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Abstract We re-investigate the scalar potential and the
Higgs sector of the supersymmetric economical 3-3-1 model
(SUSYE331) in the presence of the B/μ-type terms, which
has many important consequences. First, the model contains
no massless Higgs fields. Second, we prove that the soft mass
parameters of the Higgses must be at the SU(3)L scale. As
a result, the masses of the Higgses drift toward this scale
except one light real neutral Higgs with the mass of m Z |c2γ |
at the tree level. We also show that there are some Hig-
gses containing many properties of the Higgses in the mini-
mal supersymmetric standard model (MSSM), especially in
the neutral Higgs sector. One exact relation in the MSSM,
m2

H± = m2
A + m2

W , is still true in the SUSYE331. Based
on this result we make some comments on the lepton flavor
violating decays of these Higgses as one of signatures of new
physics in the SUSYE331 model which may be detected by
present colliders.

1 Introduction

The discovery of a new particle by LHC experiments is the
most intriguing event in both theoretical and experimental
current physics. As found by both ATLAS and CMS [1,2]
this new particle, with mass around 125.5 GeV, carries many
properties of the Higgs boson predicted by the Standard
Model (SM). On the other hand, many works tried to deter-
mine whether this Higgs is really the SM Higgs or some new
Higgs in models beyond the SM [3–7]. Many properties of
this new Higgs are available in [8]. Some very helpful dis-
cussions on which models are excluded or still acceptable by
the existence of the new Higgs found are for example in [9].
At this time apart from the SM, the MSSM is the most attrac-
tive model which both experimental and theoretical physics
focus on. For the review of SM Higgs see [10]. A review of
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MSSM Higgses is in [11,12]. For the MSSM there are five
physical Higgses, including one CP-odd neutral Higgs and
two CP-even neutral Higgses. The mass of the lighter neu-
tral Higgs is shown to be smaller than m Z | cos(2β)| at tree
level. Here β is determined by the relation tβ = v2/v1, the
ratio of the two Higgs vacuum expectation values (VEVs)
in the MSSM. The mass of this light Higgs can increase up
to 135 GeV after including loop corrections [13]. Of course,
the value of 125.5 GeV still satisfies this constraint but the
mass spectrum of supersymmetric particles has drifted to the
TeV scale [3,4,6,7].

There is another class of supersymmetric (SUSY) models,
called SUSY 3-3-1 models, which is not mentioned above.
The SUSY 3-3-1 models are SUSY versions of the 3-3-1
models [14–22] constructed in order to explain some issues as
the so-called family replication, the electric charged quanti-
zation [23–27], the large difference between masses of quarks
in different families [28],…The greatest disadvantage of
these models is the complication in the Higgs sector, namely:
these models need many Higgs multiplets to generate the
masses of the fermions. Some models with the simplest Higgs
sector, such as [29–32] need only two SU(3)L Higgs triplets.
But some fermions in these models get zero masses at the tree
level and they need to get non-vanishing masses from loop
corrections [29,30] or effective non-renomalizable operators
[31]. To solve this problem as well as the problem of dark
matter in these models, some supersymmetric versions of
these 3-3-1 models were introduced [33–37]. These mod-
els, of course, keep the interesting properties of the 3-3-1
as well as SUSY models. But the needed Higgs multiplets
are doubled compared with the non-SUSY version to cancel
the gauge anomaly caused by Higgsinos. The Higgs sectors
are now much more complicated. Anyway, they were inves-
tigated in detail for the supersymmetric economical 3-3-1
(SUSYE331) model [33,38] and the supersymmetric reduced
minimal 3-3-1 (SUSYRM331) model [36,37]. In this work
we will concentrate on the SUSYE331 Higgs sector for two
important reasons:
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• First, the SUSYE331 has the simplest Higgs sector in
SUSY331 models and it was widely investigated as regards
phenomenology such as Higgs sector [33,38], inflation
scenarios [39–41], the mass spectrum of SUSY particles
[42,43], and lepton flavor violating (LFV) decays [44,45].
One problem of this model is the absence of B/μ-type
terms in the scalar potential. These terms are very impor-
tant for the vacuum stability of general SUSY models.
They were first addressed in [45], but the consequences of
their presence were not shown in detail.

• Second, as mentioned above, the presence of the 125.5 GeV
Higgs strongly affects the parameter space of all present
models including SUSY331 models. It is indeed necessary
to consider the reality of the SUSYE331 under the impact
the appearance of this Higgs.

Comparing the Higgs sectors of the SUSY331 models with
that of the MSSM is the straightforward way to estimate the
compatibility of them with Higgs experiments at this time.
For the SUSYE331, we try to identify some Higgses as “like-
MSSM” Higgses and the others as being really SU(3)L Hig-
gses. While finding the exact physical solutions for Higgses
in the presence of the B/μ-type terms is almost impossi-
ble, we can calculate them in an approximate way with high
accuracy, based on the presence of the SU(3)L scale itself.
In the SUSY versions such as SUSYE331 this scale corre-
sponds to two Higgses χ and χ ′ with two VEVs, which is
assumed to be much larger than the SM symmetry breaking
scale w,w′ � 246 GeV. Constraints from the heavy neutral
Z ′ of the model predict that this scale is of the order of the
TeV scale [46]. Combining with the conditions of the mini-
mum of the scalar potential, it can be deduced that both B/μ-
terms and soft parameters should be of the same order, the
electroweak O(m2

W ) or the SU(3)L scale. We show this con-
clusion in detail in Sect. 3. In that section, we also construct
all squared Higgs mass matrices of the model, find exact
solutions for physical CP-odd neutral Higgses, and establish
two equations determining the mass eigenvalues of CP-even
neutral and charged Higgses. Approximate solutions of these
Higgs masses will be discussed in Sect. 4 after we prove that
the B/μ-terms and soft parameters favor the SU(3)L scale.
With this condition, the Higgs spectrum of the SUSYE331 is
split into two parts, in which the first part contains Higgses
with properties being similar to MSSM Higgses. Some other
Higgs properties are also mentioned in this section. Further-
more, in Sect. 5, like-MSSM Higgses are discussed in more
detail by comparing them with MSSM Higgses in coupling
with the standard particles. In Sect. 6, we discuss the LFV
decay of the neutral Higgs, H0 → μτ , in the SUSYE331
model. This kind of decay was investigated in [44] without
the appearance of B/μ-type terms. It is noted that detect-
ing LFV decay at TeVatron and LHC was discussed in [47],
and the sensitivity of the LHC for these decays has been dis-

cussed [48]. In the revised SUSYE331 version, only MSSM-
like Higgses can have a large LFV decay branching ratio for
H0 → μτ . This result is easily obtained based on many pre-
vious works on this kind of decay for the MSSM and extended
versions of the MSSM [49–55]. First of all, we start our work
by reviewing the SUSYE331 particle content in Sect. 2.

2 A review of the model SUSYE331

In this section we only list the particle content of the
SUSYE331 which we consider in this work. The details were
thoroughly investigated for example in [33,38].

The superfield content is defined in a standard way as
follows:

̂F = (˜F, F), ̂S = (S,˜S), ̂V = (λ, V ), (1)

where the components F , S, and V stand for the fermion,
scalar, and vector fields, while their superpartners are denoted
˜F , ˜S, and λ, respectively [34–37].

The superfields containing leptons under the 3-3-1 gauge
group transform as

̂LaL = (

ν̂a,̂la, ν̂c
a

)T
L ∼ (1, 3,−1/3), ̂lc

aL ∼ (1, 1, 1), (2)

where ν̂c
L = (̂νR)c and a = 1, 2, 3 is a generation index.

The superfields for the left-handed quarks of the first gen-
eration are in triplets,

̂Q1L = (

û1, ̂d1, û′)T
L ∼ (3, 3, 1/3). (3)

We omit the color index of the quarks. The right-handed
singlet counterparts of these superfields are denoted

ûc
1L , û′c

L ∼ (3∗, 1,−2/3), ̂dc
1L ∼ (3∗, 1, 1/3). (4)

Conversely, the last two generations are contained in super-
fields which transform as antitriplets of the SU(3)L ,

̂QαL = (

̂dα,−ûα,̂d ′
α

)T
L ∼ (3, 3∗, 0), α = 2, 3, (5)

while the right-handed counterparts are in singlets,

ûc
αL ∼ (

3∗, 1,−2/3
)

, ̂dc
αL , ̂d ′c

αL ∼ (

3∗, 1, 1/3
)

. (6)

The prime superscript is used to distinguish exotic quarks
and SM quarks having the same electric charges. The men-
tioned fermion content is originally from the 3-3-1 model
with right-handed neutrinos [17–22,29,30], so it is anomaly-
free.
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The two superfields χ̂ and ρ̂ contain the scalar sector of
the economical 3-3-1 model (E331) [32]:

χ̂ =
(

χ̂0
1 , χ̂−, χ̂0

2

)T ∼ (1, 3,−1/3),

ρ̂ =
(

ρ̂+
1 , ρ̂0, ρ̂+

2

)T ∼ (1, 3, 2/3). (7)

To cancel the chiral anomalies of the Higgsino sector, two
extra superfields, χ̂ ′ and ρ̂′, are added as follows:

χ̂ ′ =
(

χ̂ ′0
1 , χ̂ ′+, χ̂ ′0

2

)T ∼ (1, 3∗, 1/3),

ρ̂′ =
(

ρ̂′−
1 , ρ̂′0, ρ̂′−

2

)T ∼ (1, 3∗,−2/3). (8)

According to the analysis in [33], at the tree level, ρ′ is
enough to generate masses for all charged leptons, while
it contributes in part to the down-quark masses. Also, the
ρ generates masses to the neutral leptons and contributes in
part to the up-quark masses. On the other hand, both χ and χ ′
only contribute to masses of both the usual and exotic quarks.
It can be supposed that ρ and ρ′ may play similar roles as
Higgses in the MSSM. It is recalled that the above Higgs
sector does not generate masses for all quarks of the model.
Therefore corrections from the loop levels are needed.

As normal 3-3-1 models, the SU(3)L⊗U(1)X gauge group
is broken via two steps:

SU(3)L ⊗ U(1)X
w,w′−→ SU(2)L ⊗ U(1)Y

v,v′,u,u′−→ U(1)Q,

(9)

where the VEVs are defined by
√

2〈χ〉T = (u, 0, w),
√

2〈χ ′〉T = (

u′, 0, w′), (10)√
2〈ρ〉T = (0, v, 0),

√
2〈ρ′〉T = (

0, v′, 0
)

. (11)

The vector superfields ̂V a
c , ̂V a , and ̂V ′ containing the usual

gauge bosons are related with the gauge groups SU(3)C ,
SU(3)L , and U(1)X .

The VEVs w and w′ are responsible for first stage of sym-
metry breaking, SU(3)L ×U (1)X → SU (2)L ×U (1)Y , and
this provides the mass for the new particles, namely

Ti

(

0, 0,
w√

2

)T

�= 0, Ti

(

0, 0,
w′
√

2

)T

�= 0, i = 4, 5, 6, 7, 8,

X

(

0, 0,
w√

2

)T

�= 0, X

(

0, 0,
w′
√

2

)T

�= 0. (12)

In the gauge boson sector, only the new gauge bosons
Y ±, X, X∗ and Z ′ gain masses at this stage of the symmetry
breaking. In contrast, the three other generators T1, T2, and
T3 characterizing the SU(2)L group are conserved. Also, the
generator of the U (1)Y , defined as

Y

2
= − 1√

3
T8 + X,

is also conserved. We would like to emphasize that at the
first stage of breaking, there is no mixture between the Z and
the Z ′. In the second stage the standard model electroweak
symmetry is broken down to U (1)Q by u, u′ and v, v′ and
this is responsible for the masses of the ordinary particles.
To keep consistency with the MSSM, we should suppose

u, u′, v, v′ � w,w′. (13)

For more details, the reader is referred to [33]. After the
first step of symmetry breaking, we can obtain the effective
Lagrangian for the Higgs fields. From the effective Higgs
potential, we can proceed with the discussion by comparison
with the MSSM Higgs sector.

The full Lagrangian of the model has the form Lsusy +
Lsoft, where the first term is the supersymmetric part and the
last term explicitly breaks the supersymmetry. More details
of this Lagrangian are discussed in [33]. Our work mainly
focuses on the Higgs sector of the model.

3 Revised scalar potential for Higgses and Higgs sector

In the soft term involving the scalar potential, we add a new
term,
(

bρρρ′ + bχχχ ′ + H.c
)

,

to the original supersymmetric Higgs potential constructed
in [33]. The revised potential now is

VSUSYE331 ≡ Vscalar + Vsoft

= μ2
χ

4

(

χ†χ + χ ′†χ ′)+ μ2
ρ

4

(

ρ†ρ + ρ′†ρ′)

+ g′2
12

(

−1

3
χ†χ + 1

3
χ ′†χ ′ +2

3
ρ†ρ−2

3
ρ′†ρ′

)2

+ g2

8

8
∑

b=1

(χ
†
i λb

i j χ j − χ
′†
i λ∗b

i j χ ′
j + ρ

†
i λb

i j ρ j

−ρ
′†
i λ∗b

i j ρ′
j )

2

+m2
ρρ†ρ + m2

χχ†χ + m2
ρ′ρ′†ρ′ + m2

χ ′χ ′†χ ′

− (

bρρρ′ + bχχχ ′ + H.c.
)

. (14)

As discussed in the MSSM, we can redefine the phases of
the Higgs fields in order to get real values of both bχ and bρ .
In addition, these parameters must be positive to avoid the
minimum value of the potential corresponding to the zero
values of the neutral Higgses. It implies that electroweak
symmetric breaking does not occur.

Assuming that the VEVs of the neutral components
u, u′, v, v′, w and w′ are real, we expand all Higgs fields
around the VEVs as follows:
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χT =
(

u+S1+i A1√
2

, χ−, w+S2+i A2√
2

)

,

ρT =
(

ρ+
1 ,

v+S5+i A5√
2

, ρ+
2

)

,

χ ′T =
(

u′+S3+i A3√
2

, χ ′+, w′+S4+i A4√
2

)

,

ρ′T =
(

ρ′−
1 , v′+S6+i A6√

2
, ρ′−

2

)

. (15)

The minimum of the VSUSYE331 is equivalent to the canceling
of five linear neutral Higgs terms, as listed below:

μ2
ρ + 4m2

ρ = 4
v′

v
bρ

−2g2′ + 9g2

27

[

2
(

v2 − v2′)+ w2′ − w2 + u′2 − u2
]

,

μ2
χ + 4m2

χ = 4
u′

u
bχ

−g′2

27

[

w2 − w′2 + u2 − u′2 + 2
(

v′2 − v2
)]

−g2

3

[

2
(

u2 − u′2 + w2 − w′2)+ v′2 − v2
]

, (16)

m2
ρ + m2

ρ′ +
1

2
μ2

ρ = bρ

v2 + v′2

vv′ , (17)

m2
χ + m2

χ ′ +
1

2
μ2

χ = bχ

u2 + u′2

uu′ , (18)

(−u′w + uw′)
[

bχ + g2

4
(uu′ + ww′)

]

= 0. (19)

From condition (19), it is easy to see that we have the
equality u/u′ = w/w′, the same as shown in [33]. The for-
mulas in (16) are obtained when this equality is inserted in
four other independent linear vanishing conditions. As our
convention we will use th notation defined in previous works,

tan β = tβ = u

u′ , tan γ = tγ = v

v′ , t = g′

g
,

m2
W = g2

4

(

v2 + v′2) , m2
X = g2

4

(

u′2 + w′2) (t2
β + 1

)

,

(20)

where m X and mW are the masses of the non-Hermitian
boson X and W boson, respectively.

The four equations (16)–(18) now can be rewritten in the
form

1

4
μ2

ρ + m2
ρ = bρ

tγ
+ 2t2 + 9

27

×
[

−m2
X cos 2β + 2m2

W cos 2γ
]

, (21)

1

4
μ2

χ + m2
χ = bχ

tβ
+ t2 + 18

27
m2

X cos 2β

− (2t2 + 9)

27
m2

W cos 2γ, (22)

s2γ ≡ sin 2γ = 2bρ

m2
ρ + m2

ρ′ + 1
2μ2

ρ

,

s2β ≡ sin 2β = 2bχ

m2
χ + m2

χ ′ + 1
2μ2

χ

. (23)

The two equations in (23) directly tell us two separated con-
straints for bρ and bχ :

2bρ ≤ m2
ρ +m2

ρ′+
1

2
μ2

ρ and 2bχ ≤ m2
χ +m2

χ ′+
1

2
μ2

χ .

(24)

These two conditions are similar to the constraint to the
b-term in the D-flat directions of the MSSM. They guarantee
that the scalar potential has a lower bound. So it will have a
minimum.

Using the results in (23) to solve the series of two equa-
tions (21) and (22) we can determine cos 2γ and cos 2β as
functions of the soft parameters. But it will be more conve-
nient to estimate the order of the soft parameters by writing
cos 2γ and cos 2β as follows:

c2γ ≡ cos 2γ

=
2c2

W

(

1
4μ2

ρ + m2
ρ − bρ

tγ

)

+
(

1
4μ2

χ + m2
χ − bχ

tβ

)

m2
W

,

c2β ≡ cos 2β

=
(

1
4μ2

ρ + m2
ρ − bρ

tγ

)

+ 2
(

1
4μ2

χ + m2
χ − bχ

tβ

)

m2
X

= 2m2
W c2γ

m2
X

−
(3 − 4s2

W )
(

1
4μ2

ρ + m2
ρ − bρ

tγ

)

m2
X

. (25)

It is very important to note that the two equations in (25) have
upper bounds: |c2γ |, |c2β | ≤ 1. Combined with the property
mW � m X of the SUSYE331, the parameters on the right
hand side of (25) must be on the same scale of O(m2

W ) or
O(m2

X ). It means that we have only two cases,
∣

∣

∣

∣

1

4
μ2

ρ + m2
ρ − bρ

tγ

∣

∣

∣

∣

∼
∣

∣

∣

∣

1

4
μ2

χ + m2
χ − bχ

tβ

∣

∣

∣

∣

∼ O(m2
W ),

(26)

or

∣

∣

∣

∣

1

4
μ2

ρ + m2
ρ − bρ

tγ

∣

∣

∣

∣

∼
∣

∣

∣

∣

1

4
μ2

χ + m2
χ − bχ

tβ

∣

∣

∣

∣

∼ O(m2
X ).

(27)

If there is not much hierarchy among the soft and μρ,χ

parameters, they all should be of the same scale. In addi-
tion, the case of (27) appears when the two quantities

2c2
W

(

1
4μ2

ρ + m2
ρ − bρ

tγ

)

and
(

1
4μ2

χ + m2
χ − bχ

tβ

)

have oppo-

site signs, so that they cancel each other to result in the
total being of the O(m2

W ) scale. The degeneration among the
supersymmetric parameters characterized for a large break-
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ing scale also happens in the normal SU(2)L × U(1)L super-
symmetric model.

Because the Higgs sector in this model is very compli-
cated, it is not easy to find the exact solutions for the mass
spectrum as well as the mass eigenstates of the Higgses.
Instead, we will use some appropriate approximations to
solve the problems. In the next section we will use the param-
eter ε = m2

W /m2
X , which satisfies ε � 1, as the perturbative

variable to do approximate calculations.
We firstly determine the mass eigenvalues of the pseudo-

scalar neutral Higgses because they are calculated exactly.
We will use them as independent parameters in formulas
representing the Higgs mass spectra.

3.1 Pseudo-scalar or CP-odd neutral Higgses

The mass Lagrangian of the pseudo-scalar Higgses is split
into two parts,

− Lmass
A = 1

2
(A1, A2, A3, A4) × M2

Aχ (A1, A2, A3, A4)T

+1

2
(A5, A6)M2

Aρ(A5, A6)
T (28)

with

M2
Aχ= g2

4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

w′2 + 4bχ

g2tβ
, −u′w′, ww′ + 4bχ tβ

g2 , −uw′tβ ,

−u′w′, u′2 + 4bχ

g2tβ
−uw′tβ uu′ + 4bχ tβ

g2

ww′tβ + 4bχ

g2 −uw′tβ w2tβ + 4bχ t2
β

g2 −uwt2
β

−uw′tβ uu′tβ + 4bχ

g2 −uwt2
β u2t2

β + 4bχ tβ
g2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and

M2
Aρ = 4bρ

tγ
×
(

1 tγ

tγ t2
γ

)

.

This leads to the result that there are three massless solutions
and three massive ones, defined as

m2
A1

≡ m2
HA1

= 2bρ

s2γ

= 1

2
μ2

ρ + m2
ρ + m2

ρ′,

m2
A2

≡ m2
HA2

= 2bχ

s2β

= 1

2
μ2

χ + m2
χ + m2

χ ′ ,

m2
A3

≡ m2
HA3

= m2
A2

+ m2
X . (29)

Because ρ and ρ′ play the roles of MSSM Higgses, HA1

seems to be the same as the CP-odd Higgs in the MSSM. To
compare the Higgs mass spectrum with the SU(3)L scale in
the following calculations, we will use some new notation,
defined by

k1 = m2
A1

m2
X

, k2 = m2
A2

m2
X

, hW =
√

1

3 − 4s2
W

. (30)

It is easy to write the three massive eigenstates as

HA1 = A5cγ + A6sγ ,

HA2 = A1cβsζ + A2cβcζ + A3sβsζ + A4sβcζ ,

HA3 = −A1cβcζ + A2cβsζ − A3sβcζ + A4sβsζ , (31)

where tan ζ = u′/w′, cos ζ = cζ , sin ζ = sζ , cos β =
cβ, sin β = sβ, cos γ = cγ , sin γ = sγ . Three massless
eigenstates are

HA4 = −A5sγ + A6cγ ,

HA5 = −A2sβ + A4cβ,

HA6 = −A1sβ + A3cβ. (32)

They are Goldstone bosons eaten by neutral gauge bosons
Z , Z ′, and X0. There do not exist any physical massless
CP-odd neutral Higgses in the model.

3.2 Neutral scalar Higgs

In the basis of (S1, S2, S3, S4, S5, S6) the squared mass
matrix of the real scalar neutral Higgses can be written in
the form of

M2
6S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m2
S11 m2

S12 m2
S13 m2

S14 m2
S15 m2

S16

m2
S22 m2

S23 m2
S24 m2

S25 m2
S26

m2
S33 m2

S34 m2
S35 m2

S36

m2
S44 m2

S45 m2
S46

m2
S55 m2

S56

m2
S66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (33)

where the precise formulas of the elements are listed in
Appendix A. The squared mass matrices of both neutral and
charged Higgses are different from those in [33] by B/μ-type
terms.

The eigenvalues of this matrix are squared masses of the
physical CP-even neutral Higgses at tree level, denoted λ =
m2

H0 . They must satisfy the equation det
(

M2
6S − λ I6

) = 0,
or equivalently

λ

[

λ −
(

1 + t2
β

)

(

bχ

tβ
+ g2

4
(u′2 + w′2)

)]

f (λ) = 0 (34)

with f (λ) = aλ4 + bλ3 + cλ2 + dλ + e. (35)

Equation (34) has one massless solution and one exact mas-
sive solution λ = m2

A3
. The massless Higgs is eaten by the X

boson. The function f (λ) can be reduced to a simpler form
by defining a new variable as follows:

λ = X × m2
X . (36)
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From (23) and (30) we get

bχ = 1

2
m2

A2
s2β = 1

2
m2

X k1s2β,

bρ = 1

2
m2

A1
s2γ = 1

2
m2

X k2s2γ ,

g′ = t × g (37)

with

t2 = 18s2
W

3 − 4s2
W

.

We define the quantity

ε = m2
W

m2
X

= v2 + v′2

(u′2 + w′2)(1 + t2
β)

, (38)

which measures the ratio of two spontaneous breaking scales
SU(2)L and SU(3)L . Based on the calculation in [29,30,33]
we get a relation

ε � m2
W

m2
Z ′

× 4c2
W

4c2
W − 1

, (39)

where m Z ′ is the mass of the heavy neutral Hermitian boson
Z ′ and θW is the Weinberg angle, cW = cos θW . The current
bound of m Z ′ is m Z ′ > 2500 GeV [46], leading to the result
ε < 2.0 × 10−3, which can be used to find solutions of
Eq. (35) approximately.

The equation f (λ) = 0 now can be written in the form of

g(X) = AX4 + B X3 + C X2 + DX + E = 0, (40)

where

A = 1,

B = −
(

4c2
W h2

W + k1 + k2 + 4h2
W × ε

)

,

C = 4c2
W h2

W

(

k1 + k2c2
2β

)

+k1k2 + h2
W

(

1 + k1c2
2γ + k2

)

× ε,

D = −4c2
W h2

W k1k2c2
2β

−4h2
W

[

k2c2
2β + c2

2γ k1 (1 + k2)
]

× ε,

E = 4h2
W k1k2c2

2γ c2
2β × ε. (41)

The function g(X) will be used to estimate the approximate
mass eigenvalues of the real neutral Higgses in the following
section. We will study in more detail the mass spectrum of
neutral Higgs with some assumptions on the soft parameters.
Now let us consider the charged Higgs mass spectrum.

3.3 Charged Higgs

In the basis of (χ+, χ+′, ρ+
1 , ρ+

2 , ρ+′
1 , ρ+′

2 ), the squared
mass matrix can be written as

M2
6charged

= g2

4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m2
χ−χ+ m2

χ−χ ′+ uv vw −uv′ −v′w

m2
χ ′−χ ′+ −vu′ −w′v v′u′ v′w′

m2
ρ−

1 ρ+
1

m2
ρ−

1 ρ+
2

− 4bρ

g2 − vv′ 0

−m2
ρ−

2 ρ+
2

0 − 4bρ

g2 − vv′

m2
ρ−′

1 ρ+′
1

m2
ρ−′

1 ρ+′
2

m2
ρ−′

2 ρ+′
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(42)

Detailed formulas for the elements of the matrix are shown
in Appendix B.

The masses of the charged Higgses are solutions of the
equation Det(M2

6charged −λI6) = 0. Each solution λ = m2
H±

corresponds to one mass eigenvalue of M2
6charged, and I6 is

the 6 × 6 unit matrix. Changing variables as in the case of
the neutral Higgses, we obtain the equation

X2
[

λ −
(

m2
A1

+ m2
W

)]

× f (X) = 0 (43)

with X = m2
H±/m2

X and where mW is the mass of the W
boson. The function f (X) is a polynomial of degree 3, rep-
resented as

f (X) = X3 + AX2 + B X + C, where (44)

A = −(1 + k1 + k2 + ε),

B = −c2
2β + k1(1 + c2γ c2β + k2)

+ [

k2 + c2γ c2β(2 + k2)
]× ε − c2

γ × ε2,

C = (1+ε)
[

c2β −c2γ (ε+k1)
] [

c2β(1+k2)−c2γ ε
]

.

(45)

For the charged Higgs sector, there are two Goldstone bosons
eaten by the W ± and Y ± bosons. There is an exact value of
the mass, m2

H±
4

= m2
W + m2

A1
. The three other values will be

investigated in the following section.

4 Constraint to Higgs masses

As stated above, in this section we will investigate in more
detail the mass spectrum of the Higgses. We will see that
there exist many relations among Higgs masses, soft param-
eters, and μρ,χ terms in the scalar potential. First, from (23),
(25), (29), and the lower constraint to the CP-odd neutral
Higgs masses from a recent experiment, we conclude that
all parameters of the model must be above the electroweak
breaking scale. Furthermore, the equations in (25) indicate
that the soft-breaking parameters must be smaller than the
SU(3)L breaking scale, and c2γ should not be too small.

To continue, we will investigate the masses of the neutral
and charged Higgses in the two cases listed in (26) and (27).
From these two cases and (29), it is easy to prove that m2

A1
and
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m2
A2

have the same order as the parameters in (26). We will

concentrate on the values of m2
A1

and m2
A2

in the following
sections.

4.1 Case 1: Soft parameters in the electroweak breaking
scale

This case is expressed in (26). The result is that k1, k2, and
c2β are of the order O(ε). So we define

k1 = k′
1 × ε, k2 = k′

2 × ε (46)

with k′
1, k′

2 ∼ O(1). The factor c2β will be considered
later. Based on the Viet theorem, the equations given in
Eq. (41) show that Eq. (40) produces four positive solu-
tions related to the physical squared masses of the Higgses.
Without loss of generality, we denote these four solutions
as X1 ≤ X2 ≤ X3 ≤ X4. The Viet theorem gives the four
solutions satisfying the conditions

4
∑

i=1

Xi = 4c2
W h2

W + k1 + k2 + 4h2
W × ε,

4
∑

i< j;i, j=1

Xi X j = 4c2
W h2

W

(

k1 + k2c2
2β

)

+k1k2 + h2
W

(

1 + k1c2
2γ + k2

)

× ε,

∑

i< j<k

Xi X j Xk = 4c2
W h2

W k1k2c2
2β

+4h2
W

[

k2c2
2β + c2

2γ k1 (1 + k2)
]

× ε,

X1 X2 X3 X4 = 4h2
W k1k2c2

2γ c2
2β × ε. (47)

Because of the existence of the 4c2
W h2

W term in the first
equation of (47), there must be at least one heavy Higgs
which is equivalent to O(m2

X ). The fourth equation shows
that X1 X2 X3 X4 ≤ O(ε) in this case. So there is at least
one light Higgs having a mass related with Xi ≤ O(ε). We
first estimate this mass by assigning X1 = X ′

1 × ε with
X ′

1 ≤ O(1). Inserting this X1 into Eq. (40) then setting the
factor of the lowest order of ε to vanish, we have

(X ′
1 − k′

1c2
2β)

[

c2
W X ′2

1 − (1 + c2
W k′

1)X ′
1 + c2

2γ k′
1

]

= 0. (48)

Equation (48) indicates that there are three light Higgses. But
one of them relates with X ′

1 such that

X ′
1 = k′

1c2
2β ∼ m2

A1

m2
W

× |c2β |2. (49)

This value is too small because of the factor c2
2β ∼ O(ε2)

given in Eq. (25) and the soft parameter scale is the same as
that of the SU(2)L breaking. Then we have

X ′
1 =

m2
H0

1

m2
W

∼ m2
A1

m2
W

×
(

m2
W

m2
X

)2

→ m H0
1
∼m A1×O(10−3).

Because m A1 ∼ O(mW ) in this case, if this is SM Higgs m H0
1

is too small compared with the recent experimental bound
from LEP [57]. If not, one of two remaining solutions in
(48) will be identified with the value around 125.5 GeV. The
formula representing these two values is

m2
H0

2,3
�1

2

(

m2
Z + m2

A1
∓
√

(

m2
A1

− m2
Z

)2 + 4s2
2γ m2

Z m2
A1

)

.

(50)

Equation (50) is of exactly the same form as that pre-
sented for the neutral Higgs masses in the MSSM. From
previous work for the MSSM we immediately obtain some
interesting consequences. At tree level the lighter Higgs gets
a mass which is smaller than m Z |c2γ |. This Higgs is nor-
mally identified with the like-SM Higgs discovered at the
LHC [1,2] because its mass can increase after including loop
corrections. On the other hand, some recent works also were
concerned with a case named the “low-MH scenario” where
the heavier Higgs corresponds to the discovered state [3,4].
Although this case predicts light charged Higgses, the param-
eter space is very small. This is because it requires all of
these light Higgses to have heavily suppressed couplings to
the gauge bosons to escape the search of LEP.

From the above investigation, the SUSYE331 soft param-
eters considered at the SU(2)L symmetry breaking are not
the favorite choice. They should be of the SU(3)L breaking
scale. It is case 2 that we concentrate on in this work.

4.2 Case 2: Soft parameters of the SU(3)L breaking scale

4.2.1 CP-even neutral Higgses

The Higgs sector in this case is very complicated. Mathe-
matically, exact solutions of the polynomial equations (40)
and (44) can be determined, but they are too long; also it
is very hard to see any physics in these expressions. Instead,
we firstly find approximate solutions of the mass eigenvalues
based on the very small values of ε.

For light neutral Higgses, the last equation in (41) shows
that there is only one light neutral Higgs. Being of the order
of O(ε), the squared mass of this Higgs is given as X1 =
X ′

1 × ε + O(ε2) where X ′
1 ∼ O(1). Inserting this value into

(40) and then forcing the factor of the lowest order of ε to be
zero, we have

X ′
1 � c2

2γ

c2
W

equivalent m2
H0

1
� M2

Z c2
2γ . (51)
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This formula for the neutral Higgs mass is completely the
same as that in the case of the MSSM. Furthermore, the
contribution from the next leading order is proportional to
( 1

2 mW × ε) ∼ 0.08 GeV. So the mass of the light Higgs
needs to get major corrections from the loop contributions.

For the three heavy neutral Higgses, we denote their
masses as Xi = X ′

i + X ′′
i × ε, where both X ′

i , X ′′
i ∼ O(1)

and i = 2, 3, 4. Then these masses can be written in the form

m2
H0

i
= X ′

i m
2
X + X ′′

i × m2
W + O(ε) × m2

W . (52)

The main contributions to the heavy Higgs masses come from
Xi × m2

X ∼ m2
H0

i
, namely

m2
H0

2
� X ′

2m2
X = m2

A1
, (53)

m2
H0

3,4
� X ′

3,4 × m2
X

= 1

2

(

m2
A2

+m2
Z ′ ∓

√

(

m2
A2

−m2
Z ′
)2+4m2

Z ′m2
A2

s2
2β

)

,

(54)

where m Z ′ is the mass of the neutral Z ′ boson [38], m2
Z ′ =

4m2
X c2

W /(4c2
W −1). The values of X ′′

i are computed from X ′
i

based on the following formula:

X ′′
i = A0

B0
where

A0 = 4h2
W

(

X ′
i − k1c2

2γ

) (

X ′2
i − (k2 + 1)X ′

i + k2c2
2β

)

,

B0 = 4c2
W k2(2X ′

i − k1)c
2
2β + X ′

i

[

4h2
W c2

W

(

2k1 − 3X ′
i

)

+ 2k1k2 − 3(k1 + k2)X ′
i + 4X ′2

i

]

. (55)

It is noted that X ′′
i is the correction to the squared Higgs

masses. For the correction of the Higgs masses, using
Eq. (53), we can get approximate values of the Higgs mass:

m H0
i

=
√

X ′
i m

2
X + X ′′

i × m2
W + O(ε) × m2

W

� m X ×
√

X ′
i + X ′′

i
√

X ′
i

× m2
W

m X
. (56)

If we assume that the scale m X � O(TeV), the correction

to the Higgs mass at the next leading order is X ′′
i /

√

X ′
i ×

2.4 GeV. This correction is too small compared with the
heavy Higgs mass of the TeV scale. So, in our calculation, this
correction can be ignored. For more details, the analytic for-
mulas of neutral Higgs masses can be found in Appendix A.

For illustration of our results, all analytic formulas of the
neutral Higgs masses can be compared with the numerical
investigation shown in Fig. 1. In this figure, we use Math-
ematica 7.0 directly to find the eigenvalues of the squared
mass matrix (33). It is easy to see that the four blue curves
represent four heavy Higgs masses, while the lightest Higgs

1000 1500 2000 2500

100

1000

500

200

2000

300

3000

150

1500

700

mA1
GeV

m
H

0
G

eV

Fig. 1 Plots of m H0
j

( j = 1, 2, . . . , 5) as functions of m A1 . The param-

eters are fixed as m X = 2.5 TeV, m A2 = 1.0 TeV, u2+u′2
v2+v′2 = 10−4,

and mW = 80.4 GeV, tγ = 50, tβ = 10. The red line represents the
mass of the lightest neutral Higgs. The dashed line fixes the values of
m Z � 92.0 GeV

has a mass m H0
1

� m Z when tγ � 1. All of these masses are
consistent with those shown by our analytic results. This will
be helpful to estimate the mass eigenstates of these Higgses
in Appendix A.

In conclusion, the SUSYE331 model has five physical
CP-even neutral Higgses, including one light Higgs and
four other heavy Higgses. The light Higgs can be identified
to the Standard Model-like Higgs. One of the heavy Hig-
gses has exactly a mass m H0

5
at the tree level which obeys

m2
H0

5
= m2

A2
+ m2

X . The squared masses of the three other

Higgses can be approximately computed up to O(ε) × m2
W .

The above analysis makes some interesting properties of the
SUSYE331 clear. Although the model has four Higgs mul-
tiplets, they separate into two pairs having different absolute
U(1)X charges. Two Higgses in each pair have opposite signs
in order to cancel the gauge anomaly. The appearance of the
Higgses in pairs makes the SUSYE331 have many similar
properties to the MSSM. In particular, while ρ and ρ′ cou-
ple with all leptons and quarks, χ and χ ′ do not couple with
the leptons. So ρ and ρ′ play the same role as Higgses in
the MSSM. Furthermore, if the CP-odd neutral Higgs is very
heavy, the light CP-even neutral Higgs mass at the tree level
has exactly the form as in (51) where tγ in the SUSYE331
plays the same role as tβ in the MSSM. This value is smaller
than the mass of the Z boson, m Z � 92 GeV. Compared with
the 125.5 GeV value of the Higgs mass discovered recently
in the LHC, the MSSM needs large values of |c2β |. tβ should
also be large, corresponding to large corrections from the
squark loops for the Higgs mass in order to get a consistent
light Higgs mass. The case of SUSYE331 is a bit different.
Apart from tγ there appears a new parameter tβ defined as
the ratio of w and w′, which are the two VEVs of χ and
χ ′. One can see that the light Higgs state is a mixing of all
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Fig. 2 The mass of the lightest CP-even neutral Higgs including one-
loop correction of the top and stop quark. The black (dotted) curves
present the mass in the SUSYE331 (MSSM) as a function of stop quark.
Two dashed lines correspond to 125 and 126 GeV. In the case of the
SUSYE331 m X = 2.0 TeV is chosen

neutral components of the four Higgs multiplets. As a result,
corrections to this Higgs mass will come from squark loops
related with both tγ and tβ .

The mass of the lightest Higgs will easily and naturally
reach the value of a recent experimental result if loop cor-
rections are included. This can be realized through the well-
known results calculated for the MSSM [12,59–61], where
the largest one-loop corrections to m2

h arise from the top
quark and the stop scalar. In the SUSYE331 model, choosing
a simplifying case based on [59] we can show that the lightest
Higgs mass can get a contribution of a one-loop correction
similar to those of the MSSM. The details are presented in
Appendix C, and Fig. 2 presents the mass of the lightest Higgs
according to (98). In a more accurate calculation, the mixing
between left and right stops should be included; then the case
will be the same as that called the decoupling limit, indicated
in [12] (section 7). Apart from this, we believe that one-loop
corrections from the very heavy exotic quarks and their super-
partners may also increase the mass of this lightest neutral
Higgs. This topic is out of the scope of this work. The simple
estimation in this work is as an illustration enough to show
that the CP-even neutral Higgs spectrum of the SUSYE331
is consistent with present experimental results. Because tγ is
larger than 1 (π

4 < γ < π
2 ) we get the constraint c2γ < 0.

One more comment needs to be added here. At this scale
of the soft parameters, light Higgs m2

H0
1

in Eq. (51) and a

heavy Higgs in Eq. (52) contain many similar properties to
those in the MSSM, while other Higgses are characterized
for SU(3)L scale. So we can use many known properties of
the MSSM to study these like-MSSM Higgses. Also, the CP-
odd neutral Higgs HA1 in (31) carries properties of that in the
MSSM. As we will show in the next section, the Higgs sector
in the SUSYE331 is separated into two parts. The first part
is closely related to MSSMs while the second part is related
to the SU(3)L × U(1)X properties.

4.2.2 Charged Higgs

If all soft parameters live on the SU(3)L scale, the second
formula given in (25) shows that the values of c2β should
not be too small. Applying this constraint to Eq. (45), one
can prove that all solutions of (43) correspond to very large
values of the charged Higgs masses. Similar to the case of the
neutral Higgs, if we denote Xi = X ′

i + X ′′
i × ε (i = 1, 2, 3),

then

m2
H±

i
=Xi × m2

X = X ′
i × m2

X + X ′′
i × m2

W +O(ε) × m2
W ,

(57)

where the main contributions to the three charged Higgs
masses are

m2
H±

1
� X ′

1 × m2
X = m2

X + m2
A2

, (58)

m2
H±

2,3
� X ′

2,3 × m2
X = 1

2

×
(

m2
A1

∓
√

(

m2
A1

− 2m2
X c2βc2γ

)2 + 4m4
X c2

2βs2
2γ

)

,

(59)

and X ′′
i ≡ ax/bx depends on X ′

i according to the following
formula:

ax = −c2βc2γ

[

1 + (k1 + 1)(k2 + 1) + (k2 + 2)X ′
i

]

+c2
2γ k1 + c2

2β(1 + k2) + k2 X ′
i − X ′2

i ,

bx = c2
2β − c2βc2γ k1 − k1(k1 + k2)

+2(1 + k1 + k2)X ′
i − 3X ′2

i . (60)

We need to emphasize that the masses of the Higgses in (59)
must be positive. This corresponds to the condition

c2β

(

c2β − k1c2γ

)

< 0. (61)

If so then k1c2γ < c2β < 0 because c2γ < 0. From this we
have π/4 < β < π/2 and tβ > 1.

There is another way to deduce an exact constraint, which
is stricter than the constraint given in Eq. (61). By apply-
ing the Viet theorem to Eq. (45) with three charged Higgs
masses X1, X2, and X3, we have X1 X2 X3 = −(1 + ε)
[

c2β − c2γ (ε + k1)
] × [

c2β(1 + k2) − c2γ ε
]

> 0. In the
case of ε � 1 it leads to the consequence that (c2β −
c2γ k1)c2β(1+k2) < 0, the same result as shown in Eq. (61).
Combining with the condition of c2γ < 0, we get an exact
condition for the positivity of all charged Higgs masses:
(k1 + ε)c2γ < c2β <

c2γ ε

1+k2
< 0, which implies that

(m2
A1

+ m2
W )c2γ

m2
X

< c2β <
c2γ m2

W

m2
X + m2

A2

< 0. (62)

If this condition is satisfied, then all charged Higgs masses
in the SUSYE331 are of the order of the SU(3)L scale. Of
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Fig. 3 Plots of m2
H±

i
as functions of m A1 . The parameters are fixed

as m X = 2.5 TeV (left panel) and m X = 2.0 TeV (right panel),

m A2 = 1.0 TeV, u2+u′2
v2+v′2 = 10−4, and mW = 80.4 GeV. The left panel

corresponds to large values of tγ and tβ : tγ = 50., tβ = 10. The right

panel corresponds to smaller values of tγ and tβ : tγ = 5.0, tβ = 1.2.

The red points imply the values of m2
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X c2β
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W giving the

squared mass of the lightest charged Higgs m2
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Fig. 4 Contours of the lightest values of m2
H± as functions of two vari-

ables: (m A1 , tβ) (left panel) or (m A1 , tγ ) (right panel). The parame-

ters are fixed as m X = 2.5 TeV, m A2 = 1.0 TeV, u2+u′2
v2+v′2 = 10−4, and

m2
W = 80.2. In addition tγ = 30 for the left panel and tβ = 10 in the

right panel. The dashed line corresponds to m2
H± = 0

course, on this scale, there is no massless charged Higgs in
this model and all of these masses are much larger than the
current experimental bound at LEP [56].

Finally, as an illustration for our qualitative estimations
we will numerically investigate some cases of charged Higgs
masses. The results are shown in Figs. 3 and 4. The left panel
of Fig. 3 shows the case of large tγ and tβ where we can fix
c2γ � c2β = −1. Inserting these values into (59) we have
two values m2

H± = {m2
X , m2

A1
− m2

X }. This means that in
order to cancel the tachyon Higgs m A1 must be larger than
m X . A strict constraint of m A1 comes from (62): m2

A1
>

∣

∣

∣

c2β

c2γ

∣

∣

∣m2
X − m2

W . This limit value of m A1 is represented by

the red points in Fig. 3.
It is easy to see that the two constant lines in the left panel

represent two values m2
H± = {m2

X +m2
A2

, m2
X }, while the two

other curves show values of m2
H± = {m2

A1
+m2

W , m2
A1

−m2
X }.

These two curves are parallel because they are different from
each other at constant values m2

X + m2
W . This property does

not occur in the case of small tγ , as shown in the right panel
of Fig. 3. In all cases, there always exists a lower constraint
of m A1 to cancel the tachyon charged Higgs. This value lies
at the SU(3)L scale unless |c2β | (tβ ) is small, as we illustrate
in the left panel of Fig. 4. This also shows the consequence
that the SUSYE331 still contains a light charged Higgs if the

value of m2
A1

is very close to the values of
∣

∣

∣

c2β

c2γ

∣

∣

∣m2
X − m2

W .

There is an interesting consistence of the model that can
be seen in Fig. 4. It shows the contours of the lightest mass
of the charged Higgs m2

H± as functions of m2
A1

and tβ (tγ ).

The allowed regions correspond to the condition m2
H± >

902 [GeV] at tree level. As we have discussed, the model
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requires a large tγ to get the consistent lightest neutral Higgs.
Fortunately, the allowed region on the right panel favors both
large tγ and m A1 . The small values of tγ require very large
values of m A1 . On the other hand, the allowed region with
large m A1 in the left panel also supports large values of tβ . We
can see that in the limit of large tγ (tβ ) the lightest charged
Higgs mass almost does not depend on the values of tγ (tβ ),
while it is very sensitive to the variance of m A1 .

5 MSSM Higgses vs. SUSYE331 Higgses

To compare more precisely the properties of the MSSM
Higgs spectrum with some Higgses in the model under con-
sideration we will investigate the couplings of the Higgs par-
ticles. In this part, we concentrate on the couplings of the
Higgses in the SUSYE331.

Let us briefly review the Higgs spectrum in the MSSM.
In this model, in order to provide a mass for up and down
fermions as well as to cancel the anomaly, two doublet Hig-
gses, Hu, Hd , are introduced. After the symmetry break-
ing SU (2)L × U (1)Y → U (1)Q , the gauge bosons W ±, Z
become massive particles and the physical Higgs spectrum
contains two CP-even neutral, H, h, one odd-CP neutral, A,
and two singly charged Higgses, H±.

In the SUSYE331 the electroweak symmetry is broken
by VEVs: u, u′, v, v′, where u, u′ are the VEVs of the first
components of χ, χ ′ and the residual values are the VEVs of
ρ, ρ′. Because the u, u′ carry lepton number, they break the
lepton number symmetry. Hence they must be small and we
can ignore them when we estimate the effect of electroweak
breaking. It means that the main contributions to the mass
of the SM particles are obtained by the VEVs of ρ, ρ′. In
other words, these two Higgses have the same roles as the
two Higgs doublets Hu and Hd in the MSSM. Therefore, to
find the similarity between the Higgs spectrum in the MSSM
and the SUSYE331, we will concentrate on studying the five
particular Higgses of the SUSYE331, H0

1 , H0
2 , HA1 , and H±

4 ,
where all of them are related with the ρ, ρ′, and Bρ-term.

Let us consider the couplings of H0
1 , H0

2 , HA1 , and H±
4

with the SM fermions and gauge bosons. In the limit of large
tγ and u, u′ = 0, the soft as well as SU(3)L parameters are
assumed to be much larger than the SU(2)L breaking scale,
in the sense that m2

A1,2
� m2

Z . The physical states H0
1 , H0

2 ,

HA1 , and H±
4 have the following form:

(

HA4

HA1

)

=
(

cγ −sγ

sγ cγ

)(

A6

A5

)

,

(

H±
5

H±
4

)

=
(

cγ sγ

−sγ cγ

)(

ρ′±
1

ρ±
1

)

(63)

Table 1 Higgs-gauge boson couplings

Vertex Factor Vertex Factor

H0
1 W +W − igmW s2γ H0

2 W +W − −igmW c2γ

HA1 H0
2 Zμ

−g
2cW

(p + p′)μ H+
4 H−

4 Zμ
−gc2W

2cW
(p + p′)μ

H+
4 H−

4 Aμ −ie(p + p′)μ H0
2 H±

4 W ∓
μ ± ig

2 (p + p′)μ

HA1 H±
4 W ∓

μ
g
2 (p + p′)μ

H0
1 H0

1 W +
μ W −

ν
ig2

2 gμν H0
2 H0

2 W +
μ W −

ν
ig2

2 gμν

HA1 HA1 W +
μ W −

ν
ig2

2 gμν H0
1 H0

1 ZμWν
ig2

2c2
W

gμν

H0
2 H0

2 ZμWν
ig2

2c2
W

gμν HA1 HA1 ZμWν
ig2

2c2
W

gμν

H+
4 H−

4 ZμWν
ig2c2

2W
2c2

W
gμν H+

4 H−
4 Zμ Aν

iegc2W
cW

gμν

H0
2 H±

4 W ∓
μ Zν

ig2s2
W

2cW
gμν HA1 H±

4 W ∓
μ Zν ∓ g2s2

W
2cW

gμν

H0
2 H±

4 W ∓
μ Aν

−ieg
2 gμν HA1 H±

4 W ∓
μ Zν ± eg

2 gμν

and
(

H0
2

H0
1

)

=
(

sγ −cγ

cγ sγ

)(

S6

S5

)

. (64)

The non-zero masses of these particles are given by

m2
A1

= bρ

s2γ

, m H±
4

= m2
A1

+ m2
W ,

m2
Ho

2
= m2

A1
+ O(m2

W ), m Ho
1

= m2
Z |c2γ |. (65)

The other particles are massless and identified with the Gold-
stone bosons. Based on the physical states, we can find the
couplings of the Higgses H0

1 , H0
2 , HA1 , and H±

4 with the SM
particles. The couplings of them with the SM gauge bosons
are listed in Table 1.

From Eq. (63), it can be realized that the equivalent role of
the two parameters β and γ in the two models.1 The formula
(64) shows that the case we are working in, the SUSYE331, is
similar to that of the decoupling regime in the MSSM where
α → β − π/2. In this limit, the couplings of the consid-
ered Higgses with the SM gauge bosons given in Table 1 are
consistent with those of the Higgses in the MSSM shown in
[11].

The couplings of the considered Higgses in the SUSYE331
with the fermions are listed in Table 2. The results show that
the couplings among these Higgses are the same as those
in the MSSM. Finally, we will investigate the LFV of the
Higgses decaying to leptons in the SUSYE331 model in the
following section.

1 In fact, the signs of some elements in the transformation matrices
in the SUSYE331 may be different from the MSSM; see for example
[11,12]. This also happens in the two definitions of [11] and [12] in the
MSSM. The reason is the difference in signs of the two definitions: (i)
the B/μ term in the Lagrangian; (ii) the mass eigenstates of the Higgses.
These mathematical differences do not affect the final physical results.
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6 Lepton flavor violating decay of Higgs to muon
and tauon

The LFV decays of neutral Higgses in the SUSYE331 were
studied in [44] based on the parametrization of slepton mix-
ing in [53,54] and the model constructed in [33] without the
presence of B/μ-type terms. In this work, we use the revised
model where these B/μ-type terms are added to guarantee
the stability of the vacuum of the model. As a result, the mass
eigenstates of all Higgses in general are different from those
in [33,38]. The Higgs sector becomes more complicated and
it is not easy to represent analytically the masses as well as
the mass eigenstates of the real neutral Higgses in terms of
the original parameters. In the limit of large tγ we can use
the LFV Lagrangian established in [44],

− LFV
Hμτ � Yτ (�

ρ
Rμcτ + �

ρ
Lτ cμ)(ρ0∗ − tγ ρ′0) + H.c.,

(66)

which is not affected by the diagonalization of the neutral
Higgs mass matrix. As noted in [44] we recall that ρ0, ρ′0
are neutral Higgses which generate masses for the lepton
after spontaneous breaking; �

ρ
R and �

ρ
L are one-loop con-

tributions to the LFV Lagrangian. We emphasize that the
presence of the B/μ-type terms in the model under consid-
eration does not modify the analytic formulas of the effective
couplings �

ρ
R,�

ρ
L given in [44].

Unlike the previous version, one of the many features
of the SUSYE331 in this work is the presence of massive
pseudo-scalar Higgses. Especially, the formulas in (31) and
(32) imply that only HA1 can decay to leptons. Furthermore,
it is easy to prove that

Im(ρ0∗ − tγ ρ′0) = −i√
2cγ

× HA1 . (67)

For the real neutral Higgses, we cannot find the exact mass
eigenvalues or mass eigenstates of all these Higgses. The
approximate estimation presented above just only helps to
understand some qualitative aspects of them and also shows
that the Higgs sector of the model is consistent with recent
results of experiments. A detailed analysis to estimate the
mass eigenstates of the neutral Higgses is presented in
Appendix A. In this work, the real parts of ρ0 and ρ′0 can be
estimated as S5 = H0

1 sγ − H0
2 cγ and S6 = H0

1 cγ + H0
2 sγ .

The effective Lagrangian for the LFV decays of the neutral
Higgses are

LFV
H0μτ

= Yτ√
2cγ

× (�
ρ
Rμcτ + �

ρ
Lτ cμ)

(

H0
2 + i HA1

)

+H.c.. (68)

This Lagrangian has the same form as that of the MSSM in
the limit of the CP-odd neutral Higgs having a heavy mass.
The lepton flavor conserving (LFC) part of the Lagrangian

Table 2 Coupling of the neutral Higgs bosons to fermions.

Particles Up fermion Down
fermion

Exotic up
quark

Exotic down
quark

SM Higgs 1 1 0 0

H0
1 1 1 O

(

mW
m X

)

O
(

mW
m X

)

H0
2 − 1

tγ
tγ O

(

mW
m X

)

O
(

mW
m X

)

HA1
i
tγ

i tγ O
(

mW
m X

)

O
(

mW
m X

)

at tree level can be deduced from [38]. Using the notation in
[44], this part has the form

LFC
H0μτ

= − (

Yμμcμ + Yτ τ
cτ
)

ρ′0 + H.c.. (69)

We note that the light Higgs H0
1 has very suppressed

LFV effective couplings in this case. At the tree level, the
charged leptons only couple to the Higgs ρ′ and

√
2ρ′0 =

(

H0
1 cγ + H0

2 sγ

)+ i
(

cγ HA4 + sγ HA1

)

. The LFV branching
ratio of the neutral Higgses H0 can be calculated through the
branching ratios BR(H0 → τ+τ−), namely,

BR(H0 → τ+μ−) = BR(H0 → τ−μ+)

= 1

c2
γ s2

γ

×
(

∣

∣�
ρ
L

∣

∣

2 + ∣

∣�
ρ
R

∣

∣

2
)

BR(H0 → τ+τ−)

= (t2
γ + 1)2

t2
γ

(

∣

∣�
ρ
L

∣

∣

2 + ∣

∣�
ρ
R

∣

∣

2
)

BR(H0 → τ+τ−), (70)

where H0 = HA1 , H0
2 .

In the case of tγ � 1, obtaining the Lagrangian (66), we
obtain a result that is the same as that indicated in the MSSM
for heavy neutral Higgses. We have

BR(H0 → τ+μ−)

= t2
γ

(

∣

∣�
ρ
L

∣

∣

2 + ∣

∣�
ρ
R

∣

∣

2
)

BR(H0 → τ+τ−). (71)

The neutral Higgs–fermion–fermion couplings in our work
are different from [38]. They are listed in Table 2. We just
consider H0

1 , H0
2 , and HA1 .

Following this table, the couplings of the light neutral
Higgs to fermions are the same as those in the SM. While
the CP-even and CP-odd neutral Higgses are different, they
strongly couple with the down fermion with large tγ . Fur-
thermore, these two Higgses do weakly couple with exotic
quarks of the model. They carry the properties of the neu-
tral Higgses in the MSSM and the νMSSM shown in [55].
As mentioned in [55] and as detailed for example in [11], the
coupling of these Higgses to W +W − and Z0 Z0 are very sup-
pressed if their masses are very heavy. For the SUSYE331,
a similar case occurs for the vertex type of H0V V where
V denotes any gauge bosons Z , Z ′, W ±, Y ± or X0. The
couplings are deduced from the following term:
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∑

H0

(

DμH0
)† (

DμH0
)

→ ig2
V VμV μ†

∑

H0

(

〈H0〉H0†
)

+H.c., (72)

where gV is defined from the covariant derivative Dμ =
∂μ + i

∑

V gV Vμ. As shown in Appendix A, the leading
contributions to the Higgses H0

1 , H0
2 , and HA1 come only

from the two Higgses ρ0 and ρ′0, and the couplings with all
gauge bosons are proportional to g2

V mW /g. The next lead-
ing contributions are related with χ0 and χ ′0 by a factor of√

ε = mW /m X . Because these two Higgses contain real
components having VEVs w,w′ ∼ 2m X

g , the value of the

coupling of H0
1 V V is proportional to g2

V mW /g2. In con-
trast, the coupling of H0

2 V V is still suppressed because of
a factor s2γ < 1

tγ
. So in the case of our work the leading

and next to leading contributions to the H V V couplings
of

{

H0
1 , H0

2 , HA1

}

to the gauge bosons are g2
V mW /g ×

{sin γ, 0, 0} and g2
V mW /g2 × {O(1), s2γ , 0

}

, respectively.
It means that the coupling of H0

2 V V is very suppressed and
HA1 does not couple to the gauge boson pairs. This is the
same case as in the MSSM and the νMSSM. Therefore, H0

2
and HA1 decay mainly to down fermions such as bb̄ and τ τ̄

[58]. This will lead to large LFV branching ratios of neutral
heavy Higgses which can be detected by the LHC. A detailed
investigation can be found in [55] for example.

7 Conclusion

In this work we have concentrated on the Higgs sector of
the SUSYE331 model. Unlike the previous work [33,38], by
adding two B/μ-type terms in the soft term of the SUSYE331
model we have shown that these terms not only guarantee the
vacuum stability but also cancel all of the tachyon Higgses
appearing in the previous version. Especially, from the con-
ditions of the minimum of the scalar potential we indicated
that the soft parameters and the B/μ-terms in this model nat-
urally favor the order of SU(3)L . This is the property of the
SUSYE331 model which does not occur in supersymmet-
ric versions of the SU(2)L × U(1)Y . Because of this, all of
three CP-odd neutral Higgses will get masses at least around
1 TeV. They are denoted m2

A1
, m2

A2
, and m2

A3
= m2

A2
+ m2

X .
These four Higgs states are found exactly according to the
original Higgs basis. For the neutral Higgs sector, there are
four massive Higgses in which there is one light Higgs with
squared mass m2

H0
1

� m2
Z c2

2γ , the same as in the MSSM.

Among the three other CP-even neutral heavy Higgses, there
is one exact value, m2

H0
4

= m2
A3

. In the charged Higgs sec-

tor, there is also one exact value of the charged Higgs mass,
m2

H±
4

= m2
A1

+ m2
W . This formula suggests the similar-

ity of the Higgses H±
4 and HA1 to those in the MSSM. In

summary, in the limit of large values of the soft param-

eters, B/μ-type terms, tγ , and tβ , the Higgs spectrum of
the SUSYE331 contains all Higgses carrying many prop-
erties of the MSSM Higgs spectrum. The remaining ones
characterize the SUSYE331 because they almost relate with
the SU(3)L Higgses χ and χ ′. Among these Higgses, there
maybe exists a charged Higgs tachyon, unless the conditions
(m2

A1
+m2

W )c2γ

m2
X

< c2β <
c2γ m2

W
m2

X +m2
A2

< 0 are satisfied. They give

two important consequences: i) for tγ > 1 (c2γ < 0) tβ is
larger than 1 too, ii) if the value of m2

A1
is very close to the

value of
(

c2β

c2γ
m2

X − m2
W

)

, there will appear a light charged

Higgs characteristic for the existence of SU(3)L itself, which
supports the charged Higgs searches at LHC and other col-
liders.

It is emphasized that the above classification helps us to
exploit many known results for the MSSM to estimate the
properties of the first class of Higgses in the SUSYE331,
although they seem to be only true at the tree level. For com-
pleteness it is really necessary to study in detail the effect
from loop corrections because new particles will generate
new diagrams in higher order calculations. As an illustra-
tion, we consider the LFV decays of neutral Higgs bosons
to leptons in the SUSYE331. The loop contributions to these
decays were indicated in [44]. This result does not depend
on the appearance of B/μ-type terms. The calculation in this
work shows that the LFV decays of the three neutral Higgses
HA1 , H0

1 , and H0
2 are consistent with the conclusions for

the MSSM neutral Higgses shown in [55]. Here the H0
1 is

the lighter CP-even neutral Higgs. It is normally identified
with SM-like Higgs. The two Higgses HA1 and H0

2 are very
heavy Higgses with degenerate masses. Furthermore they
decay mainly to down fermions such as bb̄ and τ τ̄ , leading
to the enhancement of LFV branching ratios up to O(10−4)

for the MSSM and the SUSYE331. This is really new and
of significance for the heavy neutral Higgses which can be
checked by experiments.
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Appendix A: CP-even neutral Higgs squared mass matrix

We list precisely all of the elements of the CP-even neutral
Higgs squared mass matrix as follows:

m2
S11 = 1

2

bχ

tβ
+ g2

8
w′2 + g2

108

(

18 + t2
)

u2,
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m2
S12 = −g2

8
u′w′ + g2

108

(

18 + t2
)

uw,

m2
S13 = −1

2
bχ − g2

8
ww′ − g2

108

(

18 + t2
)

uu′,

m2
S14 = g2

8
u′w − g2

108

(

18 + t2
)

uw′,

m2
S15 = − g2

108

(

9 + 2t2
)

uv,

m2
S16 = g2

108

(

9 + 2t2
)

uv′

m2
S22 = bχ

2tβ
+ g2

8
u′2 + g2

108

(

18 + t2
)

w2,

m2
S23 = g2

8
u′w − g2

108

(

18 + t2
)

u′w,

m2
S24 = −bχ

2
− g2

8
uu′ − g2

108

(

18 + t2
)

ww′,

m2
S25 = − g2

108

(

9 + 2t2
)

wv,

m2
S26 = g2

108

(

9 + 2t2
)

wv′,

m2
S33 = bχ

2tβ
+ g2

108

(

18 + t2
)

u′2 + g2

8
w2

m2
S34 = g2

108

(

18 + t2
)

u′w′ − g2

8
uw,

m2
S35 = g2

108

(

9 + 2t2
)

u′v,

m2
36 = − g2

108

(

9 + 2t2
)

u′v′,

m2
S44 = bχ

2tβ
+ g2

108

(

18 + t2
)

w′2 + g2

8
u2,

m2
S45 = g2

108

(

9 + 2t2
)

vw′,

m2
46 = − g2

108

(

9 + 2t2
)

w′v′,

m2
S55 = bρ

2tγ
+ g2

54

(

9 + 2t2
)

v2,

m2
S56 = −g2

54

(

9 + 2t2
)

vv′,

m2
S66 = bρ

2tγ
+ g2

54

(

9 + 2t2
)

v′2.

To estimate the contributions from the original Higgs basis
Si to the physical Higgs basis we do a rotation of the squared
mass matrix (33) with the rotation C represented as follows:

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sβ 0 cβ 0 0 0
−cβ 0 sβ 0 0 0

0 0 0 0 −cγ sγ

0 0 0 0 sγ cγ

0 sα 0 cα 0 0
0 cα 0 −sα 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (73)

where

t2α = t2β × m2
A2

+ m2
Z ′

m2
A2

− m2
Z ′

, and

s2α

s2β

= − m2
A2

+ m2
Z ′

√

c2
2β

(

m2
A2

− m2
Z ′
)2 + s2

2β

(

m2
A2

+ m2
Z ′
)2

� − m2
H3

+ m2
H4

−m2
H3

+ m2
H4

. (74)

Because s2β > 0 we have s2α < 0. The sign of c2α depends
on the quantity m2

A2
− m2

Z ′ . Because of this we have π/2 <

α < 3π/2.
After this rotation, we keep only large contributions to the

squared mass matrix which are proportional to m2
X , mW m X ,

and m2
W in the non-diagonal elements of the matrix. Then we

have

M2
H0 = C.M2

6S .C
T

= m2
X ×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0, k2 + 1, 0 0 0 0

0 0, k1 + s2
2γ ε

4c2
W −1

,
2ε sin 4γ

4c2
W −1

, − 2
√

εs2γ cos(β+α)

4c2
W −1

,
2
√

εs2γ sin(β+α)

4c2
W −1

0 0 2ε sin 4γ

4c2
W −1

,
4c2

2γ ε

4c2
W −1

, − 2
√

εc2γ cos(β+α)

4c2
W −1

,
2
√

εc2γ sin(β+α)

4c2
W −1

0 0 − 2
√

εc2γ cos(β+α)

4c2
W −1

, − 2
√

εs2γ cos(β+α)

4c2
W −1

, M2
55, 0

0 0
2
√

εc2γ sin(β+α)

4c2
W −1

,
2
√

εs2γ sin(β+α)

4c2
W −1

, 0, M2
66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(75)

where

M2
55 × m2

X = m2
Z ′ cos2(β + α) + m2

A2
sin2(β − α),

M2
66 × m2

X = m2
Z ′ sin2(β + α) + m2

A2
cos2(β − α). (76)

In this new basis, all non-diagonal elements of the squared
mass matrix are of the order O(

√
ε) or O(ε). So we can use

this basis of the Higgses to represent the mass eigenstates of
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the heavy Higgses. In particular, these states are related with
the originals by

m2
H0

5
= m2

A2
+ m2

X ; H0
5 = −cβ S1 + sβ S3,

m2
H0

2
= m2

A1
+ O(m2

W ); H0
2 = −cγ S5 + sγ S6,

m2
H0

3
= m2

Z ′ cos2(β + α)

+m2
A2

sin2(β − α) + O(m2
W ); H0

3 = sα S2 + cα S4

m2
H0

4
= m2

Z ′ sin2(β + α)

+m2
A2

cos2(β − α) + O(m2
W ); H0

4 = cα S2 − sα S4.

(77)

In addition, we have a massless state H ′ = sβ S1 + cβ S3

eaten by the X0 boson. For the light Higgs we can see from the

matrix (75) that the diagonal element
(

M2
H0

)

44
= 4m2

W c2
2γ

4c2
W −1

=
4c2

W
4c2

W −1
m2

Z c2
2γ is different from the eigenvalue of m2

Z c2
2γ pre-

dicted in (51). This is because of the non-diagonal elements
in the matrix (75), which are proportional to

√
ε. They can

cause corrections of the order of ε × m2
X � m2

W to all Higgs
masses and affect directly the mass of the light Higgs. For
example, we consider the case of large tγ and tβ . This means
that γ, β → π/2 and sin 4γ = s2γ → 0, c2γ → −1. Fur-
thermore, because α is defined in (74) and m2

A2
< m2

X as
chosen in a numerical investigation we obtain π/2 < α < π

and α → π/2. Inserting these values into (76) we have
m2

55 → m2
Z ′ cos2(β +α), and the largest contributions to the

Higgs masses from the non-zero diagonal elements are only
(

M2
H0

)

45
=
(

M2
H0

)

54
= 2

√
εc2γ cos(β + α)/(4c2

W − 1).

We then take a rotation with a tiny angle η defined by

tan 2η = − 4
√

ε cos 2γ cos(β + α)

(4c2
W − 1)M2

55 − 4c2
2γ ε

.

The light Higgs mass now is

m2
H0

1
� m2

X ×
[

c2
2γ ε

4c2
W − 1

− 1

m2
55

×
(

2
√

εc2γ cos(β + α)

4c2
W − 1

)2
⎤

⎦ � m2
Z ,

as predicted. In this case the mass eigenvalue of the light
Higgs has the form H0

1 = sγ S5 + cγ S6 + O(
mW
m X

) ×
(sα S2 + cα S4).

In general, the dominant contributions to the mass eigen-
state of the light Higgs is H0

1 = sγ S5+cγ S6. The next contri-
butions to this eigenstate and other heavy Higgses, H0

2 , H0
3 ,

and H0
4 , are all proportional to a factor of mW /m X � 0.03.

This contribution to H0
2 is more suppressed because of a fac-

tor s2γ ∼ 1
tγ

. So these contributions can be ignored in many
investigations such as the LFV decays of the neutral Higgses.

Appendix B: Charged Higgs squared mass matrix

The non-zero elements of charged Higgs squared mass
matrix are listed as follows:

m2
χ−χ+ = 4bχ

g2 +
(

w2′ + u2′)+ (v2 − v′2),

m2
χ−χ ′+ = −4bχ

g2 − tβ
(

w2′ + u2′) ,

m2
χ ′−χ ′+ = 4bχ

g2 + (u2 + w2) − (v2 − v2′),

m2
ρ−

1 ρ+
1

= 4bρ

g2tγ
+ (u2 − u′2) + v′2,

m2
ρ−

1 ρ+
2

= uw − u′w′, m2
ρ−

2 ρ+
2

= 4bρ

g2tγ

+v′2 + (w2 − w′2),

m2
ρ′−

1 ρ′+
1

= 4bρ tγ
g2 + v2 + (u′2 − u2), m2

ρ′−
1 ρ′+

2

= −m2
ρ−

1 ρ+
2
,

m2
ρ−′

2 ρ+′
2

= 4bρ tγ
g2 + v2 + (w2′ − w2). (78)

In the limit of u , u′ → 0, the matrix has a simpler form,
and after taking a rotation this matrix by a transformation
CH± with

CH± =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− sβ m X
√

m2
X +m2

W

− cβ m X
√

m2
X +m2

W

0 sγ mW
√

m2
X +m2

W

0 cγ mW
√

m2
X +m2

W

0 0 sγ 0 cγ 0
0 0 cγ 0 −sγ 0
0 0 0 cγ 0 −sγ

cβ 0 −sβ 0 0 0
sβ m X

√

m2
X +m2

W

cβ m X
√

m2
X +m2

W

0 sγ mW
√

m2
X +m2

W

0 cγ mW
√

m2
X +m2

W

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(79)

we get
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CH± M2
6chargedC†

H±

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 m2

A1
+ m2

W 0 0 0
0 0 0 m2

A1
+ m2

W − c2βc2γ m2
X , s2γ s2βmW m X , −s2γ c2βm X mU

0 0 0 s2γ s2βmW m X , m2
A2

− c2βc2γ m2
W + m2

X −c2γ s2βmW mU

0 0 0 −s2γ c2βm X mU −c2γ s2βmW mU c2βc2γ (m2
W + m2

X )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (80)

From this and
(

H+
6 , H+

5 , H+
4 , H ′+

3 , H ′+
2 , H ′+

1

)T = CH±
(χ+, χ ′+, ρ+

1 , ρ+
2 , ρ′+

1 , ρ′+
2 )T we easily see that there are

two Goldstone bosons H±
5 , which are eaten by W ± and the

two massive Higgses, H±
4 , with masses arising mainly from

ρ and ρ′.

Appendix C: Corrections to lightest neutral Higgs mass

To illustrate the contribution from the loop corrections to
the lightest neutral Higgs mass, we use the same simplest
estimation as done in the MSSM [59], namely as follows.

• We choose β → π
2 , γ → π

2 and u → 0. This limit
leads to w′ → 0, w → W = 2m X/g, v′ → 0, and
v → V = 2mW /g. This choice is consistent with bρ →
0, bχ → 0, 1

4μρ + m2
ρ′ → ∞, and 1

4μχ + m2
χ ′ → ∞.

Hence the antitriplets χ ′, ρ′ can be integrated out when
we consider the symmetry breaking of SU (3)L ×U (1)X .
For convenience we define the new parameters such as

m2
1 = 1

4
μ2

χ + m2
χ , m2

2 = 1

4
μ2

ρ + m2
ρ, (81)

S5 + v√
2

→ φ2, and
S2 + W√

2
→ φ1. (82)

With these conventions, the superpotential at the tree level
can be written as

VSUSYE331 → V0 = m2
2φ

2
2 + m2

1φ
2
1

+9g2 + 2g′2

54

[

kφ4
1 − φ2

1φ2
2 + φ4

2

]

,

(83)

where t2 ≡ (g′/g)2 = 18s2
W /(3 − 4s2

W ) and k = (18 +
t2)/[2(9+2t2)] = c2

W . The tree level minimization gives

∂V0

∂φ1

∣

∣

∣

∣

φ1=W/
√

2, φ2=V/
√

2
= 0 → m2

1

= −9 + 2t2

27

(

2km2
X − m2

W

)

,

∂V0

∂φ2

∣

∣

∣

∣

φ1=W/
√

2, φ2=V/
√

2
= 0 → m2

2

= 9+2t2

27

(

m2
X −2m2

W

)

. (84)

The mass Lagrangian at tree level related with the term
(

∂2V0
∂φi ∂φi

)

can be written as

Lmass =−4(9+2t2)m2
X

27

(

φ1, φ2
)

(

2k −ε′
−ε′ 2ε′2

)(

φ1

φ2

)

(85)

with ε′ = √
ε = mW

m X
� 1, which we can use as a

perturbative parameter. The lightest mass eigenvalue is

m2
0h = 2(9 + 2t2)m2

X

27

(

k + ε′2 −
√

(k − ε′2)2 + ε′2
)

.

(86)

Using the approximation
√

(k − ε′2)2 + ε′2 � k − ε′2 +
ε′2
2k we obtain m2

0h � m2/c2
W � m2

Z , this being consistent
with the result shown in Appendix A.
This result confirms that the VEV of χ gives a tiny con-
tribution to the lightest neutral Higgs mass. Now we con-
struct the effective potential for the neutral Higgs at the
one-loop level. We concentrate on terms related with only
φ2 which give the largest contribution to the mass of the
lightest CP-even neutral Higgs. Let us remind the reader
of the role of the triplets χ and ρ in generating mass
for quarks. The Yukawa interactions containing χ, ρ are
given by

LY
u = −1

3

[

κ4αi QαLdc
i Lχ + κ ′

4αβ QαLd ′c
βLχ

+ κ3αi QαLuc
i Lρ + κ ′

3αi QαLu′c
i Lρ

]

. (87)

We choose κ4αi → 3κ4δαi , κ3αi → −3y3αδαi (yc ≡ y32,
yt ≡ y33) and ignore the mixing of top and exotic u-
quarks. Therefore the mass of the top quark is mt =
ytv/

√
2.

The masses of sfermions in the SUSYE331 were ana-
lyzed in [43]. In this work with the assumption of the
Yukawa term the largest supersymmetric contributions to
the masses of the two left and right stops are the same and
equal to ytφ2. For the simplest case, we also assume that
the contribution from the soft term for each left or right
stop is m2

q̃ . All contributions for the stop quark coming
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from the D-term are ignored. This assumption is similar
to that given in [59]. Hence, the squared masses of the
top quark and stop have the form

m2
t = y2

t φ2
2 , m2

t̃ = y2
t φ2

2 + m2
q̃ . (88)

The full one-loop potential now is

V (Q) = V0(Q) + �V1(Q), (89)

where

�V1(Q) = 1

64π2 Str

[

M4
(

ln
M2

Q2 − c

)]

. (90)

Here M2 is the field-dependent generalized squared mass
matrix and the supertrace is defined as

Str f (M2) =
∑

i

(−1)2Ji (2Ji + 1) f (m2
i ) (91)

with Ji is the spin of the field having mass mi . We take the
contribution only from the top quarks and stops, namely

�V1(Q) = 3

16π2

[

2m4
t ln

(

m2
t̃

m2
t

)

+
(

m4
t̃ − m4

t

)

(

ln
m4

t̃

Q2 − c

)]

. (92)

From Eq. (88) we have

∂(m2
t )

∂(φ1)
= ∂(m2

t̃
)

∂(φ1)
= 0, (93)

∂(m2
t )

∂(φ2)
= ∂(m2

t̃
)

∂(φ2)
= 2y2

t φ1. (94)

This leads to the consequence that ∂�V1
∂φ1

= 0. The minimal
condition is equivalent to the following equation:

∂ (V0 + �V1)

∂φ2

∣

∣

∣

∣

φ1=W/
√

2, φ2=V/
√

2
= 0

→
(

m2
t̃ − m2

t

)

(

ln
m2

t̃

Q̂
− c

)

= −
(

m2
t̃ − m2

t

)

− 2m2
t ln

m2
t̃

m2
t
. (95)

Because of Eq. (95) one can obtain

∂2V (φ1, φ2)

∂φ2
2

= ∂2V0

∂φ2
2

+ 3g2

8π2

m4
t

m2
W

ln

(

m4
t̃

m4
t

)

. (96)

The last term in Eq. (96) is the correction from the one-loop
effective potential. The squared mass matrix for the neutral
Higgs is obtained as follows:

1

2

[

∂2V (φ1, φ2)

∂φi ∂φ j

]

φ1=W/
√

2, φ2=V/
√

2
. (97)

Diagonalizing the matrix found from Eq. (97) we find the
formula of the lightest squared mass as follows:

m2
h = 2

3 − 4s2
W

(

c2
W m2

X + � + m2
W

−
√

(c2
W m2

X − � − m2
W )2 + m2

X m2
W

)

(98)

with � = 3g2(3−4s2
W )

64π2
m4

t
m2

W
ln

(

m4
t̃

m4
t

)

. In the case of � ∼

O(m2
W ) � m2

X we obtain m2
h � m2

Z + 3g2

16π2
m4

t
m2

W
ln

(

m4
t̃

m4
t

)

.

This result is the same as that in the MSSM.
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