
introduce extra scalars that are odd under a Z2 symmetry
(the so-called “inert” scalars). However, the inert scalars do
not give the masses for the gauge bosons, because they
have no VEVs due to the Z2 symmetry. Therefore, the

gauge bosons of the model get masses from part of the
Lagrangian

P
Φ¼η;χðDμhΦiÞ†ðDμhΦiÞ, which results as

follows.
The gluons Gi are massless and physical fields by

themselves. The physical charged gauge bosons with
masses are given by

W� ≡ A1∓iA2ffiffiffi
2

p ; m2
W ¼ g2

4
u2; ð10Þ

X∓ ≡ A4∓iA5ffiffiffi
2

p ; m2
X ¼ g2

4
ðw2 þ u2Þ; ð11Þ

Y∓∓ ≡ A6∓iA7ffiffiffi
2

p ; m2
Y ¼ g2

4
w2: ð12Þ

The W is like the standard-model W boson that yields
u≃ 246 GeV. The new gauge bosons X and Y have
large masses in the w scale, satisfying the relation
m2

X ¼ m2
Y þm2

W , which contrasts with Ref. [6] and that
in the economical 3-3-1 model [5].
The photon field Aμ as coupled to the electric charge

operator is easily obtained:

Aμ ¼ sWA3μ þ cW

�
−
ffiffiffi
3

p
tWA8μ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

q
Bμ

�
; ð13Þ

where sW ¼ e=g ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2

p
, with t ¼ gX=g, is the sine

of the Weinberg angle [23]. The standard-model Zμ boson
and the new neutral gauge boson Z0

μ can be given
orthogonally to Aμ as follows [23]:
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Zμ ¼ cWA3μ − sW
�
−
ffiffiffi
3

p
tWA8μ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

q
Bμ

�
; ð14Þ

Z0
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

q
A8μ þ

ffiffiffi
3

p
tWBμ: ð15Þ

Aμ is a physical field (mA ¼ 0) and decoupled, whereas
there is a mixing between Z and Z0 given by the squared-
mass matrix of the form

 
m2

Z m2
ZZ0

m2
ZZ0 m2

Z0

!
; ð16Þ

where

m2
Z ¼ g2

4c2W
u2; m2

ZZ0 ¼ g2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4s2W

p
4
ffiffiffi
3

p
c2W

u2;

m2
Z0 ¼ g2½ð1 − 4s2WÞ2u2 þ 4c4Ww

2�
12c2Wð1 − 4s2WÞ

: ð17Þ

Therefore, we have two physical neutral gauge bosons
(besides the photon):

Z1 ¼ cφZ − sφZ0; Z2 ¼ sφZ þ cφZ0; ð18Þ

with the mixing angle

t2φ ¼
ffiffiffi
3

p ð1 − 4s2WÞ3=2u2
2c4Ww

2 − ð1þ 2s2WÞð1 − 4s2WÞu2

≃
ffiffiffi
3

p ð1 − 4s2WÞ3=2
2c4W

u2

w2
ð19Þ

and their masses

m2
Z1

¼ 1

2

�
m2

Z þm2
Z0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Z −m2
Z0 Þ2 þ 4m4

ZZ0

q �
≃ g2

4c2W
u2;

ð20Þ

m2
Z2

¼ 1

2

�
m2

Z þm2
Z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Z −m2
Z0 Þ2 þ 4m4

ZZ0

q �

≃ g2c2W
3ð1 − 4s2WÞ

w2: ð21Þ

Because of φ ≪ 1, we have Z1 ≃ Z and Z2 ≃ Z0. Here Z1

is the standard-model-like Z boson, while Z2 is a new
neutral gauge boson with the mass in the w scale. The
mixing between Z and Z0 was not regarded in Ref. [6].
The contribution to the experimental ρ parameter can be

calculated as

Δρ≡ m2
W

c2Wm
2
Z1

− 1≃ m4
ZZ0

m2
Zm

2
Z0
≃
�
1 − 4s2W
2c2W

�
2 u2

w2
: ð22Þ

Taking s2W ¼ 0.231 and Δρ < 0.0007 [2], we have
w > 460 GeV. Since the other constraints yield w in some
TeV, we conclude that the ρ parameter is very close to 1 and
in good agreement with the experimental data [2].

D. Fermion masses and proton stability

Again, the inert scalars as mentioned do not give the
masses for fermions, since they have no VEV and no
renormalizable Yukawa interactions due to the Z2 sym-
metry. Hence, the interactions that lead to the fermion
masses are given only by the two scalar triplets above:

LY ¼ hJ33Q̄3LχJ3R þ hJαβQ̄αLχ
�JβR þ hu3aQ̄3LηuaR

þ huαa
Λ

Q̄αLηχuaR þ hdαaQ̄αLη
�daR þ hd3a

Λ
Q̄3Lη

�χ�daR

þ heabψ̄
c
aLψbLηþ

h0eab
Λ2

ðψ̄c
aLηχÞðψbLχ

�Þ

þ sνab
Λ

ðψ̄c
aLη

�ÞðψbLη
�Þ þ H:c:; ð23Þ

where Λ is a new scale (with the mass dimension) under
which the effective interactions take place. It is easily
checked that heab is antisymmetric while sνab is symmetric in
the flavor indices. The coupling sν explicitly violates
the lepton number by 2 units (as also needed for a realistic
3-3-1 model), while the other couplings h’s conserve this
charge. Notice that the effective interactions for quark and
neutrino masses start from five dimensions, while those for
the charged leptons start from six dimensions.
Let us remark on the properties of effective interactions.
(1) No evidence for a grand unified theory (GUT) and

strength of effective interactions: Since the pertur-
bative property of the Uð1ÞX interaction is broken,
and the Landau pole appears at a low scale of some
TeV, the model has no origin from a more funda-
mental theory such as a GUT at a higher energy
scale. This contradicts the case of the standard model
and the 3-3-1 model with right-handed neutrinos.
Therefore, we do not have such a GUT to compare
and to say about the size of the effective interactions.

(2) Smallness of neutrino masses: The coupling sν

violates lepton number, so it should be very small
in comparison to the conserved h’s for charged
leptons and quarks, sν ≪ h’s (since, by contrast, the
conservation of lepton number implies sν ¼ 0 but
h’s ≠ 0). Therefore, the five-dimensional interaction
is reasonable to provide the small masses for
neutrinos in spite of Λ ∼ w in TeV order, which is
unlike the canonical seesaw scale motivated by
GUTs [2] due to the above remark. (Notice that
Ref. [6] discussed the cases with respect to five- or
seven-dimensional interactions, despite the fact that
all the effective interactions of this kind give
comparable contributions with Λ ∼ w.) We conclude
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that the neutrino masses are generated to be naturally
small as a result of the mentioned approximate
symmetry of lepton number, characterized by ϵ≡
sν=h ≪ 1 for all h’s.

(3) Lepton parity and proton stability: The lepton
number of lepton triplet (ψ) components, for exam-
ple, is L ¼ diagð1; 1;−1Þ, which does not commute
with the gauge symmetry. In fact, it is an approxi-
mate symmetry. Let us introduce a conserved sym-
metry as a remnant subgroup of the lepton number,

P ¼ ð−1ÞL; ð24Þ
the so-called lepton parity. The lepton parity
for the lepton triplet components is P ¼
diagð−1;−1;−1Þ ¼ −1 and P ¼ diagð1; 1; 1Þ ¼ 1
for scalar triplets and quark triplets/antitriplets,
and P ¼ 1 for right-handed quark singlets, in spite
of LðJÞ ¼ �2. Hence, the lepton parity always
commutes with the gauge symmetry and is con-
served. It is just the mechanism for suppressing the
effective interactions such as ψ̄c

1LQ1Lūc1Rd1R that
lead to the proton decay, which is unlike the one
in Ref. [6].

The mass Lagrangian of quarks and charged leptons
takes the form −f̄aLm

f
abfbR þ H:c:, where f ¼ J; u; d; e.

We havemJ
33 ¼ −hJ33w=

ffiffiffi
2

p
as the mass of J3, while mJ

αβ ¼
−hJαβw=

ffiffiffi
2

p
is the mass matrix of J1;2. They all have large

masses in w scale. The mass matrices of u and d are
obtained as

mu
3a ¼ −hu3a

uffiffiffi
2

p ; mu
αa ¼ −huαa

uw
2Λ

;

md
αa ¼ −hdαa

uffiffiffi
2

p ; md
3a ¼ hd3a

uw
2Λ

: ð25Þ

Because of Λ ∼ w, the ordinary quarks u and d all get
masses proportional to the weak scale u ¼ 246 GeV. For
the top quark, we have mt ¼ −hu33 × 174 GeV, provided
that hu3a is flavor diagonal. Therefore, mt ¼ 173 GeV if
hu33 ≈ 1. On the other hand, the lighter quarks (u; d; c; s; b)
can be explained by huαβ < 1, hdab < 1 as well as w < Λ,
which is more natural than the standard model. If the first
or second generation of quarks were different under
SUð3ÞL, the mass of the top quark would be
mt ¼ −hu33 w

Λ × 123 GeV, for which it is unnatural to
achieve an experimental value of 173 GeV due to the fact
that hu33 < 1 and w

Λ < 1 in the realm of perturbative theory.
This issue is quite similar to the economical 3-3-1 model
[5]. For the charged leptons, we derive

me
ab ¼

ffiffiffi
2

p
u

�
heab þ h0eba

w2

2Λ2

�
: ð26Þ

Since Λ ∼ w, the charged leptons have masses in the weak
scale. Although he is antisymmetric, h0e is a generic matrix

in generation indices. Therefore, the charged lepton mass
matrix takes the most general form that can provide
consistent masses for the charged leptons in similarity to
the case of the standard model.
Finally, the mass Lagrangian of neutrinos is given by

− 1
2
ν̄caLm

ν
abνbL þ H:c:, where

mν
ab ¼ −sνab

u2

Λ
: ð27Þ

To proceed further, let us comment on the neutrino masses
of the model in Ref. [6] that look like −κ0 v

2
ρ

2Λ ð
vχ
ΛÞ2. This

result that was given from a seven-dimensional interaction
is similar in scale to ours as a fact that vχ is close to Λ.
Rising in the dimension of effective interactions may not
be a reason for the smallness of the neutrino masses. Here,
we have argued that the effective interaction responsible
for the neutrino masses violates the lepton number as a
character for the approximate symmetry of this charge (so
that the 3-3-1 model is self-consistent), whereas all other
mass operators do not have this property. On the other
hand, our effective theory does not have a motivation from
GUTs, and for such cases the effective interaction strengths
such as sν are unknown. Hence, they just appear due to
nonperturbative effects to reflect the observed phenomena.
Indeed, using Λ ¼ 5 TeV, u ¼ 246 GeV, and mν

ab ∼ eV,
we have sνab ¼ ϵh ∼ 10−10. Let us choose the Yukawa
coupling of the electron h ¼ he ∼ 10−6. We get the lepton-
number-violating parameter

ϵ ∼ 10−4: ð28Þ
The strength of the violating interaction for an approximate
lepton number is reasonably small in comparison to the
ordinary interactions, and this may be why the neutrino
masses are observed to be small.

E. FCNCs

Let us give an evaluation of tree-level FCNCs that
dominantly come from the gauge interactions. With the
aid of t ¼ gX=g and X ¼ Q − T3 þ

ffiffiffi
3

p
T8, the interaction

of neutral gauge bosons is obtained by

LNC ¼ −g
X
Ψ

Ψ̄ γμ½T3A3μ þ T8A8μ

þ tðQ − T3 þ
ffiffiffi
3

p
T8ÞBμ�Ψ; ð29Þ

where Ψ runs over every fermion multiplet of the model.
There is no FCNC coupled to Q and T3, since the flavors
νaL, eaL, eaR, uaL, uaR, daL, daR, JαL, and JαR are
respectively identical under these generators. Hence, the
FCNCs happen only with T8, given by

LT8
¼ −g

X
Ψ

Ψ̄ γμT8ðA8μ þ t
ffiffiffi
3

p
BμÞΨ

¼ −
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3t2W
p X

ΨL

Ψ̄Lγ
μT8ΨLZ0

μ; ð30Þ
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where we have used the identities A8 þ t
ffiffiffi
3

p
B ¼

ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p
ÞZ0 and T8ðΨRÞ ¼ 0. In this case, there is

no FCNC associated with the leptons and exotic quarks
because the flavors νaL, eaL, eaR and JαL correspondingly

transform in the same manner under T8, respectively.
Therefore, the FCNCs are only concerned with ordinary
quarks (uaL, daL) due to the fact that under T8 the third quark
generation is different from the first two. The relevant part is

LT8
⊃ −

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3t2W

p ½ūaLγμT8ðuaLÞuaL þ d̄aLγμT8ðdaLÞdaL�Z0
μ

¼ −
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3t2W
p ðūLγμTuuL þ d̄LγμTddLÞZ0

μ

¼ −
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3t2W
p ½ū0LγμðV†

uLTuVuLÞu0L þ d̄0Lγ
μðV†

dLTdVdLÞd0L�Z0
μ; ð31Þ

where Tu ¼ Td ¼ 1

2
ffiffi
3

p diagð−1;−1; 1Þ, u ¼ ðu1 u2 u3ÞT ,
d ¼ ðd1 d2 d3ÞT , u0 ¼ ðu c tÞT , and d0 ¼ ðd s bÞT . The
terms VuL and VdL take part in diagonalizing the mass
matrices of ordinary quarks, uL ¼ VuLu0L, uR ¼ VuRu0R,
dL ¼ VdLd0L, and dR ¼ VdRd0R, so that V†

uLm
uVuR ¼

diagðmu;mc;mtÞ and V†
dLm

dVdR ¼ diagðmd;ms;mbÞ.
The CKM matrix is VCKM ¼ V†

uLVdL. Hence, the tree-
level FCNCs are described by the Lagrangian

LFCNC ¼ −
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3t2W
p ðV�

qLÞ3i
1ffiffiffi
3

p ðVqLÞ3jq̄0iLγμq0jLZ0
μ

ði ≠ jÞ; ð32Þ

where we have denoted q as either u or d.
With the above result, substituting Z0 ¼ −sφZ1 þ cφZ2,

the effective Lagrangian for hadronic FCNCs can be
derived via the Z1;2 exchanges as

Leff
FCNC ¼ g2½ðV�

qLÞ3iðVqLÞ3j�2
3ð1 − 3t2WÞ

�
s2φ
m2

Z1

þ c2φ
m2

Z2

�
ðq̄0iLγμq0jLÞ2:

ð33Þ

The contribution of Z1 is negligible, since

s2φ=m2
Z1

c2φ=m2
Z2

≃ ð1 − 4s2WÞ2
4c4W

u2

w2
≃ 0.00244 ×

u2

w2
≪ 1; ð34Þ

provided that s2W ¼ 0.231 and u ≪ w. Therefore, only Z2

governs the FCNCs, and we have

Leff
FCNC ≃ ½ðV�

qLÞ3iðVqLÞ3j�2
w2

ðq̄0iLγμq0jLÞ2: ð35Þ

Interestingly enough, this interaction is independent of
the Landau pole 1=ð1 − 4s2WÞ. (This is also an evidence
pointing out that when the theory is encountered with
the Landau pole, the effective interactions take place.)
It describes mixing systems such as K0 − K̄0, D0 − D̄0,

B0 − B̄0, and B0
s − B̄0

s , caused by the pairs ðq0i; q0jÞ ¼
ðd; sÞ; ðu; cÞ; ðd; bÞ, and (s; b), respectively. The strongest
constraint comes from the K0 − K̄0 system, given by [2]

½ðV�
dLÞ31ðVdLÞ32�2

w2
<

1

ð104 TeVÞ2 : ð36Þ

Assume that ua is flavor diagonal. The CKM matrix is just
VdL (i.e., VCKM ¼ VdL). Therefore, jðV�

dLÞ31ðVdLÞ32j≃
3.6 × 10−4 [2], and we have

w > 3.6 TeV: ð37Þ

This limit is still in the perturbative region of the model [20]
and is in good agreement with the recent bounds [24].
By contrast, if the first or second generation of quarks

is arranged differently from the two others under
SUð3ÞL, we have jðV�

dLÞ11ðVdLÞ12j≃ jðV�
dLÞ21ðVdLÞ22j≃

0.22 [2] for both the cases with the K0 − K̄0 system.
Moreover, the new physics scale w is bounded by the
Landau pole, w < 5 TeV, for example [20]. Hence, the
effective coupling (35) for the K0 − K̄0 system becomes
1.94 × 105=ð104 TeVÞ2, which is much greater than the
above experimental bound by 5 orders of magnitude. In
other words, the experimental bound implies w > 2.2×
103 TeV, provided that the effective interaction (35)
works, which contradicts with the fact that the model
in this region is invalid due to the limit of the Landau
pole. Consequently, such cases should be ruled out due
to the large FCNCs that are experimentally unaccept-
able. The third quark generation should be different
from the first two.

III. IMPLICATION FOR DARK MATTER

Let us note that the typical 3-3-1 models [3,4] are
generally supplied with three scalar triplets and (or not)
one scalar sextet. However, only the two scalar triplets
among them (like the ones given above for the minimal
3-3-1 model or those in Ref. [5] for the 3-3-1 model with
right-handed neutrinos) are sufficient for symmetry
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breaking and mass generation. Hence, we would like to
argue that the remaining scalar multiplets or similar ones
(which have been discarded in the simple versions—the
simple 3-3-1 model and the economical 3-3-1 model [5])
can behave as inert multiplets responsible for dark matter.
The first work on this search was dedicated to the 3-3-1
model with right-handed neutrinos [19].
For the case of the minimal 3-3-1 model under consid-

eration, the theoretical aspect and dark matter phenom-
enology will completely be distinguished from Ref. [19] as
well as the standard-model extensions with a singlet, a
doublet, or a triplet scalar dark matter. For example, in the
model of singlet dark matter, the dark matter interacts with
the standard-model matter only via the scalar portal. But, in
this model, the singlet dark matter and the standard-model
matter can be coupled via the new gauge portal addition-
ally. Also, the doublet and triplet dark matters can be
communicated to the standard-model matter by additional
contributions of new scalars and new gauge bosons.

A. Simple 3-3-1 model with inert ρ triplet

We can introduce into the theory constructed above an
extra scalar triplet as

ρ ¼

0
B@

ρþ1
ρ02
ρþþ
3

1
CA ∼ ð1; 3; 1Þ: ð38Þ

This scalar triplet is a part of the minimal 3-3-1 model [3].
However, for the model under consideration, we suppose
that it transforms as an odd field under a Z2 symmetry,
ρ → −ρ, whereas all other fields of the model are even.
Therefore, the ρ and its components (including the ones
proposed below) are all called inert fields/particles.
The normal scalar sector ðη; χÞ, which consists of the

VEVs, the conditions for parameters, and the physical
scalars with their masses as obtained above, remains
unchanged [19]. For the inert sector, ρ has vanishing
VEVs due to the Z2 conservation. Moreover, the real
and imaginary parts of the electrically neutral complex
field ρ02 ¼ 1ffiffi

2
p ðHρ þ iAρÞ by themselves are physical fields.

Any one of them can be stabilized if it is the lightest inert
particle (LIP) among the inert particles residing in ρ due to
the Z2 symmetry.
Unfortunately, we can show that Hρ and Aρ cannot be

dark matter. Indeed, Hρ and Hρ are not separated (degen-
erate) in mass, which leads to a scattering cross section of
Hρ and Aρ off nuclei due to the t-channel exchange by the Z
boson. Such a large contribution has already been ruled out
by the direct dark matter detection experiments [25].
This kind of model is not favored, since it does not

provide any dark matter. And, this is unlike the inert scalar
triplet of the 3-3-1 model with right-handed neutrinos [19],

even though they play equivalently important roles for the
typical 3-3-1 models [3,4].

B. Simple 3-3-1 model with η replication

An extra scalar triplet that is a replication of η is defined as

η0 ¼

0
B@

η001
η0−2
η0þ3

1
CA ∼ ð1; 3; 0Þ: ð39Þ

Here, the η0 and η have the same gauge quantum numbers.
However, they differ under a Z2 symmetry. The η0 is
assigned as an odd field under Z2, η0 → −η0, whereas the
η and all other fields of the simple 3-3-1 model are even.
The scalar potential that is invariant under the gauge

symmetry and Z2 is given by

V ¼ Vsimple þ μ2η0η
0†η0 þ x1ðη0†η0Þ2 þ x2ðη†ηÞðη0†η0Þ

þ x3ðχ†χÞðη0†η0Þ þ x4ðη†η0Þðη0†ηÞ þ x5ðχ†η0Þðη0†χÞ

þ 1

2
½x6ðη0†ηÞ2 þ H:c:�: ð40Þ

Here, μη0 has the dimension of mass, while xi ði ¼
1; 2; 3;…; 6Þ are dimensionless. All the parameters of
the scalar potential are real, except that x6 can be complex.
But the x6’s phase can be eliminated by redefining the
relative phases of η0 and η. Therefore, this potential
conserves the CP symmetry. Moreover, the VEV of η0
vanishes due to the conservation of Z2 symmetry. Hence,
the CP symmetry is also conserved by the vacuum. x6, u,
and w can all be considered to be real.
Similarly to the previous case, the normal scalar sector

(η; χ) as identified above that includes the minimization
conditions, the constraints on u; w, the μ’s, the λ’s, and
the physical scalars with respective masses are retained
unchanged [19]. To make sure that the scalar potential is
bounded from below and that the Z2 symmetry is conserved
by the vacuum, i.e., hη0i ¼ 0, the remaining parameters of
the potential satisfy [19]

μ2η0 > 0; x1;3 > 0; x2 þ x4 � x6 > 0: ð41Þ

Let us define M2
η0 ≡ μ2η0 þ 1

2
x2u2 þ 1

2
x3w2 and η001 ≡

1ffiffi
2

p ðH0
1 þ iA0

1Þ. It is easily shown that the gauge states

H0
1, A0

1, η0�2 , and η0�3 by themselves are physical inert
particles, with the masses given, respectively, by

m2
H0

1
¼ M2

η0 þ
1

2
ðx4 þ x6Þu2;

m2
A0
1
¼ M2

η0 þ
1

2
ðx4 − x6Þu2;

m2
η0
2
¼ M2

η0 ; m
2
η0
3
¼ M2

η0 þ
1

2
x5w2: ð42Þ
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The LIP responsible for dark matter is H0
1 if x6 <

Minf0;−x4; ðw=uÞ2x5 − x4g, or alternatively A0
1 if x6 >

Maxf0; x4; x4 − ðw=uÞ2x5g. Let us consider the case H0
1

as the darkmatter candidate (or a LIP). TheH0
1 transforms as

a doublet dark matter under the standard-model symmetry,
which is similar to the case of the inert doublet model [26].
However, theH0

1 has a natural mass in thew scale at the TeV
range.Therefore, thismodel predicts the largemass regionof
a doublet dark matter [27]. Its relic density, direct, and
indirect detections can be calculated to fit the data [28].

C. Simple 3-3-1 model with χ replication

The χ replication has the form

χ0 ¼

0
B@

χ0−1
χ0−−2
χ003

1
CA ∼ ð1; 3;−1Þ: ð43Þ

Let us introduce a Z2 symmetry so that χ0 → −χ0 while all
other fields of the simple 3-3-1 model are even under this
parity. The scalar potential that is invariant under the gauge
symmetry and the Z2 is given by

V ¼ Vsimple þ μ2χ0χ
0†χ0 þ y1ðχ0†χ0Þ2 þ y2ðη†ηÞðχ0†χ0Þ

þ y3ðχ†χÞðχ0†χ0Þ þ y4ðη†χ0Þðχ0†ηÞ þ y5ðχ†χ0Þðχ0†χÞ

þ 1

2
½y6ðχ0†χÞ2 þ H:c:�: ð44Þ

Similarly to the previous model, we can take y6, u, and
w as real parameters, and the CP symmetry is always
conserved and unbroken by the vacuum. The normal scalar
sector as obtained is retained unchanged. The scalar
potential is bounded from below, and the Z2 is conserved
by the vacuum if we impose

μ2χ0 > 0; y1;2 > 0; y3 þ y5 � y6 > 0: ð45Þ

With M2
χ0 ≡μ2χ0 þ 1

2
y2u2þ 1

2
y3w2 and χ003 ≡ 1ffiffi

2
p ðH0

3þ iA0
3Þ,

we haveH0
3, A

0
3, χ

0�
1 , and χ0��

2 as physical inert scalar fields
by themselves with corresponding masses

m2
H0

3
¼ M2

χ0 þ
1

2
ðy5 þ y6Þw2;

m2
A0
3
¼ M2

χ0 þ
1

2
ðy5 − y6Þw2;

m2
χ0
2
¼ M2

χ0 ; m2
χ0
1
¼ M2

χ0 þ
1

2
y4u2; ð46Þ

which are all in the w scale of TeV order.
Depending on the parameter regime, H0

3 or A0
3 may be

the LIP responsible for dark matter. Let us consider H0
3 as

the LIP, i.e., y6 < Minf0;−y5; ðu=wÞ2y4 − y5g. TheH0
3 is a

singlet dark matter under the standard-model symmetry,
similar to the phantom of the Silveira-Zee model [29,30].
However, its phenomenology is unique due to the

interactions with the new gauge bosons and new Higgs
bosons besides the standard-model Higgs portal, which
looks like the one in the 3-3-1 model with right-handed
neutrinos [19]. It has a natural mass in the TeV range, and
its relic density as well as the detection cross sections can
be calculated to compare with the data [28] (see also
Ref. [19] for the similar ones).

D. Simple 3-3-1 model with inert scalar sextet

Since the inert scalar multiplets under consideration do
not couple to fermions, their Uð1ÞX charges are not fixed.
However, these charges must be chosen so that at least one
multiplet component is electrically neutral for dark matter.
Under this view, there are just three distinct inert scalar
triplets ρ, η0, and χ0 as already studied. However, there are
only five inert scalar sextets, since one of them contains up
to two electrically neutral components. In this work, we
consider only the two sextets that are correspondingly
embedded by the familiar scalar triplets with respective
hypercharges Y ¼ ðþ=−Þ1 and Y ¼ 0 under the standard-
model symmetry: ð6; XÞ ¼ ð3; YÞ⊕ð2; YÞ⊕ð1; YÞ, where
Y ¼ −

ffiffiffi
3

p
T8 þ X can be identified from the electric charge

operator of the model.

1. Inert scalar sextet X ¼ 0

Let us introduce the scalar sextet as often studied in the
minimal 3-3-1 model [3] into the simple 3-3-1 model,

S ¼

0
BBBBB@

S011
S−
12ffiffi
2

p Sþ
13ffiffi
2

p

S−
12ffiffi
2

p S−−22
S0
23ffiffi
2

p

Sþ
13ffiffi
2

p S0
23ffiffi
2

p Sþþ
33

1
CCCCCA ∼ ð1; 6; 0Þ: ð47Þ

However, this sextet is odd under a Z2 symmetry (S → −S),
while all other fields are even. Notice also that this sextet
contains the scalar triplet with Y ¼ −1 under the standard-
model symmetry, similar to the one in the type-II seesaw
mechanism.
The scalar potential is given by

V ¼ Vsimple þ μ2STrS
†Sþ z1ðTrS†SÞ2 þ z2TrðS†SÞ2

þ ðz3η†ηþ z4χ†χÞTrS†Sþ z5η†SS†ηþ z6χ†SS†χ

þ 1

2
ðz7ηηSSþ H:c:Þ; ð48Þ

where the last terms can explicitly be written as
ηηSS ¼ ϵmnpϵqrsηmηqSnrSps. To ensure that the potential
is bounded from below, as well as that the Z2 symmetry is
conserved by the vacuum, i.e., hSi ¼ 0, we impose

μ2S > 0; z1 > 0; z4 > 0; z1 þ z2 > 0;

z3 þ z5 > 0; z6 þ 2z4 > 0; z3 � z7 > 0: ð49Þ
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Note that z7 and the VEVs of η, χ can be chosen to be real
due to the CP conservation.
Similarly to the above cases, the normal scalar sector as

given remains unchanged. Let M2
S ≡ μ2S þ 1

2
z3u2 þ 1

2
z4w2,

S011 ≡ 1ffiffi
2

p ðHS þ iASÞ, and S023 ≡ 1ffiffi
2

p ðH0
S þ iA0

SÞ. The inert

scalar sector yields the physical fields

HS; AS; H0
S; A0

S; S�12; S�13;

H��
1 ¼ cζS��

22 − sζS��
33 ; H��

2 ¼ sζS��
22 þ cζS��

33 ; ð50Þ

where ζ is the S22-S33 mixing angle defined by t2ζ ¼ 2z7
z6

u2

w2.
The masses of the inert particles are respectively given by

m2
HS

¼ m2
AS

¼ M2
S þ

1

2
z5u2;

m2
H0

S
¼ M2

S þ
1

4
z6w2 −

1

2
z7u2;

m2
A0
S
¼ M2

S þ
1

4
z6w2 þ 1

2
z7u2;

m2
S12

¼ M2
S þ

1

4
z5u2;

m2
S13

¼ M2
S þ

1

4
z5u2 þ

1

4
z6w2;

m2
H1;2

¼ M2
S þ

1

4
z6w2∓ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z26w

4 þ 4z27u
4

q
: ð51Þ

All these masses are in the w scale of the TeV range.
Depending on the parameter space, HS, AS, H0

S, and A0
S

may be dark matter candidates. However, HS and AS belong
to the triplet under the standard-model symmetry, and they
are degenerate in mass. Consequently, they have a t-channel
exchange scattering off nuclei due to the contribution of
the Z boson, which has already been ruled out by the direct
dark matter detection experiments [25], similar to those
in the first dark matter model above. By contrast, H0

S and
A0
S transform as doublets under the standard-model sym-

metry and are separated in the masses. Unfortunately, they
cannot be the LIP, because both are much heavier than the

H1 field: m2
H0

SðA0
SÞ−m2

H1
¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z26w

4þ4z27u
4

q
−ðþÞ1

2
z7u2≃

1
4
jz6jw2>0. The H0

S and A0
S that cannot be dark matter will

rapidly decay [28]. To conclude, the scalar sextet S does not
provide realistic dark matter candidates, which is similar to
the case of the inert triplet model with a corresponding scalar
triplet as embedded in our sextet [31].

To resolve the mass degeneracy of the real and imaginary
parts of the neutral scalar field in the sextet (for the current
model and even for the inert triplet model), as well as to
avoid the large direct dark matter detection cross section, let
us consider the following model.

2. Inert scalar sextet X ¼ 1

Let us introduce another sextet with X ¼ 1,

σ ¼

0
BBBBB@

σþ11
σ0
12ffiffi
2

p σþþ
13ffiffi
2

p

σ0
12ffiffi
2

p σ−22
σþ
23ffiffi
2

p

σþþ
13ffiffi
2

p σþ
23ffiffi
2

p σþþþ
33

1
CCCCCA ∼ ð1; 6; 1Þ: ð52Þ

This sextet is also odd under a Z2 symmetry, whereas all the
other fields are even. It is clear that the scalar triplet with
Y ¼ 0 under the standard-model symmetry has been
embedded in the sextet.This scalar triplet has gaugequantum
numbers similar to the standard-model gauge triplet, and
recently regarded for dark matter [31] (see also Ref. [32]).
The scalar potential is given by

V ¼ Vsimple þ μ2σTrσ†σ þ t1ðTrσ†σÞ2 þ t2Trðσ†σÞ2
þ ðt3η†ηþ t4χ†χÞTrσ†σ þ t5η†σσ†ηþ t6χ†σσ†χ

þ 1

2
ðt7χχσσ þ H:c:Þ; ð53Þ

where all the couplings are real. The results of the normal
scalar sector are retained as obtained. The potential is
bounded from below, and the Z2 symmetry is conserved by
the vacuum if the new parameters satisfy

μ2σ > 0; 2t1 þ t2 > 0;

2t3 þ t5 > 0; t4 � t7 > 0: ð54Þ
Denoting M2

σ ≡ μ2σ þ 1
2
t3u2 þ 1

2
t4w2 and σ012≡

1ffiffi
2

p ðHσ þ iAσÞ, we have the physical fields,

Hσ; Aσ; σ�23; σ��
13 ; σ���

33 ;

H�
1 ≡ cδσ�11 − sδσ�22; H�

2 ≡ sδσ�11 þ cδσ�22; ð55Þ
where δ is the mixing angle of σ11-σ22, defined by
t2δ ¼ − 2t7

t5
w2

u2 . The corresponding masses for the fields
are given by

m2
Hσ

¼ M2
σ þ

1

4
t5u2 −

1

2
t7w2; m2

Aσ
¼ M2

σ þ
1

4
t5u2 þ

1

2
t7w2; m2

σ23 ¼ M2
σ þ

1

4
t6w2;

m2
σ13 ¼ M2

σ þ
1

4
t5u2 þ

1

4
t6w2; m2

σ33 ¼ M2
σ þ

1

2
t6w2;

m2
H1;2

¼ M2
σ þ

1

4
t5u2∓ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t25u

4 þ 4t27w
4

q
≃M2

σ þ
1

4
t5u2∓ 1

2
t7w2∓ 1

8

t25
t7

u4

w2
; ð56Þ

which all have a natural size in the w scale.
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It is noteworthy that the real and imaginary parts of
the neutral scalar field of the standard symmetry triplet, Hσ

and Aσ , are separated in the masses as a result of the σ-χ
interaction via the t7 coupling. However, the masses of Hσ

and H1, as well as those of Aσ and H2, are strongly
degenerate due to the ðu=wÞ4 ≪ 1 suppression. In fact,
such small mass splittings are given by the tree-level
contributions of the minimal scalar potential and are
bounded by

jmH1ðH2Þ −mHσðAσÞj≃
�
t25
jt7j
��

w
mH1ðH2Þ þmHσðAσÞ

�

×

�
3.6 TeV

w

�
3

10 MeV≲ 10 MeV;

ð57Þ

which is achieved due to mH1ðH2Þ þmHσðAσÞ ∼ w, t7∼
t5 ∼ 1, u≃ 246 GeV, and w > 3.6 TeV. Further, the loop
effects of the gauge bosons make the charged scalar masses
larger than the neutral ones by an amount [32]

mH1ðH2Þ −mHσðAσÞ ≃ 166 MeV: ð58Þ

Combining the tree-level (57) and loop (58) results, the
charged scalars (H1; H2) are actually heavier than the
neutral ones (Hσ; Aσ), respectively. [Note that the abnormal
interactions such as ðη†TiηÞTrðσ†TiσÞ and ðχ†TiχÞ×
Trðσ†TiσÞ can also contribute to the mass differences of
HσðAσÞ and H1ðH2Þ, respectively. But these splitting
effects are as small as the ones given by the minimal
scalar potential, which can be neglected.] Therefore,
either the Hσ or the Aσ can be regarded as the LIP
responsible for dark matter. Without loss of generality,
in the following let us consider Hσ as the dark matter
candidate, i.e.,

t7 > Max

	
0;−

1

2
t6;

1

2
½t5ðu=wÞ2 − t6�;

1

2
½t5ðu=wÞ2 − 2t6�



:

ð59Þ

The notable consequences are that the contribution of
the Z boson to the direct dark matter detection cross section
is suppressed because of the Hσ and Aσ mass splitting as
well as the vanishingHσAσZ interaction due to T3 ¼ Y ¼ 0
for such scalar fields. The mass splitting of Hσ and Aσ

is also necessary to prevent the Z0 contribution to such
processes, because the Z0 boson actually couples to Hσ

and Aσ, by contrast, due to T8 ≠ 0 for the scalar fields.
Indeed, if the contradiction happened (t7 ¼ 0), it would
give rise to dangerous contributions naively proportional to
σSIZ0 ∼ ðuwÞ4σSIZ ∼ 10−43 cm2—that is, one up to 2 orders of
magnitude larger than the best experimental bound σSIexp ∼
10−44 cm2 − 2 × 10−45 cm2 [33]. Here, we have used
u ¼ 246 GeV, w ¼ 3.6–5 TeV, and σSIZ ∼ 10−38 cm2 as
the cross section for the case of the scalar triplet with Y ¼
−1 and Z exchange [32].

IV. AN EVALUATION OF DARK MATTER
OBSERVABLES

Along the above discussions, we have found the three
dark matter candidates: a singlet scalar (H0

3), a doublet
scalar (H0

1), and a triplet scalar (Hσ) under the standard-
model symmetry. And they are absolutely stabilized due to
the Z2 symmetries as well as the fact that they are the LIPs.
In fact, they could be viable dark matter because there
always exist corresponding parameter regimes, so that their
relic densities and their direct and indirect detection cross
sections are experimentally satisfied. Indeed, considering
the parameter regimes in which the candidates are the
lightest among the new particles of the corresponding
models [12,19], the dark matter observables are dominantly
governed and set by the standard-model particles, which
have been well established to be in agreement with the data
[27,30,31]. To be concrete, in the following we present an
argument for the case of the sextet dark matter.
In the aforementioned regime, the relic density for Hσ

includes only the processes in which the candidate as well
as the H1 (co)annihilate into the standard-model particles.
They are governed by the Higgs and gauge portals, with the
corresponding interactions given by

V ⊃
1

4
ðH2

σ þ 2Hþ
1 H

−
1 Þ
	�

t3 þ
t5
2

�
h2 þ

�
2t3 þ t5 −

λ3
λ2

ðt4 − t7Þ
�
uh



; ð60Þ

Tr½ðDμσÞ†ðDμσÞ� ⊃ g2H2
σWþ

μ W−μ þ g2HσðHþ
1 W

−
μ þH−

1W
þ
μ ÞAμ

3 þ
g2

2
jHþ

1 W
−
μ −H−

1W
þ
μ j2

þ g2Hþ
1 H

−
1A3μA

μ
3 þ igHþ

1 ∂
↔

μH−
1A

μ
3 þ ½igHσ ∂

↔

μH−
1W

þμ þ H:c:�; ð61Þ

where we have denoted F1∂
↔

μF2 ≡ F1ð∂μF2Þ − ð∂μF1ÞF2 for any F1;2 fields, and A3μ ¼ sWAμ þ cWZμ. The modification
to the coupling of one h with two inert particles is due to the h-H mixing, which is at u=w order. However, we have
neglected the mixing effect of Z with Z0 as well as the contribution of the new particles such as H and Z0 because of
u2 ≪ w2 and the above assumption for the dark matter candidate.
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There are various channels that might contribute to the
relic density such as HσHσ → hh; ttc;WþW−; ZZ, as well
as the coannihilations HσH�

1 → ZW�; AW�; t�2=3b�1=3

and H�
1 H

∓
1 → hh; ttc;WþW−; ZZ; ZA; AA. They are

given by the diagrams in Figs. 1 and 2 with respect to
the Higgs and gauge portals, respectively. The annihilation
cross section times relative velocity is defined asP

ijσðHiHj → SMparticlesÞvij, where i; j ¼ σ; 1, and vij
is the relative velocity of the two incoming particles Hi and
Hj. Using the limit mHσ

≃mH1
∼ w ≫ u ∼mSM (the rel-

evant masses for the standard-model particles) as well as the
freeze-out temperature TF ≃ mHσ

20
≪ mHσ

as usual [34], we
obtain the leading-order term for the effective, thermally
averaged annihilation cross section times velocity,

hσvi≃ α2

ð150 GeVÞ2
��

2.3 TeV
mHσ

�
2

þ
�
λ × 0.782 TeV

mHσ

�
2
�
;

ð62Þ
where the first term in the brackets comes from the gauge
portal while the second one is due to the Higgs portal,
λ≡ t3 þ t5=2, in agreement with Ref. [32]. For the above
result, we have used s2W ¼ 0.231, α ¼ 1=128. Note also that
the quantity α2=ð150 GeVÞ2 ≃ 1 pb has been factorized for
further convenience.

The relic density can fit the data in this case if Ωh2 ≃
0.1pb
hσvi ≃ 0.11 (where h is the reduced Hubble constant)

[2,34], which implies

mHσ
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5.29þ 0.61λ2

p
TeV: ð63Þ

If the dark matter–scalar coupling is small, λ ¼ t3þ
t5=2 ≪ 1, the gauge portal governs the annihilation proc-
esses of the dark matter. Simultaneously, the dark matter
gets the right abundance if it has a mass mHσ

≃ 2.3 TeV.
Otherwise, if the dark matter–scalar coupling is strong
enough, λ≳ 1, the Higgs portal gives equivalent contribu-
tions and even dominates over the gauge one. In this case,
the dark matter mass depends on the λ parameter as given
above in order to recover the right abundance. Due to the
limit by the Landau pole, say mHσ

< 5 TeV (or equiv-
alently λ < 5.68 for the right abundance), the Hσ can only
contribute as a part of the total dark matter relic density,
provided that the coupling λ is large, λ > 5.68. In other
words, it is only a dark matter component coexisting with
other potential candidates, which may be a singlet H0

3 and/
or a doublet H0

1 as determined before.
The direct searches for the candidate Hσ measure the

recoil energy deposited by the Hσ when it scatters off

FIG. 1. Contributions to Hσ and/or H�
1 annihilation via the Higgs portal when they are lighter than the new particles of the simple

3-3-1 model. There are additionally two u channels that can be derived from the corresponding t channels above.
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the nuclei of a large detector. This proceeds through the
interaction of Hσ with the partons confined in nucleons.
Because the Hσ is very nonrelativistic, the process can be
obtained by an effective Lagrangian as [35]

Leff ¼ 2λqmHσ
HσHσq̄q; ð64Þ

where the scalar candidate has only spin-independent and
even interactions (the interactions with gluons are induced
loops that should be small). The above effective interaction

is achieved by the t-channel diagram as mediated by the
Higgs boson as Fig. 3. It follows that

λq ¼
λ0mq

2mHσ
m2

h

; λ0 ≡ t3 þ
t5
2
−

λ3
2λ2

ðt4 − t7Þ; ð65Þ

where the scalar coupling λ0 that governs the scattering
cross section differs from the λ that operates the annihi-
lation cross section. This separation is due to the term∼t4 −
t7 raised as a result of the h-H mixing. Hence, the relic

FIG. 2. Contributions to Hσ and/or H�
1 annihilation via the gauge portal when they are lighter than the new particles of the simple

3-3-1 model. There remain the u-channel contributions for Hþ
1 H

−
1 → A3A3 and HσHσ → WþW−, respectively, which can be extracted

from the corresponding t-channel diagrams above.
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density and the direct detection cross section are obviously
not correlated, which is a new observation of this work.
The Hσ-nucleon scattering amplitude is obtained by

summing over the quark-level interactions multiplied by
the corresponding nucleon form factors. Thus, the
Hσ-nucleon cross section takes the form

σHσ−N ¼ 4m2
r

π
λ2N; N ¼ p; n; ð66Þ

where

mr ≡ mHσ
mN

mHσ
þmN

≃mN;

λN
mN

¼
X
u;d;s

fNTq
λq
mq

þ 2

27
fNTG
X
c;b;t

λq
mq

≃ 0.35
λ0

2mHσ
m2

h

; ð67Þ

where fNTG ¼ 1 −
P

u;d;sf
N
Tq, and the f

N
Tq values were given

in Ref. [36]. With mN ¼ 1 GeV and mh ¼ 125 GeV [2],
we have

σHσ−N ≃
�
2.494λ0 TeV

mHσ

�
2

× 10−44 cm2; ð68Þ

which coincides with the current experimental bound
σHσ−N ≃ 10−44 cm2, provided that mHσ

≃ 2.494λ0 TeV in
the TeV range [2,33]. Simultaneously, the Hσ can get
the right abundance by this case if we impose λ0 ≃
mHσ

=ð2.494 TeVÞ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.85þ 0.098λ2

p ≃ 0.922 ÷ 2 with
the help of (63) as well as jλj < 5.68 as mentioned. Of
course, the direct detection cross section can also be
assigned to a smaller value if the coupling λ0 is appropri-
ately chosen for each fixed dark matter mass.

V. CONCLUSION

Our aim was to look for a realistic 3-3-1 model with the
minimal lepton and scalar contents in order to solve the
dark matter problem of the minimal 3-3-1 model [3] under
the guidance of the work in Ref. [19]. However, there was
not such a theory in the literature, despite the fact that the
reduced 3-3-1 model was introduced in Ref. [6]. And, for
us it has been what remained to be investigated in this work.

First of all, we have shown that even for a minimal 3-3-1
model with a reduced scalar sector, the third generation of
quarks should transform under SUð3ÞL differently from the
first two. This is due to the low limit of some TeV for the
Landau pole. In addition, it is well known that the mass
corrections for some vanishing tree-level quark masses
which come from quantum effects or effective interactions
are subleading. Therefore, the reduced scalar sector must be
η and χ (no other case) so that the top quark appropriately
gets a tree-level dominant mass. The simple 3-3-1 model
that has been given by such minimal fermion and scalar
contents is unique and entirely different from the previous
one [6].
We have also shown that there are eight Goldstone

bosons correspondingly eaten by eight massive gauge
bosons. There remain four physical Higgs bosons h, H,
and H�. Here the h is like the standard-model Higgs boson
with mass in the weak scale, while H and H� are the new
heavy Higgs bosons with masses in the w scale. Also, there
is a small mixing between the standard-model Higgs boson
and the new one, S1-S3. Our model consists of only singly
changed Higgs bosons, not doubly changed ones as
in Ref. [6].
There are two new heavy charged gauge bosons

with the masses in the w scale satisfying the relation
m2

X� ¼ m2
Y�� þm2

W� , which is unlike Ref. [6]. There is a
mixing between the standard-model Z boson and the new
neutral gauge boson Z0, which was neglected in Ref. [6].
The new physical neutral gauge boson Z2 has a mass in the
w scale. From the W mass, we have u≃ 246 GeV. On the
other hand, from the constraint on the ρ parameter, we
get w > 460 GeV.
Because of the minimal scalar sector, some fermions

have vanishing masses at tree level. However, they can get
corrections coming from the effective interactions. The
quarks get consistent masses via the five-dimensional
effective interactions, while the charged leptons gain
masses via four- and six-dimensional interactions. The
neutrino masses are generated to be naturally small as a
consequence of approximate lepton-number symmetry of
the model. Notice that the model is only consistent by this
way of the lepton charge.
Although the lepton charge is an approximate symmetry,

we can always find in the theory a conserved residual
charge—the lepton parity ð−1ÞL. The conservation of
lepton parity is just a mechanism for the proton stability.
Notice that the model always conserves the global baryon
charge Uð1ÞB. This may also be regarded as a mechanism
for the proton stability.
We have calculated the hadronic FCNCs due to the

exchange of Z0. It is interesting that the FCNCs are
independent of the Landau pole. We have indicated that
the strongest constraint coming from the K0 − K̄0 system
can be evaded provided that w > 3.6 TeV. This value is
still in the well-defined regime of the perturbative theory.

FIG. 3. Dominant contributions to Hσ quark scattering.
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The scalar multiplets other than the normal scalar sector
of the simple 3-3-1 model, which include ρ and S as often
studied in the minimal 3-3-1 model, η0 and χ0 as the
replications of the normal ones, and the variants of S such
as σ as well as the new forms, can be considered as the
inert sectors providing dark matter candidates. We have
shown that the simple 3-3-1 model with the inert scalar
triplet ρ does not contain any realistic dark matter.
However, the simple 3-3-1 model with the η or χ
replication can yield a doublet dark matter H0

1 or a singlet
dark matter H0

3, respectively. The simple 3-3-1 model with
the inert scalar sextet X ¼ 0 does not provide any realistic
dark matter. However, the model with the inert scalar
sextet X ¼ 1 can give a triplet dark matter Hσ. The dark
matter candidates as obtained can communicate with the
standard-model matter via the new Higgs and new gauge
bosons besides the normal portals, as in the ordinary inert
triplet and inert doublet models as well as the Silveira-
Zee model.
We have pointed out that the parameter spaces of

the corresponding dark matter models can always
contain appropriate parameter regimes so that the dark

matter candidates as found are viable under the data. To be
concrete, we have made an evaluation of the important dark
matter observables for the sextet model that possesses the
triplet scalar candidate (Hσ). This Hσ gets a right abun-
dance if it has a mass as mHσ

≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5.29þ 0.61λ2

p
TeV≃

2.3 ÷ 5 TeV for jλj < 5.68, where the annihilation cross
sections are operated by both the Higgs and gauge portals.
The direct detection cross section, which is governed by
another scalar coupling λ0, is in good agreement with the
experiments for the dark matter mass in the TeV range.
Taking the experimental bound as σHσ−N ≃ 10−44 cm2, the
dark matter mass is constrained to be mHσ

≃ 2.494λ0 TeV.
The direct detection bound and right abundance are simul-
taneously satisfied if λ0 ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0.85þ 0.098λ2
p ≃ 0.922 ÷ 2

for jλj < 5.68.
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