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We calculate the electroweak sphaleron rates in the reduced minimal 3-3-1 (RM331) model. In the
context of the early Universe, this model undergoes a sequence of two first-order phase transitions,
SUð3Þ → SUð2Þ at the TeV scale and SUð2Þ → Uð1Þ at the 102 GeV scale, as the Universe cools down
from the hot big bang. By a thin-wall approximation, we show that for each phase transition in this
sequence, the sphaleron rate is larger than the cosmological expansion rate at temperatures higher than the
critical temperature, and after the phase transition, the sphaleron process is decoupled. This may provide
the baryon-number violation (B violation) necessary for baryogenesis in the relationship with non-
equilibrium physics in the early Universe.
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I. INTRODUCTION

Electroweak baryogenesis (EWBG) is a possibility to
explain the baryon asymmetry of the Universe (BAU) by
electroweak physics. From an initially baryon-antibaryon-
symmetric Universe, the nonzero BAU can be generated if
the three Sakharov conditions are satisfied: B violation, C
and CP violations, and deviation from thermal equilibrium
[1]. Cohen, Kaplan, and Nelson [2] have proposed an
EWBG mechanism in which the presence of B violation
and CP violation may be related to each other in a
nonequilibrium way which would produce a BAU. This
mechanism requires that the expanding Universe experi-
ence a first-order phase transition period in which bubbles
of broken electroweak symmetry nucleate, grow, collide
and merge in the midst of symmetric phase regions. B
violation will happen quickly in the symmetric phase
regions, but it will shut off essentially in the broken
phase bubbles; this gives a relationship between out-of-
equilibrium and B-violating processes necessary for baryo-
genesis. On the other hand, CP violation will come from
the interactions between fermions, which become massive
through electroweak spontaneous symmetry breaking
(SSB), and the bubble walls; this provides a relationship
between CP violation and nonequilibrium physics during
cosmological expansion.

When the Universe cools through the phase-transition
critical temperature Tc, the electroweak phase transition
(EWPT) associated with SSB takes place. In the symmetric
phase, the Higgs potential has only one minimum at the
place where the vacuum expectation value (VEV) of the
Higgs field is zero. As the temperature reaches the critical
temperature, the Higgs fields will tend to get a nonzero VEV
in a manifold of equivalent vacua, and the newminima of the
Higgs potential appear [3]. If the EWPT is of the first order,
there exists a potential barrier which separates the new
minima from the old minimum of the Higgs potential, and
the transition will occur through bubble nucleation. At this
transitional time, if the temperature is small as compared to
the height of the potential barrier, the transition may occur by
quantum tunneling in which the magnitude of the Higgs field
changes from zero to nonzero VEV; such a transition is
called an instanton. Otherwise, if the temperature is suffi-
ciently high so that thermal fluctuations can bring the
magnitude of the Higgs field from zero VEV over the
barrier to nonzero VEV classically without tunneling,
the transition is called a sphaleron.
In 1976, ’t Hooft discovered the B-violation instantons

[4], but the tunneling amplitude in the StandardModel (SM)
is too small for baryogenesis. In 1984, Klinkhamer and
Manton [5] found the sphaleron as a static, saddle-point
solution of the classical field equations in the SM; and in
1985,Kuzmin, Rubakov, and Shaposhnikov [6] showed that
at the temperatureT ≥ 100 GeV, theB-violation sphalerons
can take place with significant probabilities, and the spha-
leron rate is larger than the cosmological expansion rate.
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The B-violation sphalerons have been investigated in
the SM and various extended models [7,8]. In the SM,
the sphaleron rate is very small, about 10−60 [5,9–12];
this rate is much smaller than the rate of BAU and
smaller than the cosmological expansion rate. In the
extended models, the sphaleron processes have been
considered with various suppositions, but the results
show that the B-violation rates are small in the symmetric
phase and smaller than the Universe’s expansion
rate [13].
Among the extended models, those based on the

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX gauge group (called 3-3-1
for short) [14–17] have some intriguing features, such as
the ability to account for the generation problem [14,15]
or the quantization of the electric charge [18]. We hope that
the 3-3-1 models can also answer the BAU problem. In the
present work, we investigate the electroweak sphalerons in
the RM331 model [17] because of its simplicity. This
model consists of the minimal leptonic content (i.e., only
the SM leptons) and bileptons: the singly and the doubly
charged gauge bosons V� and U��, the heavy neutral
boson Z2 and the exotic quarks. This model also has two
Higgs triplets. Therefore, the physical scalar spectrum of
the RM331 model is composed of a doubly charged scalar
hþþ and two neutral scalars h1 and h2 [17]. These new
particles and exotic quarks can be triggers for the first-order
phase transition.
This paper is organized as follows: In Sec. II, we give a

review of the EWPT in the RM331 model. In Sec. III, we
present the sphaleron energy for calculation of the spha-
leron rate. In Sec. IV, we investigate the sphaleron rates of
the phase transitions SUð3Þ → SUð2Þ and SUð2Þ → Uð1Þ.
Finally, we summarize and describe outlooks in Sec. V.

II. A REVIEW OF THE EWPT IN
THE RM331 MODEL

In our previous work [19], we have used an effective
potential at finite temperature to study the structure of the

EWPT in the RM331 model. In order to derive that
effective potential, we start from the full Higgs
Lagrangian

L ¼ ðDμχÞ†ðDμχÞ þ ðDμρÞ†ðDμρÞ − Vðχ; ρÞ; ð1Þ

where

Vðχ; ρÞ ¼ μ21ρ
†ρþ μ22χ

†χ þ λ1ðρ†ρÞ2 þ λ2ðχ†χÞ2
þ λ3ðρ†ρÞðχ†χÞ þ λ4ðρ†χÞðχ†ρÞ: ð2Þ

Expanding ρ and χ around vρ and vχ , which are
considered as variables (at 0K , vρ ≡ vρ0 ¼ 246 GeV and
vχ ≡ vχ0 ¼ 4 ÷ 5 TeV; in this work, we choose
vχ0 ¼ 4 TeV), we obtain

L ¼ 1

2
∂μvχ∂μvχ þ

1

2
∂μvρ∂μvρ − V0ðvχ ; vρÞ

þ
X
boson

m2
bosonðvχ ; vρÞWμWμ; ð3Þ

where W runs over all gauge fields and Higgs bosons. We
can split the masses of particles into two parts as follows:

m2
bosonðvχ ; vρÞ ¼ m2

bosonðvχÞ þm2
bosonðvρÞ: ð4Þ

The RM331 model has the following gauge bosons:
two massive bosons like the SM bosons Z1 and W�, the
new heavy neutral boson Z2, the singly and doubly
charged gauge bosons U�� and V�, two doubly charged
Higgses hþþ and h−−, one heavy neutral Higgs h2, and
one SM-like Higgs h1. The masses of the gauge bosons
and the Higgses in the RM331 model are presented in
Table I.
The structure of the EWPT in the RM331 model is

divided into two parts, SUð3Þ → SUð2Þ and SUð2Þ →
Uð1Þ [19]. Due to the fact that the two scales of symmetry
breaking are much different, vχ0 ≫ vρ0 (vχ0 ∼ 4–5 TeV

TABLE I. Mass formulations of bosons in the RM331 model.

Bosons m2ðvχ ; vρÞ m2ðvχÞ m2ðvρÞ
m2

W�
g2v2ρ
4

0 80.392 ðGeVÞ2
m2

V�
g2v2χ
4

1307.152 ðGeVÞ2 0

m2
U��

g2ðv2ρþv2χÞ
4

1307.152 ðGeVÞ2 80.392 ðGeVÞ2
m2

Z1
∼m2

Z
1
4

g2

cos2 θW
v2ρ 0 91.6822 ðGeVÞ2

m2
Z2

∼m2
Z0

1
3
g2½ cos2θW

1−4sin2θW
v2χ þ 1−4sin2θW

4cos2θW
v2ρ� 4.82 ðTeVÞ2 14.532 ðGeVÞ2

m2
h1

ðλ1 − λ2
3

4λ2
Þv2ρ 0 1252 ðGeVÞ2

m2
hþþ

λ4
2
ðv2χ þ v2ρÞ λ4

2
v2χ

λ4
2
v2ρ

m2
h2

λ2v2χ þ λ2
3

4λ2
v2ρ λ2v2χ

λ2
3

4λ2
v2ρ
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[17,20], vρ0 ¼ 246 GeV) and that the Universe is accel-
erating, the SSBs can take place sequentially, in which the
symmetry breaking SUð3Þ → SUð2Þ takes place before the
symmetry breaking SUð2Þ → Uð1Þ.
Through the boson mass formulations in Table I, the

boson V� is only involved in the first phase transition
SUð3Þ → SUð2Þ. The gauge bosons Z1, W� and h1 are
only involved in the second phase transition,
SUð2Þ → Uð1Þ. However, U��, Z2 and h−− are involved
in both phase transitions. The reason why U��, for
example, can get mass in both phase transitions is as
follows: When the energy of the Universe lowers to the
scale vχ0 , the symmetry breaking SUð3Þ → SUð2Þ gener-
ates mass for the first part of U��; i.e., U�� eats one of the
Goldstone bosons χ�� of the triplet χ. As the Universe
cools to the scale vρ0 , the symmetry breaking SUð2Þ →

Uð1Þ is turned on, which generates mass for the last part of
U��; i.e.,U�� eats another of the Goldstone bosons ρ�� of
the triplet ρ.
The symmetry breaking SUð3Þ → SUð2Þ through χ0

generates masses for the heavy gauge bosons such as
U��, V�, Z2 and the exotic quarks. The symmetry
breaking scale, vχ0 , is chosen to be 4 TeV [17,20]. This
phase transition involves exotic quarks and heavy bosons,
without the involvement of the SM particles. Therefore, the
effective potential [19] can be written as

Veff
SUð3Þ→SUð2Þ ¼ D0ðT2 − T 02

0 Þvχ2 − E0Tv3χ þ
λ0T
4
v4χ ; ð5Þ

where

D0 ¼ 1

24vχ0
2
f6m2

UðvχÞ þ 3m2
Z2
ðvχÞ þ 6m2

VðvχÞ þ 18m2
QðvχÞ þm2

h2
ðvχÞ þ 2m2

h��ðvχÞg;

T 02
0 ¼ 1

D

�
1

4
m2

h2
ðvχÞ −

1

32π2v2χ0
ð6m4

UðvχÞ þ 3m4
Z2
ðvχÞ þ 6m4

VðvχÞ − 36m4
QðvχÞþm4

h2
ðvχÞ þ 2m4

h��ðvχÞÞ
�
;

E0 ¼ 1

12πv3χ0
ð6m3

UðvχÞ þ 3m3
Z2
ðvχÞ þ 6m3

VðvχÞ þm3
h2
ðvχÞ þ 2m3

h��ðvχÞÞ;

λ0T ¼ m2
h2
ðvχÞ

2v2χ0

�
1 −

1

8π2v2χ0m
2
h2
ðvχÞ

�
6m4

VðvχÞ ln
m2

VðvχÞ
bT2

þ 3m4
Z2
ðvχÞ ln

m2
Z2
ðvχÞ

bT2

þ6m4
UðvχÞ ln

m2
UðvχÞ
bT2

− 36m4
QðvχÞ ln

m2
QðvχÞ
bFT2

þm4
h2
ðvχÞ ln

m2
h2
ðvχÞ

bT2
þ2m4

h��ðvχÞ ln
m2

h��ðvχÞ
bT2

��
: ð6Þ

In Eq. (6), T 0
0 is the temperature at which the phase

transition SUð3Þ → SUð2Þ ends. As the temperature
drops below T 0

0, the minimum of effective potential
(5) at vχ ¼ 0 disappears, and the gauge symmetry
SUð3ÞL ⊗ Uð1ÞX is totally broken. Once T 0

0 is specified,
we can calculate the temperature T 0

1, above which the
symmetry SUð3ÞL ⊗ Uð1ÞX is restored and below
which the phase transition starts (and the bubble
nucleation occurs, in the case OF the first-order phase
transition) [21]:

T 0
1 ¼

T 0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 9E02
8D0λ0

T0c

r : ð7Þ

At the symmetry-breaking scale vχ0 , the phase-tran-
sition strength is decided by the masses of the heavy
neutral Higgs h2, the doubly charged Higgses hþþ and
the exotic quarks. In order to have a first-order phase
transition, this strength must be larger than unity; i.e.,
vχc
T 0
c
¼ 2E0

λ0
T0c
≥ 1, where T 0

c is the critical temperature, at

which the values of VeffðvχÞ at the minima become
equal:

T 0
c ¼

T 0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − E02=D0λ0T 0
c

q : ð8Þ

And the heavy particle masses must be in the range of a
few TeV [19].
When the Universe has been expanding and cooling

down to the scale vρ0 , the phase transition SUð2Þ → Uð1Þ is
turned on through ρ0, which generates the masses of the
SM particles and the last part of the mass of U��. With the
symmetry-breaking scale equal to vρ0 ¼ v0 ¼ 246 GeV,
the high-temperature expansion of the effective potential
has the form [19]

VRM331
eff ðvρÞ ¼ DðT2 − T2

0Þ:v2ρ − ETjvρj3 þ
λT
4
v4ρ; ð9Þ

where
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D ¼ 1

24v02
½6m2

WðvρÞ þ 6m2
UðvρÞ þ 3m2

Z1
ðvρÞ þ 3m2

Z2
ðvρÞþ6m2

t ðvρÞ þm2
h1
ðvρÞ þm2

h2
ðvρÞ þ 2m2

h��ðvρÞ�;

T2
0 ¼

1

D

�
1

4
ðm2

h1
ðvρÞ þm2

h2
ðvρÞÞ −

1

32π2v20
ð6m4

WðvρÞ þ 6m4
UðvρÞ þ 3m4

Z1
ðvρÞ

þ3m4
Z2
ðvρÞ − 12m4

t ðvρÞ þm4
h1
ðvρÞ þm4

h2
ðvρÞ þ 2m4

h��ðvρÞÞ
�
;

E ¼ 1

12πv30
ð6m3

WðvρÞ þ 6m3
UðvρÞ þ 3m3

Z1
ðvρÞ þ 3m3

Z2
ðvρÞþm3

h1
ðvρÞ þm3

h2
ðvρÞ þ 2m3

h��ðvρÞÞ;

λT ¼ m2
h1
ðvρÞ þm2

h2
ðvρÞ

2v20

�
1 −

1

8π2v20ðm2
h1
ðvρÞ þm2

h2
ðvρÞÞ

�
6m4

WðvρÞ ln
m2

WðvρÞ
bT2

þ3m4
Z1
ðvρÞ ln

m2
Z1
ðvρÞ

bT2
þ 3m4

Z2
ðvρÞ ln

m2
Z2
ðvρÞ

bT2
þ 6m4

UðvρÞ ln
m2

UðvρÞ
bT2

−12m4
t ðvρÞ ln

m2
t ðvρÞ
bFT2

þm4
h1
ðvρÞ ln

m2
h1
ðvρÞ

bT2
þm4

h2
ðvρÞ ln

m2
h2
ðvρÞ

bT2
þ2m4

h��ðvρÞ ln
m2

h��ðvρÞ
bT2

��
: ð10Þ

In the limit E → 0, we have a second-order phase
transition. In order to have a first-order phase transition,
the phase-transition strength has to be larger than unity; i.e.,
vρc
Tc

¼ 2E
λTc

≥ 1, where the critical temperature Tc is given by

Tc ¼
T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − E2=DλTc

q : ð11Þ

We also have the bubble nucleation temperature T1:

T1 ¼
T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 9E2

8DλTc

q : ð12Þ

Note that T0 in Eqs. (10), (11), and (12) is the transition-
ending temperature of the EWPT SUð2Þ → Uð1Þ.
From Eqs. (9) and (10), the effective potential

VRM331
eff ðvρÞ depends on the masses of the SM particles

and a part of the masses of the new particles, h2 and h��. If
we forget all contributions of these new particles, the
EWPT SUð2Þ → Uð1Þ of the RM331 model becomes that
of the SM; in this case, however, with mh1 ¼ 125 GeV, the
phase-transition strength cannot be larger than unity, and
then no first-order phase transition can exist. Therefore,
these new particles act as triggers for the first-order phase
transition.
The mass regions of h1 and hþþ for the first-order phase

transition are [19]

200 GeV < mhþþðvρÞ < 1200 GeV ð13Þ
and

0 < mh2ðvρÞ < 624 GeV: ð14Þ
In order to calculate the sphaleron energies, we also

choose the mass of h1 and hþþ in these regions.

III. SPHALERON ENERGY

The RM331 model is a type of non-Abelian gauge theory
which incorporates the Higgs mechanism. In such a theory,
the vacuum has a nontrivial structure which has the
degenerated minima separated by energy barriers in the
field configuration space [21]. For the different minima, we
have the different baryon and lepton numbers. As a
consequence, each transition between these different min-
ima is accompanied by a change in the baryon number. And
the B violation can be seen throughout the sphaleron
processes [22].
In order to study the sphaleron processes in the RM331

model, we consider the Lagrangian of the gauge-Higgs
system:

Lgauge-Higgs ¼ −
1

4
Fa
μνFaμν þ ðDμχÞ†ðDμχÞ

þ ðDμρÞ†ðDμρÞ − Vðχ; ρÞ: ð15Þ
From Eq. (15), the energy functional in the temporal

gauge takes the form

E ¼
Z

d3x½ðDμχÞ†ðDμχÞ þ ðDμρÞ†ðDμρÞ þ Vðχ; ρÞ�;
ð16Þ

here we assume that the least energy has the pure-gauge
configurations, hence Fa

ij ¼ 0.
By the temperature expansion of the effective potential

from the previous section, the energy functional is
reduced to

E ¼ 4π

Z
∞

0

d3x

�
1

2
ð∇2vχÞ2 þ

1

2
ð∇2vρÞ2

þ Veffðvχ ; vρ;TÞ
�
: ð17Þ
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Using the static field approximation as follows,

∂vχ
∂t ¼ ∂vρ

∂t ¼ 0; ð18Þ

we obtain

E ¼
Z

d3x

�
1

2
ð∂ivχÞ2 þ

1

2
ð∂ivρÞ2 þ Veffðvχ ; vρ;TÞ

�
:

ð19Þ

From the Lagrangian (3), we have two equations of
motion for the VEVs:

v̈χ þ∇2vχ −
∂Veffðvχ ; TÞ

∂vχ ¼ 0 ð20aÞ

and

v̈ρ þ∇2vρ −
∂Veffðvρ; TÞ

∂vρ ¼ 0: ð20bÞ

By the static field approximation (18), we rewrite
Eq. (20) in spherical coordinates:

d2vχ
dr2

þ 2

r

dvχ
dr

−
∂Veffðvχ ; TÞ

∂vχ ¼ 0 ð21aÞ

and

d2vρ
dr2

þ 2

r

dvρ
dr

−
∂Veffðvρ; TÞ

∂vρ ¼ 0: ð21bÞ

For the RM331 model, the EWPT SUð3Þ → SUð2Þ takes
place as the temperature drops to a few TeV, while the
EWPT SUð2Þ → Uð1Þ occurs as the temperature is about
100 GeV. From the energy functional (19), we have the
sphaleron energies in each phase transition as follows:

Esphsuð3Þ ¼ 4π

Z �
1

2

�
dvχ
dr

�
2

þ Veffðvχ ; TÞ
�
r2dr ð22aÞ

and

Esphsuð2Þ ¼ 4π

Z �
1

2

�
dvρ
dr

�
2

þ Veffðvρ; TÞ
�
r2dr; ð22bÞ

where Esphsuð3Þ and Esphsuð2Þ are the sphaleron energies in
the SUð3Þ → SUð2Þ and SUð2Þ → Uð1Þ phase transitions,
respectively.
In order to calculate these energies, we must solve the

equations of motion (21) for the VEVs of the Higgs fields.

IV. SPHALERON RATE

The sphaleron rate per unit time per unit volume, Γ=V, is
characterized by a Boltzmann factor, exp ð−E=TÞ, as
follows [23,24]:

Γ=V ¼ α4T4 exp ð−E=TÞ; ð23Þ

where V is the volume of the EWPT’s region, T is the
temperature, E is the sphaleron energy, and α ¼ 1=30. We
will compare the sphaleron rate with the Hubble constant,
which describes the cosmological expansion rate at the
temperature T [25,26]:

H2 ¼ π2gT4

90M2
pl

; ð24Þ

where g ¼ 106.75, Mpl ¼ 2.43 × 1018 GeV.
In order to have B violation, the sphaleron rate must be

larger than the Hubble rate at temperatures above the
critical temperature (otherwise, B violation will become
negligible during the Universe’s expansion); however, the
sphaleron process must be decoupled after the EWPT to
ensure the generated BAU is not washed out [13].

A. Upper bounds of the sphaleron rates

To estimate the upper bounds of the sphaleron rates, we
suppose that the VEVs of the Higgs fields do not change
from point to point in the Universe. Due to this supposition,
we have dvχ

dr ¼ dvρ
dr ¼ 0. Hence, from Eq. (21) we obtain

∂VeffðvχÞ
∂vχ ¼ 0;

∂VeffðvρÞ
∂vρ ¼ 0: ð25Þ

Equation (25) shows that vχ and vρ are the extremes of
the effective potentials. Therefore, the sphaleron energies
(22) can be rewritten as

Esphsuð3Þ ¼ 4π

Z
Veffðvχ ; TÞr2dr ¼

4πr3

3
Veffðvχ ; TÞjvχm

ð26aÞ

and

Esphsuð2Þ ¼ 4π

Z
Veffðvρ; TÞr2dr ¼

4πr3

3
Veffðvρ; TÞjvρm ;

ð26bÞ

where vχm; vρm are the VEVs at the maximum of the
effective potentials. From Eq. (26), the sphaleron energies
are equal to the maximum heights of the potential barriers.
The Universe’s volume at a temperature T is given by

V ¼ 4πr3
3

¼ 1
T3. Because the whole Universe is an identically

thermal bath, the sphaleron energies are approximately
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Esphsuð3Þ ∼
E04T
4λ03T

; Esphsuð2Þ ∼
E4T
4λ3T

: ð27Þ

From the definition (23), the sphaleron rates take the
forms

Γsuð3Þ ¼ α4wT exp

�
−
E04T
4λ03T T

�
ð28aÞ

and

Γsuð2Þ ¼ α4wT exp

�
−

E4T
4λ3TT

�
: ð28bÞ

For the heavy particles, E; λ; E0 and λ0 are constant.
Hence, the sphaleron rates in this approximation are the
linear functions of temperature, as illustrated in Fig. 1 for
the case of the phase transition SUð2Þ → Uð1Þ.
From Eq. (28), we estimate the upper bounds of the

sphaleron rates as follows:

Γsuð3Þ ∼ 10−3 ≫ H; Γsuð2Þ ∼ 10−4 ≫ H ∼ 10−13: ð29Þ

In this approximation, however, the sphaleron decou-
pling condition cannot be satisfied. For instance, with
mh2ðvρÞ ¼ 100 GeV and mh��ðvρÞ ¼ 350 GeV, as the
temperature drops below the phase-transition temperature
Tc ¼ 138.562 GeV and the Universe switches to the
symmetry-breaking phase, the sphaleron rate is still much
larger than the Hubble constant, and this makes the B
violation washed out. By this consequence, the sphaleron
process cannot occur identically in large regions of space; it
can only take place in the microscopic regions.

B. Sphaleron rates in a thin-wall approximation

At every point in the early Universe, the effective
potential varies as a function of magnitude of the Higgs
field at various temperatures, as illustrated in Fig. 2 for the
case of VRM331

eff ðvρÞ. If the temperature at a spatial location

is higher than the bubble nucleation temperature T1, then
VRM331
eff ðvρÞ at this location has only one minimum at

vρ ¼ 0, and this location belongs to a symmetric phase
region. As the temperature drops below T1, the second
minimum of VRM331

eff ðvρÞ gradually forms, and the potential
barrier which separates two minima gradually appears. At
this spatial location, vρ can be changed by thermal
fluctuations so that VRM331

eff ðvρÞ gets the second minimum.
The phase transition occurs microscopically, resulting in a
tiny bubble of broken phase in which the Higgs field ρ
acquires a nonzero expectation value. As the temperature
reaches the critical temperature Tc, the second minimum
becomes equal to the first minimum of VRM331

eff ðvρÞ. But
when the temperature goes below Tc, the second minimum
becomes the lower one corresponding to a true vacuum,
while the first minimum becomes the false vacuum. Such
tiny true-vacuum bubbles at various locations in the

60 80 100 120 140 160 180 200
T

T

0.00010

0.00015

0.00020

FIG. 1 (color online). The sphaleron rate in the phase
transition SUð2Þ → Uð1Þ. We choose mh2ðvρÞ ¼ 100 GeV,
mh��ðvρÞ ¼ 350 GeV.
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FIG. 2 (color online). The effective potential VRM331
eff ðvρÞ in the

EWPT SUð2Þ → Uð1Þ. We choose mh2ðvρÞ ¼ 100 GeV,
mh��ðvρÞ ¼ 350 GeV. We obtain the bubble nucleation
temperature T1 ≈ 141.574 GeV, the critical temperature
Tc ¼ 138.562 GeV, and the transition-ending temperature
T0 ¼ 118.42 GeV.
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Universe can occur randomly and expand in the midst of
false vacuum. If the sphaleron rate is larger than the
Universe’s expansion rate, the bubbles can collide and
merge until the true vacuum fills all space. However, if the
sphaleron decoupling condition is satisfied after the tran-
sition, the sphaleron rate must be smaller than the cosmo-
logical expansion rate when the temperature goes from Tc
to T0, at which the first minimum of VRM331

eff ðvρÞ com-
pletely disappears.
Suppose that in a bubble of the phase transition

SUð3Þ → SUð2Þ, we have

∂VeffðvχÞ
∂vχ ≈

ΔVeffðvχÞ
Δvχ

¼ const≡M0; ð30aÞ

here Δvχ ¼ vχc , ΔVeffðvχÞ ¼ VeffðvχcÞ − Veffð0Þ, and vχc
is a second minimum of the effective potential for this
transition. Similarly, in a bubble of the phase transition
SUð2Þ → Uð1Þ, we have

∂VeffðvρÞ
∂vρ ≈

ΔVeffðvρÞ
Δvρ

¼ const≡M; ð30bÞ

here Δvρ ¼ vρc , ΔVeffðvρÞ ¼ VeffðvρcÞ − Veffð0Þ, and vρc
is a second minimum of the effective potential for the phase
transition.
Now, we solve the equations of motion (21) for the

VEVs vχ and vρ by the approximation (30). Rewritting
Eq. (21) in this approximation, we have

d2vχ
dr2

þ 2

r

dvχ
dr

¼ M0 ð31aÞ

and

d2vρ
dr2

þ 2

r

dvρ
dr

¼ M: ð31bÞ

In the cases that r → ∞ (the spatial locations are in the
symmetric phase) or r → 0 (the spatial locations are in the
broken phase), the VEVs must satisfy the boundary
conditions:

lim
r→∞

vχðrÞ ¼ lim
r→∞

vρðrÞ ¼ 0;

dvχðrÞ
dr

				
r¼0

¼ dvρðrÞ
dr

				
r¼0

¼ 0: ð32Þ

In the bubble walls, the solutions of Eq. (31) take the
forms

vχ ¼
M0

6
r2 − A0=rþ B0 ð33aÞ

and

vρ ¼
M
6
r2 − A=rþ B; ð33bÞ

where A0; B0; A; B are the parameters to be specified.
The continuity of the scalar fields in a bubble results in

the two following systems of equations. The first is the
system for the EWPT SUð3Þ → SUð2Þ:
(

M0
6
R2
b:suð3Þ − A0=Rb:suð3Þ þ B0 ¼ vχc ;

M0
6
ðRb:suð3Þ þ Δl0Þ2 − A0=ðRb:suð3Þ þ Δl0Þ þ B0 ¼ 0;

ð34aÞ

where Rb:suð3Þ and Δl0 are, respectively, the radius and the
wall thickness of a bubble which is nucleated in the phase
transition SUð3Þ → SUð2Þ. The second system is that for
the EWPT SUð2Þ → SUð1Þ:
(

M
6
R2
b:suð2Þ − A=Rb:suð2Þ þ B ¼ vρc ;

M
6
ðRb:suð2Þ þ ΔlÞ2 − A=ðRb:suð2Þ þ ΔlÞ þ B ¼ 0;

ð34bÞ

where Rb:suð2Þ and Δl are, respectively, the radius and the
wall thickness of a bubble nucleated in the phase tran-
sition SUð2Þ → Uð1Þ.
Solving the systems of Eq. (34), we obtain the solutions

vχ and vρ, which are of the forms

vχðrÞ ¼
8<
:

vχc ; when r ≤ Rb:suð3Þ;
M0
6
r2 − A0=rþ B0; when Rb:suð3Þ < r ≤ Rb:suð3Þ þ Δl0

0; when Rb:suð3Þ þ Δl0 < r

ð35aÞ

and

vρðrÞ ¼
8<
:

vρc ; when r ≤ Rb:suð2Þ;
M
6
r2 − A=rþ B; when Rb:suð2Þ < r ≤ Rb:suð2Þ þ Δl

0; when Rb:suð2Þ þ Δl < r:

ð35bÞ
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To go on, we must overcome two obstacles. The first one
is that we have only four equations in the systems (34), but
we have to specify eight unknown parameters [A0, B0, Δl0,
Rb:suð3Þ, A, B, Δl, and Rb:suð2Þ]. To overcome this, we
suppose the sphaleron rate to be equal to the Hubble rate at
the critical temperature. This supposition relies on the
requirement for avoiding the washout of the generated BAU
after a phase transition, by which the sphaleron rate must be
larger than the Hubble rate at temperatures above the
critical temperature, but the sphaleron rate must be smaller
than the Hubble rate at temperatures below the critical
temperature.
The second obstacle is that the masses of many heavy

particles in the RM331 model are unknown so far.
However, we can estimate their mass regions which
satisfy the conditions for the first-order phase transi-
tion, and we choose any values in these mass regions
for calculation of the sphaleron energies. Although the

strengths of the first-order phase transitions in this model
are sufficiently strong (> 1), they are not so strong (< 5)
as shown in Ref. [19], and hence the coefficients in the
effective potential are not meaningfully different for
the different values in these mass regions. Here, we
choose mq¼mh2ðvχÞ¼1500GeV, mh2ðvρÞ ¼ 100 GeV,
and mh��ðvρÞ ¼ 350 GeV.
In Fig. 3, we show our respective solutions vχðrÞ and

vρðrÞ. These solutions are not as smooth as those in
Refs. [13,24,27]. The reason is that the bubble walls we
consider in this work are very thin,Δl;Δl0 ≪ 1=T (while in
Ref. [27], for instance, the authors consider the case in
which Δl ≫ 1=T). Inside the thin walls of the bubbles, the

derivatives dvχ
dr and dvρ

dr are very large; this allows the Higgs
fields χ and ρ to change their values over the potential
barriers. Therefore, the thinner the bubble walls, the larger
the sphaleron rates.
The calculation results for the sphaleron rates of both

phase transitions in the sequence of EWPTs are shown in
Tables II and III. These results show the behavior of the
sphaleron rates in the cosmological expansion as the
Universe cools through the respective critical temperature
of each transition in the sequence.
From the results in Table II, the gauge symmetry

SUð3ÞL ⊗ Uð1ÞX starts to be broken at the bubble nucle-
ation temperature T 0

1 ≈ 1479.48 GeV. The tiny bubbles
with radius 10−5 GeV−1 appear and store the nonzero vχ0
inside. At this temperature, the sphaleron rate is as large
as 1.63719 × 10−5 GeV, which is 5.31 × 106 times larger
than the cosmological expansion rate (H ¼ 3.08195×
10−12 GeV). As the temperature drops from the nucleation
temperature T 0

1 to the critical temperature T 0
c, the bubbles

increase in size and the sphaleron rate decreases, but it is
still much larger than the Hubble rate. This allows the
bubbles to collide and coalesce. When the temperature
reaches the critical temperature T 0

c ¼ 1388.4556 GeV, the
sphaleron rate is equal to the Hubble rate as we supposed.
At temperatures below T 0

c, the sphaleron rate decreases very
quickly, and it becomes much smaller than the Hubble rate.
As the temperature reaches the transition-ending temper-
ature T 0

0 ¼ 865.024 GeV, only the broken phase remains,
and the sphaleron SUð3Þ → SUð2Þ is totally shut off.

v r

0.0165 0.0175 1.3 1.4

3933.85

164.208

10 3 r GeV 1

v r

v r GeV

FIG. 3. The solutions vχðrÞ and vρðrÞ in the phase transi-
tions SUð3Þ → SUð2Þ and SUð2Þ → Uð1Þ, respectively. We
choose mh2ðvχÞ ¼ 1500 GeV, mqðvχÞ ¼ 1500 GeV, mh2ðvρÞ ¼
100 GeV, andmh��ðvρÞ ¼ 350 GeV. The regions in grey portray
the thin walls of vacuum bubbles nucleated in each phase
transition.

TABLE II. The sphaleron rate in the EWPT SUð3Þ → SUð2Þ with mqðvχÞ ¼ mh2ðvχÞ ¼ 1500 GeV.

T [GeV] Rb:suð3Þ ½10−6 × GeV−1� Rb:suð3Þ=Δl0 EsphSUð3Þ [GeV] ΓSUð3Þ ½10−11 × GeV� H ½10−12 × GeV� ΓSUð3Þ=H

1479.48 (T 0
1) 10 10 6975.17 1.63719 × 106 3.08195 5.31 × 106

1450 12 12 12481.3 3.2702 × 104 2.96034 1.10 × 105

1400 13 13 17206.3 7.94481 × 102 2.7597 2.878 × 103

1390 15 15 23251.7 9.3264 2.72042 3.42
1388.4556 (T 0

c) 16.5 16.5 28135.1 0.2714 2.71438 1
1387 17 17 29854.0 0.07687 2.70869 0.28
1000 19 19 60590.8 5.98 × 10−19 1.40801 4.25 × 10−18

900 22 22 89250.8 9.50 × 10−36 1.14049 8.33 × 10−35

865.024 (T 0
0) 25 25 119110.36 1.69 × 10−52 1.05357 1.60 × 10−51
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When the Universe lowers its energy to the scale vρ0 due
to its expansion, a similar process takes place for the gauge
symmetry SUð2ÞL ⊗ Uð1ÞY. From Table III, the broken
phase of the EWPT SUð2Þ → Uð1Þ starts at the bubble
nucleation temperature T1 ≈ 141.574 GeV in the bubbles
with radius 6 × 10−4 GeV−1. At this temperature, the
sphaleron rate is 919936.07 × 10−12 GeV, which is 3.25 ×
107 times larger than the Hubble rate (H ¼ 2.82211×
10−14 GeV). As the temperature drops below T1, the
sphaleron rate is larger than the Hubble rate, and this lasts
until the temperature reaches the critical temperature
Tc ¼ 138.562 GeV. As the temperature goes from Tc to
T0, the sphaleron rate is smaller than the Hubble rate, and it
becomes negligible at T0 ¼ 118.42 GeV when the tran-
sition SUð2Þ → SUð1Þ ends.
For both EWPTs, baryon violation strongly takes place

in regions of electroweak symmetries; however, it quickly
shuts off in bubbles of broken phases due to the large Higgs
VEVs. This may provide a relationship between non-
equilibrium physics and baryon violation necessary for
baryogenesis, according to the mechanism of Cohen,
Kaplan, and Nelson [2]. Therefore, the electroweak spha-
leron in the RM331 model gives us a possibility for BAU
from an initially baryon-symmetric Universe.

V. CONCLUSION AND OUTLOOKS

We have investigated the electroweak sphalerons in the
reduced minimal 3-3-1 (RM331) model through calculating
the sphaleron rates by the thin-wall approximation (30). For
both transitions in the sequence of EWPTs in this model,

SUð3Þ → SUð2Þ and SUð2Þ → Uð1Þ, the sphaleron rate is
larger than the cosmological expansion rate at temperatures
above the critical temperature and is smaller than the
cosmological expansion rate at temperatures below the
critical temperature. For each transition, B violation
strongly takes place in the symmetric phase regions, but
it essentially shuts off in the broken phase bubbles. This
may provide the B violation necessary for baryogenesis, as
required by the first of Sakharov’s conditions, in a relation-
ship with nonequilibrium physics.
As summarized from our previous work [19], both

transitions in the EWPT sequence in this model are of
the first order, and they are sufficiently strong (i.e., their
strengths are larger than unity). Each transition proceeds
through violent nucleation of bubbles of the broken phase
as the Universe cools through the respective critical
temperatures. This sequence of strong EWPTs may provide
a source of large deviations from thermal equilibrium, as
required by the third of Sakharov’s conditions.
However, in order to establish that the RM331 model

contains all necessary components for EWBG, we need to
investigate the C- and CP-violating interactions in the
model to ensure that the model satisfies the second of
Sakharov’s conditions. This is a focus in our next works.
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