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The exact solution for the neutrino mass matrix of the Zee–Babu model is derived. Tribi-
maximal mixing imposes conditions on the Yukawa couplings, from which the normal
mass hierarchy is preferred. The derived conditions give a possibility of Majorana max-
imal CP violation in the neutrino sector. We have shown that nonzero θ13 is generated
if Yukawa couplings between leptons almost equal to each other. The model gives some
regions of the parameters where neutrino mixing angles and the normal neutrino mass
hierarchy obtained are consistent with the recent experimental data.
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1. Introduction

Nowadays, particle physicists are attracted by two exciting subjects: Higgs and

neutrino physics. The neutrino mass and mixing are the first evidence of beyond

Standard Model (SM) physics. Many experiments show that neutrinos have tiny

masses and their mixing is sill mysterious.1,2 Recent data are a clear sign of rather

large value θ13.
3

The tribimaximal (TBM) form for explaining the lepton mixing scheme was

first proposed by Harrison–Perkins–Scott (HPS), which apart from the phase
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redefinitions, is given by4,5

UHPS =
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can be considered as a good approximation for the recent neutrino experimental

data, where the large mixing angles are completely different from the quark mixing

ones defined by the Cabibbo–Kobayashi–Maskawa (CKM) matrix.6–8

The most recent fits suggest that one of the mixing angles is approximately

zero and another has a value that implies a mass eigenstate that is nearly an

equal mixture of νµ and ντ . The parameters of neutrino oscillations such as the

squared mass differences and mixing angles are now very constrained. The data in

PDG20109 imply

sin2(2θ12) = 0.87± 0.03 , sin2(2θ23) > 0.92 , sin2(2θ13) < 0.15 ,

∆m2
21 = (7.59± 0.20)× 10−5 eV2 , ∆m2

32 = (2.43± 0.13)× 10−3 eV2 ,
(2)

where (and hereafter) the best fits are taken into account. Whereas, the new

data10–19 have been given to be slightly modified from the old fits (2):

sin2(2θ12) = 0.857± 0.024 ,

sin2(2θ13) = 0.098± 0.013 , sin2(2θ23) > 0.95 ,

∆m2
21 = (7.50± 0.20)× 10−5 eV2 , ∆m2

32 = (2.32+0.12
−0.08)× 10−3 eV2 .

(3)

On the other hand, the discovery of the long-awaited Higgs boson at around

125 GeV (Refs. 20 and 21) opened a new chapter in particle physics. It is essential

for us to determine which model the discovered Higgs boson belongs to? For this

aim, the diphoton decay of the Higgs boson plays a very important role. It is

expected that new physics might enter here to modify the SM Higgs property.

For the above-mentioned reasons, the search for an extended model coinciding

with the current data on neutrino and Higgs physics is one of our top priorities.

In our opinion, the model with the simplest particle content is preferred. In the

SM, neutrinos are strictly massless. For neutrino mass, an original model pointed

out by Zee in Ref. 22 in which new scalars are added in the Higgs sector with

neutrino masses induced at the one-loop level. After that a two-loop scenario called

the Zee–Babu model23 was proposed. The Zee–Babu model22–24 with just two addi-

tional charged Higgs bosons (h−, k−−) carrying lepton number 2, is very attractive.a

aIn the recent paper,30 the parameter space of the model under consideration has been reanalyzed,
and the lower bounds for masses of the singly and doubly charged Higgses lie between 1 TeV to
2 TeV.
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In this model, neutrinos get mass from two-loop radiative corrections, which can

fit current neutrino data. Moreover, the singly and doubly charged scalars that are

new in the model can explain the large annihilation cross-section of a dark matter

pair into two photons as hinted at by the recent analysis of the Fermi γ-ray space

telescope data,25 if the new charged scalars are relatively light and have large cou-

plings to a pair of dark matter particles. These new scalars can also enhance the

B(H → γγ), as the recent LHC results may suggest.

The Zee–Babu model contains the Yukawa couplings which are specific for lepton

number violating processes. There has been much work24,27–31 constraining the

parameter space of the model, however the explicit values of neutrino masses and

mixings have not been considered.

In this paper, starting from the neutrino mass matrix, we get the exact solution,

i.e. the eigenstates and the eigenvalues. As a consequence, the neutrino mixing

matrix follows. With this exact solution, we can fit current data and get constraint

on the couplings. We hope that experiments in the near future will approve or rule

out the model.

2. Neutrino Mass Matrix in the Zee Babu Model

The Zee–Babu model23 includes two SU(2)L singlet Higgs fields, a singly charged

field h− and a doubly charged field k−−. Moreover, right-handed neutrinos are not

introduced. The addition of these singlets give rise to the Yukawa couplings:

LY = fab (ψaL)CψbLh
+ + h′ab (laR)

C lbRk
++ +H.c. , (4)

where ψL stands for the left-handed lepton doublet, lR for the right-handed charged

lepton singlet and (a, b = e, µ, τ) being the generation indices, a superscript C indi-

cating charge conjugation. Here ψC = Cψ̄T with C being the charge-conjugation

matrix. The coupling constant fab is antisymmetric (fab = −fba), whereas hab
is symmetric (hab = hba). Gauge invariance precludes the singlet Higgs fields from

coupling to the quarks. In terms of the component fields, the interaction Lagrangian

is given by

LY = 2
[

feµ
(

ν̄ceµL − ν̄cµeL
)

+ feτ
(

ν̄ceτL − ν̄cτeL
)

+ fµτ
(

ν̄cµτL − ν̄cτµL

)]

h+

+
[

heeēceR + hµµµ̄cµR + hττ τ̄cτR

+ heµēcµR + heτ ēcτR + hµτ µ̄cτR
]

k++ +H.c. , (5)

where we have used haa = h′aa, hab = 2h′ab for a 6= b. Equation (4) conserves lepton

number, therefore, itself cannot be responsible for neutrino mass generation.

The Higgs potential contains the terms:

V (φ, h+, k++) = µ(h−h−k++ + h+h+k−−) + · · · , (6)

which violate lepton number by two units. They are expected to cause Majorana

neutrino masses.
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Fig. 1. The two-loop diagram in the Zee–Babu model.

In the literature, Majorana neutrino masses are generated at the two-loop level

via the diagram shown in Ref. 24 and again depicted in Fig. 1. The corresponding

mass matrix for Majorana neutrinos is as follows:

Mab = 8µfach
∗
cdmcmdIcd(f

+)db . (7)

The integral Icd is given by32

Icd =

∫

d4k

(2π)4

∫

d4q

(2π)4
1

k2 −m2
c

1

k2 −M2
h

1

q2 −m2
d

× 1

q2 −M2
h

1

(k − q)2 −M2
k

. (8)

Note that Eq. (8) can be simplified by neglecting the charged lepton masses mc

and md.
26

To evaluate the integral above, one neglects the charged lepton masses in the

denominator, since these masses are much smaller than the charged scalar masses

Mh and Mk. Then

Icd ≃ I =
1

(16π2)2
1

M2

π2

3
Ĩ(r) , M ≡ max(Mk,Mh) , (9)

which does not depend on lepton masses. Here Ĩ(r) is a function of the ratio of the

masses of the charged Higgses r ≡M2
k/M

2
h ,

Ĩ(r) =











1 +
3

π2
(log2 r − 1) for r ≫ 1 ,

1 for r → 0 ,

(10)

which is close to 1 for a wide range of scalar masses.

The neutrino mass matrix arising from (7) is symmetric and given by

Mν = −Iµf2
µτ



















ǫ2ωττ + 2ǫǫ′ωµτ

+ ǫ′ 2ωµµ

ǫωττ + ǫ′(ωµτ

− ǫωeτ − ǫ′ωeµ)

−ǫ′ωµµ − ǫ(ωµτ

+ ǫωeτ + ǫ′ωeµ)

⋆
ωττ + ǫ′ 2ωee

− 2ǫ′ωeτ

ǫǫ′ωee − ωµτ

− ǫωeτ + ǫ′ωeµ

⋆ ⋆ ωµµ + 2ǫωeµ + ǫ2ωee



















,

(11)
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where we have redefined parameters:

ǫ ≡ feτ
fµτ

, ǫ′ ≡ feµ
fµτ

, ωab ≡ mah
∗
abmb . (12)

Let us denote

ω′
ττ ≡ ωττ + ǫ′ 2ωee − 2ǫ′ωeτ ,

ω′
µτ ≡ ωµτ + ǫωeτ − ǫ′ωeµ − ǫǫ′ωee ,

ω′
µµ ≡ ωµµ + 2ǫωeµ + ǫ2ωee .

(13)

Then the neutrino mass matrix can be rewritten in the compact form

Mν = −Iµf2
µτ







ǫ2ω′
ττ + 2ǫǫ′ω′

µτ + ǫ′ 2ω′
µµ ǫω′

ττ + ǫ′ω′
µτ −ǫω′

µτ − ǫ′ω′
µµ

⋆ ω′
ττ −ω′

µτ

⋆ ⋆ ω′
µµ






. (14)

The above matrix has three exact eigenvalues given by

m1 = 0 , m2,3 =
1

2

(

−kF ±
√

k2
[

F 2 + 4(1 + ǫ2 + ǫ′2)(ω′2
µτ − ω′

µµω
′
ττ )
]

)

, (15)

where we have denoted

k = µIf2
µτ , F = (1 + ǫ′2)ω′

µµ + 2ǫǫ′ω′
µτ + (1 + ǫ2)ω′

ττ . (16)

The massless eigenstate is given by

ν1 =
1

√

f2
eµ + f2

eτ + f2
µτ

(fµτνe − feτνµ + feµντ ) . (17)

The mass matrix (14) is diagonalized as

UTMνU = diag(0,m2,m3) ,

where

U =

























1√
1 + ǫ2 + ǫ′2

− A1
√

1 +A2
1 +B2

1

A2
√

1 +A2
2 +B2

2

− ǫ√
1 + ǫ2 + ǫ′2

− B1
√

1 +A2
1 +B2

1

B2
√

1 +A2
2 +B2

2

ǫ′√
1 + ǫ2 + ǫ′2

− 1
√

1 +A2
1 +B2

1

1
√

1 +A2
2 +B2

2

























(18)

with the new notations

A1,2 =
−k
[

ǫ(ǫ′2 − 1)ω′
µµ + 2ǫ′(1 + ǫ2)ω′

µτ + ǫ(1 + ǫ2)ω′
ττ

]

± ǫ
√
k2F ′

2k
[

ǫǫ′ω′
µµ + (1 + ǫ2)ω′

µτ

] , (19)

B1,2 ≡
k(1 + ǫ′2)ω′

µµ − k(1 + ǫ2)ω′
ττ ±

√
k2F ′

2k
[

ǫǫ′ω′
µµ + (1 + ǫ2)ω′

µτ

] (20)
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and

F ′ = F 2 + 4(1 + ǫ2 + ǫ′2)(ω′2
µτ − ω′

µµω
′
ττ ) . (21)

The eigenstates νi corresponding to the eigenvalues mi (i = 1, 2, 3) are found to be

ν1 =
1

√

f2
eµ + f2

eτ + f2
µτ

(fµτνe − feτνµ + feµντ ) ,

ν2 = − A1
√

1 +A2
1 +B2

1

νe −
B1

√

1 +A2
1 +B2

1

νµ − 1
√

1 +A2
1 +B2

1

ντ ,

ν3 =
A2

√

1 +A2
2 +B2

2

νe +
B2

√

1 +A2
2 +B2

2

νµ +
1

√

1 +A2
2 +B2

2

ντ .

(22)

From the explicit expressions of A1,2 and B1,2 in (19) and (20), some useful relations

are in order

A1A2 +B1B2 + 1 = 0 ,

A1 − ǫB1 + ǫ′ = 0 ,

A2 − ǫB2 + ǫ′ = 0 ,

(A1 −A2)

(B1 −B2)
= ǫ .

(23)

One also has

A1A2 =
(ǫ′2 − ǫ2)ω′

µτ + ǫǫ′(ω′
ττ − ω′

µµ)

ǫǫ′ω′
µµ + (1 + ǫ2)ω′

µτ

,

B1B2 = −
(1 + ǫ′2)ω′

µτ + ǫǫ′ω′
ττ

ǫǫ′ω′
µµ + (1 + ǫ2)ω′

µτ

.

3. Constraints from the Tribimaximal Mixing

The current data on neutrino mass and mixing show that TBM mixing4,5 as dis-

played in (1) is very specific. Comparing (18) with (1) yields the following conditions

ǫ = ǫ′ =
1

2
, (24)

A2 = 0 , A1 = B1 = −1 , B2 = 1 . (25)

Equations (24) and (12) lead to

feµ = feτ =
1

2
fµτ . (26)
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Substitution of (24) into expressions of A1,2, B1,2 in (19) and (20) yields

A1,2 =
k(3ω′

µµ − 10ω′
µτ − 5ω′

ττ)±
√
k2F0

4k(ω′
µµ + 5ω′

µτ )
, (27)

B1,2 =
5k(ω′

µµ − ω′
ττ )±

√
k2F0

2k(ω′
µµ + 5ω′

µτ )
, (28)

with

F0 = 4(ω′
µµ + 5ω′

µτ )
2 + (ω′

µµ − ω′
µτ )(21ω

′
µµ − 20ω′

µτ − 25ω′
ττ) . (29)

If ω′
µµ = ω′

ττ = ω′ we have:

A1,2 = −1

2

(

1∓
k(ω′ + 5ω′

µτ )
√

k2(ω′ + 5ω′
µτ )

2

)

, (30)

B1,2 = ±
k(ω′ + 5ω′

µτ )
√

k2(ω′ + 5ω′
µτ )

2
. (31)

It can be checked that with the help of (24), all remaining conditions in (25) are

satisfied if

ω′
µµ = ω′

ττ ≡ ω′ (32)

and k(ω′ + 5ω′
µτ ) are negative real numbers. This can be equivalently converted

into a relation among the Yukawa couplings

ωµµ + ωeµ = ωττ − ωeτ . (33)

Note that our derived constraints are somewhat different from those given in Ref. 28.

From the conditions (24) and (32) we obtainb

m1 = 0 , m2,3 = −1

4

[

k(5ω′ + ω′
µτ )∓

√

k2(ω′ + 5ω′
µτ )

2
]

. (34)

The complex phases which can arise when diagonalizing the neutrino mass matrix

(14) can be absorbed by the redefinition of the mass matrix eigenvectors, as it

should be given that both m2,3 are physical observables. Hence, in this work we

assume m2 and m3 to be real.

Depending on the sign of the function in the square root, we have two cases in

which k(5ω′ + ω′
µτ ) being either positive or negative. To fit the experimental data

in Ref. 9 the following condition must be satisfied

k(ω′ + 5ω′
µτ ) < 0 . (35)

bThe integration in Fig. 1 is linear divergent and has a surface term,33 which give a similar form
of mass matrix.
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The neutrino masses in (15) becomes

m1 = 0 , m2 = −3k

2
(ω′ + ω′

µτ ) , m3 = k(−ω′ + ω′
µτ ) . (36)

Taking the central values from the data9 as displayed in (2), we have the two

following solutions:

(1) m1 = 0, m2 = 0.008712 eV, m3 = −0.050059 eV and then

U =























2√
6

0.57735 4.17428× 10−17

− 1√
6

0.57735 0.707107

1√
6

−0.57735 0.707107























. (37)

In this case, ω′
µτ and ω′ depend only on k due to the following relations:

ω′
µτ = −0.0279335

k
, ω′ =

0.0221255

k
, (38)

ω′
µτ

ω′
= −1.2625 , k(ω′ + 5ω′

µτ ) = −0.117542 < 0 , (39)

(2) m1 = 0, m2 = −0.00871206 eV, m3 = −0.050059 eV and

U =























2√
6

0.57735 −5.93338× 10−17

− 1√
6

0.57735 −0.707107

− 1√
6

0.57735 0.707107























. (40)

In this case, ω′
µτ and ω′ depend only on k according to the following relations:

ω′
µτ = −0.0221255

k
, ω′ =

0.0279335

k
, (41)

ω′
µτ

ω′
= −0.792076 , k(ω′ − 5ω′

µτ ) = −0.0826938 < 0 . (42)

The expressions (39) and (42) show that ω′
µµ, ω

′
ττ and ω′

µτ are of the same order,

and the normal neutrino mass hierarchy was used.c

cHere, we have assumed a normal neutrino mass hierarchy in which m1 = λ1 = 0, m2 = λ2,
m3 = λ3 where λi (i = 1, 2, 3) are eigenvalues of Mν in (14). A spectrum with inverted ordering
can be obtained by using the notation m′

3
= λ1 = 0, m′

2
= λ3 ≡ m3 and m′

1
= λ2 ≡ m2.
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In terms of the usual neutrino-oscillation parameters, the matrices (37) and (40)

mean that

sin223 =
1

2
, sin212 =

1

3
, sin213 = 0 , (43)

which are in good agreement with the TBM form.9 However, with a vanishing θ13
now excluded at more than 10σ (Ref. 17) the situation has changed somewhat and

the result in (2) should be considered just as a good approximation.

Using the standard parametrization of the neutrino mixing matrix (the PMNS

matrix) in terms of three angles and CP violating phases6–8

U =







1 0 0

0 c23 s23

0 −s23 c23













c13 0 s13 e
−iδ

0 1 0

−s13 eiδ 0 c13







×







c12 s12 0

−s12 c12 0

0 0 1













1 0 0

0 eiγ/2 0

0 0 1







=







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23







×







1 0 0

0 eiγ/2 0

0 0 1






, (44)

where δ and γ are the Dirac and Majorana CP phase, respectively, and sij = sin θij ,

cij = cos θij (ij = 12, 23, 13). The above Majorana mass matrix is diagonalized by

the PMNS matrix

UTMνU = Mdiag = diag(m1,m2,m3) .

In the case of the normal mass hierarchy, the four parameters are described as26,28

ǫ = tan θ12
s23
c13

+ tan θ13 e
iδ , ǫ′ = tan θ12

s23
c13

− tan θ13 e
iδ , (45)

ω′
µτ

ω′
µµ

= − c213s23c23
c213c

2
23 + r2/3(s12s13c23 e−iδ + c12s23)2e−iγ

− r2/3(s12s13c23 e
−iδ + c12s23)(s12s13s23 e

−iδ − c12c23)e
−iγ

c213c
2
23 + r2/3(s12s13c23 e−iδ + c12s23)2e−iγ

,

ω′
ττ

ω′
µµ

=
c213s

2
23 + r2/3(s12s13s23 e

−iδ − c12c23)
2e−iγ

c213c
2
23 + r2/3(s12s13c23 e−iδ + c12s23)2e−iγ

,

(46)

with r2/3 = m2/m3.
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Table 1. The values of γ corresponding to m2,m3.

m2 [eV] m3 [eV] e−iγ γ [rad]

0.008712 −0.0500591 1.00002 π/2
0.00871 −0.0500591 1.00001 π/2

We can easily see that with the help of (32), Eq. (46) is automatically satisfied.

On the other hand, from (45) one can find the values of γ corresponding to those

of m2 and m3 as shown in Table 1, in which the values of γ is approximately equal

to π
2 . So the condition (32) leads to Majorana maximal CP violation: sin γCP ≃ 1,

as mentioned in Ref. 35.

The recent considerations have implied θ13 6= 0, but small as given in Ref. 10.

A deviation from the TBM form would be achieved with a nonzero value of A2 and

a small difference of ǫ and ǫ′ as shown in Sec. 4.

4. Experimental Constraints with Nonzero θ13

The realistic neutrino mixing will be slightly deviated from the TBM form. This

will be achieved with a very small value of A2 and ǫ′ ≃ ǫ ≃ 1
2 . With the help of

(23), the matrix U in (18) becomes

U =















1√
1+ǫ2+ǫ′2

ǫ2+ǫ′(ǫ′+A2)√
(1+ǫ2+ǫ′ 2)[ǫ2+(1+ǫ2)A2

2
+2A2ǫ′+ǫ′2]

A2ǫ√
(1+A2

2
)ǫ2+(A2+ǫ′)2

− ǫ√
1+ǫ2+ǫ′2

ǫ(1−A2ǫ
′)√

(1+ǫ2+ǫ′ 2)[ǫ2+(1+ǫ2)A2

2
+2A2ǫ′+ǫ′2]

A2+ǫ′√
(1+A2

2
)ǫ2+(A2+ǫ′)2

ǫ′√
1+ǫ2+ǫ′2

− A2(1+ǫ2)+ǫ′√
(1+ǫ2+ǫ′ 2)[ǫ2+(1+ǫ2)A2

2
+2A2ǫ′+ǫ′2]

ǫ√
(1+A2

2
)ǫ2+(A2+ǫ′)2















.

(47)

Combining (47) and (44) we obtain:

t12 =
U12

U11
=

ǫ2 + ǫ′(A2 + ǫ′)
√

ǫ2 + (1 + ǫ2)A2
2 + 2A2ǫ′ + ǫ′2

, (48)

t23 =
U23

U33
=
A2 + ǫ′

ǫ
(49)

with tij = tan θij (ij = 12, 23, 13).

Since ǫ and ǫ′ are close to each other, it can be assumed that

ǫ′ = αǫ , (50)

where α is a constant close to 1.

From the expressions (48)–(50), we obtain the following relations:

t23 = − αǫ3(1 + t212) +
√
Γ

α2ǫ3 − ǫ(1 + ǫ2)t212
, (51)

A2 =
ǫ3α(1 + α2)− αǫt212 +

√
Γ

t212(1 + ǫ2)− α2ǫ2
, (52)
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or

t23 =
−αǫ3(1 + t212) +

√
Γ

α2ǫ3 − ǫ(1 + ǫ2)t212
, (53)

A2 =
ǫ3α(1 + α2)− αǫt212 −

√
Γ

t212(1 + ǫ2)− α2ǫ2
, (54)

where

Γ = ǫ2t212
[

1 + (1 + α2)ǫ2
][

(1 + α2)ǫ2 − t212
]

. (55)

Substituting A2 from (52) into (47) yields

U =







U11 U12 U13

U21 U22 U23

U31 U32 U33






, (56)

with

U11 =
1

√

1 + (1 + α2)ǫ2
,

U21 = − ǫ
√

1 + (1 + α2)ǫ2
,

U31 =
αǫ

√

1 + (1 + α2)ǫ2
,

U12 = − ǫ
[

ǫt212 + (1 + α2)ǫ3t212 + α
√
Γ
]

√

ǫ3[1 + (1 + α2)ǫ2]2Γ′
,

U22 =
ǫ
[

α4ǫ4 − (1 + ǫ2)t212 + α2ǫ2(1 + ǫ2 − t212) + αǫ
√
Γ
]

√

ǫ3[1 + (1 + α2)ǫ2]2Γ′
,

U32 =
α(1 + α2)ǫ5 + αǫ3 + (1 + ǫ2)

√
Γ

√

ǫ3[1 + (1 + α2)ǫ2]2Γ′
,

U13 =
ǫ
[

α(1 + α2)ǫ3 − αǫt212 +
√
Γ
]

√

ǫ3[1 + (1 + α2)ǫ2]Γ′
,

U23 = − αǫ3(1 + t212) +
√
Γ

√

ǫ3[1 + (1 + α2)ǫ2]Γ′
,

U33 =
ǫ[α2ǫ2 − t212(1 + ǫ2)]
√

ǫ3[1 + (1 + α2)ǫ2]Γ′
,

(57)

where

Γ′ = (1− α2)ǫt212 + ǫ3(1 + α2)(α2 + t212) + 2α
√
Γ . (58)

We see that the neutrino mixing matrix in (56) with the elements given in (57)

depends only on three parameters α, ǫ and t12. It is easy to show that the model

1450072-11
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Fig. 2. U11, U21, U31 as functions of α and ǫ with α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.505).

Fig. 3. U12, U22, U32 as functions of α and ǫ with α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.505).

can fit the recent experimental constraints on the neutrino mixing angles. Indeed,

by choosing α ∈ (0.98, 1.00), ǫ ∈ (0.50, 0.505) and taking the new data given in

Ref. 10 with t12 = 0.691, we obtain

U11 ∈ (0.814÷ 0.818) , U12 ∈ −(0.563÷ 0.566) , U13 ∈ (0.010÷ 0.140),

U21 ∈ −(0.409÷ 0.412) , U22 ∈ −(0.380÷ 0.460) , U23 ∈ −(0.790÷ 0.830) ,

U31 ∈ (0.4025÷ 0.410) , U32 ∈ (0.680÷ 0.720) , U33 ∈ −(0.540÷ 0.600) ,

(59)

or

U =









0.814÷ 0.818 −(0.563÷ 0.566) 0.010÷ 0.140

−(0.409÷ 0.412) −(0.380÷ 0.460) −(0.790÷ 0.830)

0.4025÷ 0.410 0.680÷ 0.720 −(0.540÷ 0.600)









. (60)

It is interesting to note that the model-independent parametrization of non-

TBM structures based on deviations from the reactor, solar and atmospheric

angles36 and on small perturbations of the TBM mixing eigenvectors37 is simi-

lar to our approach here. Our set ǫ, α, t12 is equivalent to the set ǫ12, ǫ23, ǫ13 in

Ref. 37.

Figures 2(a)–2(c), Figs. 3(a)–3(c) and Figs. 4(a)–4(c) give the dependence of

the elements of U matrix on α and ǫ with t12 = 0.691.

With α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.505), from (51) we obtain t23 ∈ (1.3, 1.59)

or θ23 ∈ (52.43◦, 56.31◦), and A2 ∈ (0.15, 0.25) which are shown in Figs. 5(a) and

5(b), respectively. In this case, s13 ∈ (0.1, 0.14) or θ13 ∈ (5.74◦, 8.05◦).

1450072-12
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Fig. 4. U13, U23, U33 as functions of α and ǫ with α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.505).

Fig. 5. (a) t23 as a function of α and ǫ with α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.505); (b) A2 as a
function of α and ǫ with α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.505).

Similarly, substituting A2 from (54) into (47) yields

U =







0.814÷ 0.818 0.563÷ 0.566 −(0.010÷ 0.140)

−(0.409÷ 0.412) 0.69÷ 0.73 0.54÷ 0.58

0.4025÷ 0.410 −(0.38÷ 0.44) 0.8÷ 0.83






(61)

provided that α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.505). In this case, t23 ∈ (0.65, 0.75)

or θ23 ∈ (45◦, 50.19◦), s13 ∈ (0.02, 0.08) or θ13 ∈ (1.15◦, 4.6◦) and A2 ∈ (0.05, 0.15).

We note that in these regions of the values of α and ǫ, θ13 is smaller than that given

in Ref. 10, but the other regions of these parameters will provide a consistent range

of θ13, such as, when α ∈ (0.98, 1.00) and ǫ ∈ (0.50, 0.51) then |s13| ∈ (0.1, 0.16)

or θ13 ∈ (5.74◦, 9.21◦). This range of θ13 satisfies the recent experimental data in

Ref. 10.

From (51) and (53) we can have the relations of t23 and t12, α, ǫ as shown in

Figs. 6(a)–6(c) and Figs. 7(a)–7(c), respectively, in which the values of θ23 obtained

encompass the best fit values in Ref. 10.

With the help of (50), F in (16) becomes:

F = (1 + α2ǫ2)ω′
µµ + 2αǫ2ω′

µτ + (1 + ǫ2)ω′
ττ (62)
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Fig. 6. (a) t23 as a function of ǫ with ǫ ∈ (0.50, 0.51) and α = 1, t12 = 0.691; (b) t23 as a function
of t12 with t12 ∈ (0.690, 0.691) and α = 1, ǫ = 0.49; (c) t23 as a function of α with α ∈ (1.0, 1.02),
t12 = 0.691, ǫ = 0.50 from (51).

Fig. 7. (a) t23 as a function of ǫ with ǫ ∈ (0.50, 0.505) and α = 1, t12 = 0.691; (b) t23 as a
function of t12 with t12 ∈ (0.690, 0.691) and α = 1, ǫ = 0.50; (c) t23 as a function of α with
α ∈ (1.00, 1.01), t12 = 0.691, ǫ = 0.50 from (53).

and the physical neutrino masses from (15) is defined

m1 = 0 , m2,3 =
1

2

(

−kF ±
√

k2(F 2 +B)
)

, (63)

with

B = 4[1 + (1 + α2)ǫ2](ω′2
µτ − ω′

µµω
′
ττ) . (64)

Taking the central values from the data10 on neutrino mass square differences

∆m2
21 = 7.50× 10−5 eV2 , ∆m2

32 = 2.32× 10−3 eV2 , (65)

we obtain

k =
0.0402359

F
. (66)

The neutrino masses are explicitly given as

m1 = 0 , m2 = 0.00871206 eV , m3 = −0.048948 eV , (67)

which are in a normal ordering.

The ratio of m2 to m3 is given

|m2|
|m3|

= 0.177986 , (68)

which is the same order as in Ref. 28.
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Fig. 8. k as a function of α, ǫ, ω′ and ω′

23
with ω′

µ,τ ∈ (0.95, 1.0), ω′ ∈ (0.80, 0.9) and α = 1.00,
ǫ = 0.5.

Without loss of generality, we assume ω′
µµ = ω′

ττ = ω′. From (16), (50) and

(66), we obtain the dependence of k on α, ǫ and ω and ω′
23:

k =
0.0402359

[(2 + (1 + α2)ǫ2)]ω′ + 2αǫ2ω′
µτ

. (69)

In the case α = 1.00 and ǫ = 0.5, one has

k = − 0.0402359

2.5ω′ + 0.5ω′
µτ

.

Figure 8 gives the dependence of k on ω′, ω′
µτ with ω′

µ,τ ∈ (0.95, 1.0) and ω′ ∈
(0.80, 0.9).

5. Summary

In this paper, we have derived the exact eigenvalues and eigenstates of the neutrino

mass matrix in the Zee–Babu model. Tribimaximal mixing imposes some conditions

on the Yukawa couplings. The constraints derived in this work slightly differ from

other ones given in the literature, and the normal mass hierarchy is preferred. The

derived conditions give a possibility of Majorana maximal CP violation in the

neutrino sector. We have shown that nonzero θ13 is generated, if Yukawa couplings

between leptons almost equal to each other. We have analyzed behaviors of the

mixing angles as functions of the Yukawa couplings, and the model parameter space

has been derived.
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