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Abstract
The energy band structure of the bilayer graphene superlattices with zero-averaged periodic
δ-function potentials are studied within the four-band continuum model. Using the transfer
matrix method, the study is mainly focused on examining the touching points between
adjacent minibands. For the zero-energy touching points the dispersion relation derived shows
a Dirac-like double-cone shape with the group velocity which is periodic in the potential
strength P with the period of π and becomes anisotropic at relatively large P . From the
finite-energy touching points we have identified those located at zero wave-number. It was
shown that for these finite-energy touching points the dispersion is direction-dependent in the
sense that it is linear or parabolic in the direction parallel or perpendicular to the superlattice
direction, respectively. We have also calculated the density of states and the conductivity
which demonstrates a manifestation of the touching points examined.
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1. Introduction

Bilayer graphene shares many properties with monolayer
graphene, and has a very high potential for electronic appli-
cations such as excellent electric and thermal conductivities at
room temperature or the possibility to control the electronic
structure externally (see for review [1–4]). However, bilayer
graphene (BLG) also exhibits the unique features that make it
qualitatively distinct from monolayer graphene (MLG) [3, 4].
For instance, the integer quantum Hall effect in BLG indicates
the presence of massive chiral quasi-particles with a parabolic
dispersion at low energies (rather than massless quasi-particles
with a linear dispersion in MLG). From an application point of
view the ability to open a gap in the BLG energy spectrum and
to turn it flexibly by an external electric field is exclusively
important. It is expected that the BLG-based nano-devices
would show the functionalities in a different way to those in
the corresponding MLG-based devices. Moreover, with only
two layers in the structure the BLG represents the thinnest pos-
sible limit of a large class of intercalated materials which have

recently been attracting much attention from condensed matter
physicists as well as material science researchers [5].

As is well-known, an external periodic potential can
essentially modify the energy band structure of materials
resulting in unusual transport properties. The energy band
structure of MLG under a periodic potential (monolayer
graphene superlattice—MLGSL) has been extensively studied
in a number of works for the potentials of different natures
(electrostatic [6–9] or magnetic [10–14]) and different shapes
(Kronig–Penney [6, 9, 11, 14], cosine [7] or square [8]).
Interesting discoveries have been reported, such as a strongly
anisotropic renormalization of the carrier group velocity and
the emergence of extra Dirac points (DPs) in the band structure
of electrostatic MLGSLs [6–9] or the emergence of finite-
energy DPs in the band structure of magnetic ones [12–14].
Much less work has been devoted to the BLG-superlattices
(BLGSLs) [15–17]. Barbier, Vasilopoulos, and Peeters
(BVP) introduced the Kronig–Penney model of BLGSLs
with δ-function potentials and predicted that either a pair of
zero-energy touching points (TPs) is generated or a direct
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band gap is opened in the energy spectrum, depending on the
strength of the δ-function potentials [15].

In the present paper we study the energy band structure
of BLGSLs within the same model of zero-averaged periodic
δ-function potentials as that stated by BVP [15] (hereafter
referred to as BVP-model for short). Our study however is
focused on examining the TPs between adjacent minibands,
including the zero-energy TPs claimed before in [15] as well
as the finite-energy ones identified first in this work.

The paper is organized as follows. In section 2 we
briefly describe the problem being studied within the four-
band continuum model and reconsider the zero-energy TPs
claimed previously. The dispersion derived in the vicinity
of these points shows a Dirac-like double-cone shape with
the group velocity which is periodic in the potential strength
P with a period of π and becomes strongly anisotropic at
relatively large P . In section 3 we show that for any finite
potential strength there are always finite-energy TPs at zero
wave number, (k = 0), regardless of whether there are zero-
energy TPs or whether there is a band gap. Impressively,
the dispersion associated to these TPs is direction-dependent
in the sense that in one direction the dispersion is linear
whereas in other directions it is parabolic. Section 4 presents
the density of states and the conductivity that demonstrates
possible manifestations of the touching points examined. The
paper closes with a brief summary in section 5.

2. Four band Hamiltonian and zero-energy Dirac
points

We consider BLGSLs arising from an infinitely flat Bernal-
stacked BLG in a periodic one-dimensional potential
V (x, y) ≡ V (x). Within the continuum nearest-neighbour
tight-binding model the four-band Hamiltonian describing
low-energy excitations near one Dirac point (say, K) for these
BLGSLs has the form:

H =




0 vFπ̂ t⊥ 0
vFπ̂

+ 0 0 0
t⊥ 0 0 vFπ̂

+

0 0 vFπ̂ 0


 + V (x)I, (1)

where π̂ = px + ipy , p = (px, py) is the in-plane momentum,
vF = √

3ta/(2h̄) ≈ 106 m s−1 is the Fermi velocity, t ≈ 3 eV
is the intralayer nearest-neighbour hopping energy, a = 2.46 Å
is the lattice constant of graphene, t⊥ ≈ 0.39 eV is the
interlayer nearest-neighbour hopping energy, and I is the
identity matrix. Other interlayer hopping parameters are
neglected here since they are much smaller than t⊥ and
may be effectively suppressed by disorder [2, 4, 18]. Also,
this Hamiltonian is limited to the case of symmetric on-site
energies.

Without the potential V (x), i.e. for pristine BLG,
the Hamiltonian of equation (1) yields the hyperbolic band
dispersion which interpolates between a linear dispersion at
large momentum and a quadratic one at small momentum [4].
Such a hyperbolic BLG band dispersion was experimentally
recognized in different measurements, cyclotron resonance
of electrons and holes [19] or electric compressibility [20].

Interestingly, the hyperbolic shape of BLG band dispersion
still seems to survive (with renormalized parameters) even if
the electron–electron interaction is taken into account [18, 21].
We are interested here in the effects induced by a periodic
potential on the BLG non-interacting band structure.

The potential V (x) under study is the zero-averaged
periodic δ-function potential with strength P and period L

defined as (see figure 1(a)):

V (x) = P

{ ∑
n

δ(x − nL) −
∑

n

δ[x − (n + 1/2)L]

}
.

(2)

In fact, this potential model is exactly the one introduced
by BVP (BVP-model) [15]. These authors claimed that in
studying the energy band structure of (at least) BLGSLs with
the δ-function potentials, the two-band approximation (see
for example [4]) is not accurate enough and the four-band
Hamiltonian of equation (1) should be applied.

Due to a periodicity of the potential V (x) (equation (2))
the time-independent Schrödinger equation H� = E� for
the Hamiltonian H of equation (1) could be most conveniently
solved using the transfer matrix approach [15, 22]. This
approach reduces the energy spectrum problem to solving the
equation (see appendix A):

det [ T − eikxLR−1
I (L) ] = 0, (3)

where kx is the Bloch wave vector, L is the period of the
potential V (x) (equation (2)), and T and RI are matrices,
depending on the Hamiltonian of interest (see appendix A).

In the case of MLGSLs, when the Hamiltonian H and,
therefore, T and RI are 2 × 2 matrices, equation (3) can be
analytically solved to immediately give a general expression
for the dispersion relation E(�k) [9, 14]. For BLGSLs in the
four-band model of equation (1), equation (3) with (4 × 4)-
matrices T and RI becomes too complicated. In general it
cannot be solved analytically and, therefore, the dispersion
relation cannot be derived explicitly. We have numerically
solved equation (3) and show in figures 1(b)–(d) the lowest
conduction and the highest valence minibands obtained for
some values of the potential parameters P and L. Hereafter,
we introduce the dimensionless variables: E → E/t⊥, V →
V/t⊥, x(L) → x(L)/(h̄vF/t⊥), and kx(y) → kx(y)/(t⊥/h̄vF)

with t⊥ and vF given above.
The most impressive feature observed in figure 1 is that,

instead of the original zero-energy DP of the pristine BLGs
at �k = 0 a pair of new TPs appeared in the (ky = 0)-
direction (figures 1(b) and (c)) or a direct band gap appeared
(figure 1(d)), depending on the values of P and L. Actually,
such a picture of the zero-energy TPs or the band gap has
been reported before by BVP [15] and it is included here
for additional discussions. Before going over to detailed
considerations we would like to note that due to the symmetry
of the periodic potential V (x) of equation (2) (with a zero
spatial average) the energy spectrum of the BLGSLs under
study should be symmetric with respect to the sign of energy.
This results in a double-cone shape of band dispersions in the
vicinity of all the existing zero-energy TPs.
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Figure 1. (a) Schematics of a zero-averaged periodic δ-function potential V (x) with strength P and period L (the dashed-line box describes
the unit cell in the T-matrix calculation); (b)–(d) are the energy spectra of the lowest conduction and highest valence minibands for BLGSLs
with [L = 3, P = 1.5], [L = 8, P = 0.1π ], and [L = 8, P = 0.4π ], respectively. For L = 8 > LC either a pair of zero-energy DPs is
generated (c) or a direct band gap opens up (d), depending on P . For L < LC a pair of zero-energy DPs always existed, regardless of P .

Next, in order to understand the new zero-energy TPs
generated in the (ky = 0)-direction (figures 1(b) and (c))
or the direct band gap opened at some values of L and P

(figure 1(d)), following BVP [15] we consider the energy
spectrum along the (ky = 0)-direction. In this case, in the wave
function � = (ψA1 , ψB1 , ψB2 , ψA2)

T the two components
relating to the first layer (ψA1 , ψB1) and those to the second
layer (ψB2 , ψA2) become decoupled and, therefore, the energy
spectrum can be obtained in the form of the transcendental
equations4:

cos(kxL) = cos2(knL/2) − sin2(knL/2)Dn, n = 1 and 2,

(4)

where Dn = cos2 P + [(E4 + k4
n)/(2E2k2

n)] sin2 P and
kn =

√
E2 − (−1)nE. (In these equations all variables are

dimensionless as defined above).
Due to the symmetry of the energy spectrum with respect

to the zero-energy plane it is possible to identify the zero-
energy TPs by taking the limit E → 0 in the dispersion
relation. Indeed, in this limit any of the equations (4) give to
the possible zero-energy TPs the kx-coordinate that depends
on the periodic potential parameters as

kx = ± k(0)
x (P , L) = ± arccos[1 − (L2/8) sin2 P ]/L.

(5)

4 Notice that equation (4) in this work and the corresponding equation (31)
in [15] are unidentified, although all results deduced from them, including
equations (5) and (6), are respectively coincided. Surprisingly, we failed to
reproduce these results starting from equation (31) in [15].

This equation yields the real values for k(0)
x and, therefore,

identifies the position of zero-energy TPs only if the strength
P and the period L of the potential V (x) obey the following
condition:

|1 − (L2/8) sin2 P | � 1 or L2 sin2 P � 16. (6)

Whenever this condition is fulfilled, instead of a single
zero-energy DP at �k = 0 (i.e. the K-point) in the energy
spectrum of the pristine BLG, the periodic potential V (x)

induces a pair of new zero-energy TPs located symmetrically
at kx = ±k(0)

x along the (ky = 0)-direction. A violation of the
condition (6) means there are no zero-energy TPs at all or, in
other words, a direct band gap should be opened instead.

Note that the condition of equation (6) is always fulfilled
for L < LC = 4. So, for any BLGSL with such a small
potential period, L < LC(≈ 6.75 nm given t⊥ ≈ 0.39 eV),
there are always in the energy spectrum a pair of zero-energy
TPs located at (kx = ± k(0)

x , ky = 0), regardless of the potential
strength P . This is the case shown in figure 1(b) for the BLGSL
with L = 3 and P = 1.5. Changing P in this figure does
not remove the pair of zero-energy TPs, but only shifts their
kx-coordinates.

On the contrary, for any BLGSL of L > LC, with
increasing P , the two zero-energy TPs, generated initially near
the (�k = 0)-point, move away from this point in opposite
directions along the (ky = 0)-direction (figure 1(c)). At the
potential strength P = PC defined by the upper limit in the
condition of equation (6), sin2 PC = 16/L2, these TPs reach
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Figure 2. k(0)
x of equation (5) (in unit of π/L) is plotted as a

function of P/π in two cases: L = 3 (red solid line) and L = 8
(blue dashed line). k(0)

x is periodic in P with the period of π .

the edge of the Brillouin zone at kx = ±π/L. A further
increase in P opens a direct band gap (figure 1(d)).

In order to see the whole evolution picture of the zero-
energy TP positions and/or the band gap as P varies, we
comment on the two properties of the k(0)

x (P )-function defined
in equation (5): (i) k(0)

x (P ) = k(0)
x (P ± nπ) with n integer

number and (ii) k(0)
x (P ) = k(0)

x (π − P). The former property
simply means that the whole k(0)

x (P )-picture is periodic in P

with the period of π and therefore it is enough to examine
the k(0)

x (P )-dependence in one period, P ∈ [0, π ]. The latter
shows the symmetry of the k(0)

x (P )-picture in one period with
respect to the middle point P = π/2. These symmetries can
clearly be seen in figure 2 where k(0)

x of equation (5) is plotted
versus P in a period for L = 3 (red solid line) and L = 8
(blue dashed line). In the case of L = 3 < LC the solid line
shows a continuous and regular oscillation of k(0)

x between the
minimum of zero at P = nπ and the maximum of π/2L at
P = π/2. In the case of L = 8 > LC the dashed line shows
the P -dependence of k(0)

x in the two symmetrical regions,
0 < P < PC (≈ 0.167π in figure 2) and π − PC < P < π ,
when the zero-energy TPs are surviving. For the potential
strengths in the middle region, PC < P < π − PC , a direct
band gap opens up.

Note that the picture similar to the dashed line in figure 2
was previously presented together with the band gap size in
figure 12 in [15], where the only case of L = 10 nm > LC is
discussed. Note also that the relations of equations (5) and (6)
as well as the results presented in figures 1 and 2 are exactly the
same as those reported in [15], although, as mentioned above5,
the equations (3) and the corresponding equations (31) in the
reference cited are unidentified as yet.

Furthermore, to search for a more accurate understanding
of the new zero-energy TPs recognized, we expand equation (3)
to the lowest order in E and kx in the vicinity of these TPs to
reveal the linear dispersion relation

E2 = (kx − k(0)
x )2v2

x + k2
yv

2
y, (7)

5 See footnote 4.
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Figure 3. For zero-energy DPs: velocities vx of equation (8) and vy

(numerically calculated) (in units of vF) as the functions of the P/π
for BLGSLs with: L = 3 (vx—red solid line, vy—red dashed line)
and L = 8 (vx—blue dotted line, vy—blue dash–dotted line).
Velocities are periodic in P with the period of π .

where the velocity vx can be deduced by expanding
equation (4):

vx = sin P
√

16 − L2 sin2 P

4 − (L2/12) sin2 P
, (8)

whereas vy could be numerically calculated. Due to the Dirac-
like form of the dispersion relation of equation (7) the zero-
energy TPs could really be referred to as the DPs.

Figure 3 presents vx and vy in one period of P for
the BLGSLs with periods of L = 3 < LC (vx—red solid
and vy—red dashed line) and L = 8 > LC (vx—blue
dotted and vy—blue dash-dotted line). Noticing that like k(0)

x

these velocities are periodic in P with the period of π and,
additionally, in one period they are symmetric with respect to
the middle point P = π/2, it is sufficient to analyse the picture
in a half of the period. Clearly, in both of the cases under
consideration the two curves vx(P ) and vy(P ) are practically
coincided at small P , indicating an isotropy of the Dirac
cones in this region of P -values. However, with increasing
P , two velocities become largely separated, showing a strong
anisotropy of the Dirac cones in cases of large potential strength
P . Thus, figure 3 demonstrates an interesting feature of the
new zero-energy DPs: given a potential period L the dispersion
cone is practically isotropic at small potential strength P and
becomes strongly anisotropic at large P (Actually, the value
Ps below which the dispersion could be considered isotropic
depends slightly on L: in figure 3 Ps ≈ 0.08π or 0.06π for
L = 3 or L = 8, respectively.).

Figure 3 also demonstrates that for small P [P �
0.06π ] the velocities are not only isotropic, but also almost
independent of L. At larger P , there is a strong difference in
the velocity behaviour between the BLGSLs with L > LC and
those with L < LC. For the former BLGSLs, vy increases,
while vx goes back to zero with the opening of the band gap.
For the latter, when the gap is totally absent, vx reaches the
maximum, while vy goes to zero at P = π/2, implying that
the dispersion turns out to be one-dimensional at this value
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Figure 4. Cuts of the band structure along the (ky = 0)-plane for BLGSLs with different L and P : (a)–(d) for [L, P ] = [3, 0.1π ],
[3, 0.4π ], [8, 0.1π ], and [8, 0.4π ], respectively. The lowest finite-energy touching points of equation (9) are marked by the red squares (the
spectrum is symmetric with respect to the sign of the energy and only the positive energies are shown). The energy E and the wave number
kx are in units of t⊥ and π/L, respectively. Note, apart from the finite-energy touching points marked, there are also those at kx �= 0.

of P . Such a difference in the velocity behaviour should find
itself reflected in the transport properties.

Actually, the fact that a pair of new zero-energy DPs
appeared at small potential strengths or a direct band gap
opened at higher ones was also reported in the energy spectra of
BLGSLs with different periodic potential shapes, rectangular
[16] or sine [17]. Perhaps it could be seen as the common
feature in energy band structures of all BLGSLs with zero-
averaged periodic potentials. The detailed behaviour of the
zero-energy DPs and/or the band gap is however dependent on
the potential shape. In particular, for the sine potential within
the two-band continuum model, Tan et al demonstrated an
emergence of new zero-energy DPs even along the (kx = 0)-
direction at higher values of the potential strength (see figure 3
in [17]). It is worth mentioning that such zero-energy DPs at
kx = 0 should not exist in the band structure of the BLGSLs
with periodic δ-function potentials we are interested in6.

3. Finite-energy touching points

In figure 4 we plot the cuts of the band structure along the
(ky = 0)-plane, calculated numerically from equation (3) for
various values of the potential strength P (0.1π in (a) and (c);
0.4π in (b) and (d)) or the potential period L (3 in (a) and (b);
8 in (c) and (d)). This figure is focused on showing several
minibands next to the lowest one. (Due to the symmetry of
energy spectra with respect to the zero-energy plane only the
positive energies are shown). Interestingly, in all boxes with

6 We have examined this problem for BLGSLs with rectangular potentials
studied in [16] and we learned that for this potential the zero-energy DPs exist
in the (kx = 0)-line at large potential magnitudes, similar to those observed
for the sine potential in [17].

different P and/or L in figure 4 apart from the zero-energy
DPs described in the previous section, the degeneracy points
appeared at finite energies, the TPs of adjacent minibands.
Such TPs do exist even when there is no zero-energy DP at
all in the energy spectrum (see figure 4(d) for L = 8 and
P = 0.4π ).

It seems that among the finite-energy TPs observed in
figure 4 there is a class of TPs which could be exactly
identified. Indeed, equation (4) always has solutions with
energies corresponding to the equality sin(knL/2) = 0. These
energies are then determined as

E(i,j)
ν = 1

2

[
(−1)i + (−1)j

√
1 + 16ν2π2/L2

]
,

i, j = 1, 2; ν = 1, 2, 3, · · · (9)

which are just the energy positions of all possible finite-
energy TPs located at zero wave-number (some of these points
are marked by the red square in figure 4). Note that the
energies E

(i,j)
ν (9) only depend on L, so in the energy spectra

of all BLGSLs with a given L the energy-positions of the
TPs, associated with the same indexes ν, i and j , are exactly
coincident. (Compare the marked TPs in the two boxes in the
same line in figure 4).

Generally, to examine the dispersion behaviour at a TP
we should expand equation (3) in the vicinity of this point.
As a demonstration, we consider the lowest from all the TPs
discussed, the point E

(1,2)
1 = [−1 +

√
1 + 16π2/L2]/2 (the

lowest red-square in all the boxes in figure 4). Keeping
ky = 0, we expand equation (4) in the vicinity of the point
(E = E

(1,2)
1 , kx = 0) that gives

E − E
(1,2)
1 = ±kxvx, (10)

5
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where

vx = [
(L2/16π2 + 1)(L2 sin2 P/16π2 + 1)

]1/2
. (11)

On the other hand, keeping kx = 0 we can expand equation (3)
in the vicinity of the point (E = E

(1,2)
1 , ky = 0). This can

be done only numerically, writing equation (3) in the form of
f (E, ky) = 0 (see for detail [9, 14]). It seems that the function
f has the zero first derivative, ∂f/∂ky = 0, so we can readily
write

E − E
(1,2)
1 = k2

y/2m± , (12)

with m± being the masses of the parabolic dispersions (the
signs ± at m are corresponding to ± in equation (10)).

Thus, around the TP located at E = E
(1,2)
1 the dispersion

seems to be direction-dependent in the sense that it is
(Dirac-like) linear in the kx-direction (equation (10)), but
parabolic in the ky-direction (equation (12)). While the
velocity vx in equation (10) is well defined (equation (11)),
the manner in which the two minibands touch each other at
E

(1,2)
1 is still associated with the masses m± in equation (12).

Unfortunately, we are unable to analytically estimate m±, so
we present in figure 5 the numerical results of these masses
plotted as a function of P in two cases: (a) L = 3 < LC

and (b) L = 8 > LC. In both cases, figure 5 demonstrates
that (i) the masses m± exhibit the same symmetric properties
with respect to P as k(0)

x (P ) in figure 2 or vx(y)(P ) in figure 3
and (ii) the two masses are equal, m+ = m−, at a single point
P = π/2. In the case of L = 3 (figure 5(a)), when the
band gap never appears, the two masses are both positive, but
generally different in value. In the case of L = 8 > LC

(figure 5(b)), when the band gap appears at PC < P < π−PC ,
the two masses m± may be different in both value and sign,
depending on P .

Actually, the dispersion relations of equations (10)
and (12) are qualitatively applied for all the TPs located at
zero wave-number and at energies defined in equation (9) (but
certainly with different vx and m±). Consequently, all the
properties identified above for the lowest TP at E

(1,2)
1 should

be qualitatively applied for the whole class of finite-energy TPs
of interest.

In fact, the TPs with direction-dependent cones have been
reported for various graphynes [23, 24]. In particular, for
the TP at the M-point in the spectrum of γ -graphyne the
cone was shown to be direction-dependent in a way similar to
equations (10) and (12): the dispersion is linear in the (M−�)-
direction, but parabolic in the (M − K)-one (figure 2 in [24]).

4. Density of states and conductivity

With the energy band structures determined we calculated the
density of states (DOS) and furthermore the low temperature
conductivity. The calculations were performed in the same
way as those suggested for MLGSLs in [11].

Figure 6 presents the DOS of the BLGSLs in two typical
cases: (a) L = 3 < LC, when a pair of the zero-energy
DPs always existed, regardless of P and (b) L = 8 > LC,
when there is either a pair of zero-energy DPs or a direct band
gap, depending on P . In each box the three DOS-curves are
shown for comparison: the dashed line for the pristine BLG
(P = 0); the red solid line for P = 0.1π ; and the blue dash-
dotted line for P = 0.4π . The arrows indicate the energy-
positions E = E

(1,2)
1 of the lowest finite-energy TP defined in

equation (9) (this energy does not depend on P , so it is the
same for both the red solid and the blue dash-dotted curves in
each box.). Notice that the DOSs are symmetric with respect
to the zero-energy.

In general, the DOSs of BLGSLs in figure 6 display a
fluctuating behaviour, compared to the DOS of the pristine
BLG (dashed curves). Notice that a similar fluctuation was
reported by BVP in the DOS of MLGSLs [8]. The central
minimum (at E = 0) is related to the zero-energy DPs or the
band gap (the blue dash-dotted curve for P = 0.4 π in (b)).
The local dips at finite energies are corresponding to the finite-
energy TPs at ky = 0 (either those at kx = 0 identified above
or those at kx �= 0 as can be seen in figure 4), whereas the
peaks are located at the bending points between these TPs. In
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Figure 6. Densities of states are shown for the BLGSLs with different L and P : (a) L = 3 and (b) L = 8; red solid lines—P = 0.1π and
blue dash–dotted lines—P = 0.4π . In both boxes the DOS for the pristine BLG (without periodic potential) is also shown for comparison
(dashed line). Arrows indicate the energy E

(1,2)

1 of the lowest finite-energy touching point of interest.
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Figure 7. Conductivities σxx ((a) and (b)) and σyy ((c) and (d)) against the Fermi energy EF for the same structures with the DOS presented
in figure 6: L = 3 ((a) and (c)) and L = 8 ((b) and (d)). In each box the curves present the conductivity σxx (or σyy) for BLGSLs with
P = 0.1π (red solid line) or P = 0.4π (blue dash–dotted line), and for the pristine BLG (dashed line). Arrows indicate the energy E

(1,2)

1 .

the left box for L = 3 the DOS-curve for P = 0.1π (red solid)
although very close to that of the pristine BLG exhibits a clear
dip at the energy E = E

(1,2)
1 . An increase of P makes the

DOS-curve more fluctuated, keeping a pair of DPs at E = 0
(see the blue dash–dotted curve for P = 0.4π ). In the right
box for L = 8, the DOS-curve for P = 0.1π (red solid)
still demonstrates the existence of the zero-energy DPs, while
that for P = 0.4π (blue dash–dotted) clearly shows a direct
band gap (of ≈ 0.3t⊥ in width) and a deep local minimum
at E = E

(1,2)
1 .

An accurate reflection of the DOS discussed in figure 6
could be found in the conductivity. Figure 7 shows the
conductivities σxx ((a) and (b)) and σyy ((c) and (d)) plotted
versus the Fermi energy EF for the same BLGSLs as those
analysed in figure 6, including the conductivities of the
pristine BLG (the dashed curves, they are identical in all
boxes). The common features of the conductivities of all
the BLGSLs studied in figure 7 are (i) the conductivities are
symmetrical with respect to the sign of the Fermi energy.
(Such a conductivity symmetry is a direct consequence of

7
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the symmetry of the DOS with respect to the sign of the
energy.) and (ii) both σxx and σyy strongly fluctuate against
EF and, additionally, for a given L the fluctuation in σxx is
stronger than that in σyy . (Such a conductivity fluctuation
results from the fluctuation in the DOS: the conductivity goes
up (down) as the Fermi energy moves through a peak (dip) in
the DOS).

Comparing the boxes in figure 7 reveals some additional
features, as follows: (i) For BLGSLs with L = 3 < LC

((a) and (c)) both the conductivities σxx and σyy are on
average smaller than the conductivity of the pristine BLG and
decrease slightly with increasing P ; (ii) For BLGSLs with
L = 8 > LC ((b) and (d)) the conductivities are much more
(unsystematically) sensitive to a change in P , showing the
existence of a direct band gap in the case of P = 0.4π ; and (iii).
For the BLGSLs with L = 3 the conductivity σxx shows an
impressive dip at the Fermi energy corresponding to the lowest
finite-energy TP E

(1,2)
1 (indicated by the arrow), while for the

BLGSLs with L = 8 the effect of this TP in the conductivities
is weaker in the case of P = 0.4π and almost invisible in the
case of small P (red solid curve for P = 0.1π in (b)).

We recall that apart from the finite-energy TPs identified at
zero wave-number, there are also the finite-energy TPs located
at kx �= 0 which should certainly affect the DOS and the
conductivity behaviours.

5. Conclusions

We have studied the energy band structure of the BLGSLs
with zero-averaged periodic δ-function potentials (arranged
along the x-direction) within the framework of the four-
band continuum model, using the transfer matrix method.
Our analysis has been focused on the TPs between adjacent
minibands which produce a certain effect on the transport
properties. For the zero-energy TPs at ky = 0 claimed
previously, we were able to show the Dirac-like dispersion
relation, which may be either isotropic or strongly anisotropic,
depending on the potential strength. We also show that
the direct band gap can be opened only in the energy
spectrum of the BLGSLs with large enough potential
periods (L > LC).

From the finite-energy TPs we are able to identify exactly
those located at zero wave-number. It was shown that in the
vicinity of the finite-energy TPs identified, the dispersion is
direction-dependent in the sense that it is linear or parabolic in
the kx- or ky-direction, respectively. Additionally, numerical
calculations show that the ‘electron’- and the ‘hole’-mass in
the parabolic dispersion in the ky-direction may be different
in both value and sign, depending on the periodic potential
parameters. The TPs at zero- as well as finite-energies may find
themselves reflected in the oscillating behaviour of the density
of states and the conductivities which have been calculated for
BLGSLs of different potential parameters.
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Appendix

We describe how the central equation (3) can be derived.
Following the general idea of the T -matrix method [22], we
first consider the wave functions of the equation H� = E�

in the regions of constant potential, V (x) = V0 = constant.
For H of equation (1) these functions can be generally written
in the form � = QR(x)[A, B, C, D]T exp(ikyy). They can
be then simplified by the linear transformation Q → T Q

with [15]

T = 1

2




1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1


 . (A.1)

So

Q → T Q =




1 1 0 0
k1/E

′ −k1/E
′ −iky/E

′ −iky/E
′

0 0 1 1
−iky/E

′ −iky/E
′ k2/E

′ −k2/E
′


 ,

(A.2)

while the T -transformation does not change the
matrix R(x):

R(x) = diag
[
eik1x, e−ik1x, eik2x, e−ik2x

]
, (A.3)

where E′ = E − V0 and kn =
√

E′2 − (−1)nE′ − k2
y with

n = 1, 2.
Furthermore, the amplitudes AI of the wave function

before a unit cell and those after it, AF, could be related to
each other by the T -matrix

AF = T (F, I )AI . (A.4)

On the other hand, Bloch’s theorem states

QIRI (x)AF = exp(ikxL)QIRI (x − L)AI , (A.5)

where kx is the Bloch wave number and L is the period of V (x).
Comparing equations (A.4) and (A.5) gives rise to

equation (3),

det
[
T − eikxLR−1

I (L)
] = 0. (A.6)

For the δ-function potential V (x) of equation (2) the unit
cell is described in figure 1(a) and the T (F, I )-matrix in
equation (A.6) is defined as

T (F, I ) = [RI (L/2)]−1Q−1
I S(−P)S ′S(P )QI ,

where QI and RI are defined respectively in equations (A.2)
and (A.3) for V0 = 0, S ′ = QIRI (L/2)Q−1

I ,
and

S(P ) =




cos(P ) −i sin(P ) 0 0
−i sin(P ) cos(P ) 0 0

0 0 cos(P ) −i sin(P )

0 0 −i sin(P ) cos(P )


 .
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