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Abstract. A time-dependent Kondo model, where both the voltage and the Kondo couplings oscillate on
time, is considered. The bosonization technique at the Toulouse limit is applied to study the conductance
and the magnetic susceptibility. It is shown that in addition to the satellites of the Kondo peak that appear
in the conductance and the susceptibility as a function of the magnetic field or dc voltage, when the voltage
oscillates, these satellites further split when the Kondo couplings also oscillate on time. The distance of
the satellite splitting solely depends on the ratio between the oscillation frequencies of the voltage and
of the Kondo couplings. When the Kondo couplings oscillate more rapidly than the voltage, the distance
of the satellite peaks can be smaller than the voltage oscillation frequency.

1 Introduction

The Kondo effect is one of the central topics in condensed
matter physics, and has attracted attention for nearly a
half century [1,2]. The effect stems from a macroscopic
quantum coherent coupling between a localized magnetic
moment and a Fermi sea of electrons. The local magnetic
moment is screened by hybridization with the itinerant
electron spins, leading to the formation of a bound spin-
singlet state. The Kondo effect has been used to explain
successfully many extraordinary properties of dilute mag-
netic alloys and heavy fermion materials [2]. With the
developments of mesoscopic physics and nano-technology,
the Kondo effect again lies in the heart of physical prop-
erties of quantum dot devices, where the dots play as
Kondo-like impurities [3–13]. The transport and magnetic
properties of quantum dots (QD) exhibit the Kondo effect
features [12,13]. In equilibrium, the Kondo resonance ap-
pears at the Fermi energy in the density of states (DOS)
of a QD coupling with two leads, that strongly influences
the tunneling conductance of the system at low tempera-
tures. When the source-drain voltage and magnetic field
are switched on, they suppress the Kondo peak in the tun-
neling conductance as function of the source-drain voltage,
and split it into two peaks [9–15]. When the voltage varies
with time, the Kondo effect in the quantum dot dramati-
cally changes. In non-equilibrium the time-dependent ex-
ternal parameters (namely, source-drain voltage or/and
gate voltage) compete with the Kondo singlet correla-
tions that results in a non-trivial dynamics with novel
and beyond equilibrium features [16–26]. An ac voltage
produces satellite peaks in the tunneling conductance as
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a function of dc source-drain voltage thanks to the Tien-
Gordon theory [27]. The non-equilibrium Kondo effect has
attracted a lot attention. Due to the complexity of out-of-
equilibrium many-body systems, it is instructive to inves-
tigate those cases where the exact non-perturbative so-
lutions are accessible. One particular interesting case is
the Kondo model at the Toulouse limit where it becomes
exactly solvable [28]. The Toulouse limit displays many
generic and universal properties of the strong coupling
limit of the Kondo model both in equilibrium [29] and
out of equilibrium [14,15,18,30–32]. The previous stud-
ies investigated the non-equilibrium Kondo effect in QD
resulted from the time dependence either of the voltage
bias [14,15,18] or of Kondo couplings [30–32]. When both
the voltage and the Kondo couplings vary with time, the
non-equilibrium Kondo effect remains open.

In the present paper, we consider a time-dependent
Kondo model at the Toulouse limit where both the voltage
and the Kondo couplings oscillate on time. We solve the
problem non-perturbatively by averaging non-equilibrium
Green’s functions in the period of the slow oscillation.
The differential conductance and the magnetic suscepti-
bility are computed. It is found that the Kondo satellites
which appear due to the oscillation of the source-drain
voltage are further split due to the effect of the oscilla-
tion of the Kondo couplings. The peak splitting distance
depends on the ratio between the voltage’s frequency and
the frequency of the Kondo couplings.

The present paper is organized as follows. In Section 2,
the time-dependent Kondo model at the Toulouse limit is
introduced. We also present its mapping onto a quadratic
effective Hamiltonian in this section. The non-equilibrium
Green’s function method used to calculate the differential
conductance and the magnetic susceptibility is presented

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2013-40842-3


Page 2 of 10 Eur. Phys. J. B (2014) 87: 22

in Section 3. The differential conductance and the mag-
netic susceptibility are derived in Section 4, whereas their
numerical calculations and discussions are presented in
Section 5. Finally, in Section 6 we present the conclusion.

2 Ac time-dependent Kondo model

2.1 The model at the Toulouse limit

We propose a time-dependent Kondo model based on
modeling of a QD coupling with two non-interacting leads
of spin-1/2 electrons, each subjects to a separate time-
dependent voltage. The coupling of the QD with the leads
is modeled through the exchange interactions between the
dot and lead spins. Without loss of generality, we assume
that the leads are one dimensional, and the dot is placed
at the origin. The Hamiltonian of the proposed harmonic
time-dependent Kondo model reads

H = ivF

∑

α=L,R,σ=↑,↓

∫ ∞

−∞
dxψ†

ασ

∂

∂x
ψασ,

+
V (t)

2

∑

σ=↑,↓

∫ ∞

−∞
dx

[
ψ†

LσψLσ − ψ†
RσψRσ

]

+
∑

α,β=L,R

∑

λ=x,y,z

Jαβ
λ (t) sλ

αβτ
λ −Hτz , (1)

where ψ†
ασ (x) is the one-dimensional field describing

the conduction electrons with spin σ in lead α, labeled
right (R) and left (L). The dispersion relation of the
lead electrons is linearized around the Fermi level with
the Fermi velocity vF . V (t) = Vdc + Vac cos (Ωt) is the
time-dependent voltage bias applied to the leads across
the dot junction. The constant part Vdc can be consid-
ered as a dc voltage, while Vac is the amplitude of an
ac voltage oscillating on time with frequency Ω. The dc
part Vdc fixes a chemical-potential difference between the
two Fermi seas of the leads in relation with the Fermi
energy EF = 0. H is the external magnetic field acting
on the dot, the spin of which is represented by the Pauli
matrices τλ, (λ = x, y, z). Jαβ

λ (t) is the time-dependent
of the exchange coupling between the dot and lead elec-
tron spins. The spin of the lead electrons is presented as
sλ

αβ = 1
2

∑
σσ′ ψ†

ασ (0)σλ
σσ′ψβσ′ (0). Here we also use the

natural units with � = kB = e = μB = gi = 1.
In general, we consider the time-dependence of the

Kondo couplings in the form of ac oscillations

Jαβ
λ (t) = Jαβ

λ0 + Jαβ
λ1 cos (Ω1t+ φαβ) , (2)

where Jαβ
λ0 is the time-independent part of the couplings,

and Jαβ
λ1 is the amplitude of the oscillations with fre-

quency Ω1. φαβ is the set-off phase of the coupling os-
cillations. The Kondo couplings can be generated from
the Anderson model of the QD with energy level Ed,
and large on-site interaction U in the Kondo regime,
where both ionization and electron addition energy are

much bigger than the tunneling rates: Ed, U − Ed �
ΓL/R, and the applied fields do not drive the dot out of
this regime: eVdc, eVdot, eVac, H, Ω, Ω1 < Ed, U − Ed. In
equilibrium they are obtained as a result of the Schrieffer-
Wolff transformation [33]. When ionization energy level of
the dot varies with time, the time-dependent Schrieffer-
Wolff transformation leads the Kondo couplings to be
time dependent [19,20,23,24]. In particular, when the en-
ergy level Ed oscillates on time between two different val-
ues Ed1 and Ed2 with |Ed2 − EF | � |Ed1 − EF | and
|Ed2 − Ed1| = 2eVdot, where for each energy Ed1 and
Ed2 the quantum dot is assumed to be still in the Kondo
regime, the Kondo coupling Jαβ

λ (t) thus oscillates on
time [23,24]. In general, the oscillation frequency of the
Kondo couplings is different from the frequency of the ap-
plied voltage and of the energy level. We assume that the
Kondo couplings are monochromatic oscillations with fre-
quency Ω1 = Ω/p, where p is a integer number. It means
that the voltage is a harmonic of the Kondo couplings.

In order to extract the exact solution, we consider the
Toulouse limit, where the transfer exchange couplings are
time independent, and vanish for the transfer exchanges
between different leads [15,18,29]

JLR
z = JRL

z = 0, JLL
z = JRR

z = Jz = 2πvF . (3)

This set of model parameters is expected to describe well
the scaling regime of the Kondo effect even out of equilib-
rium [15,18]. The scaling trajectories flow to the Toulouse
point if JLL

⊥0 = JRR
⊥0 , JRL

⊥0 = 0, in which the two leads
are decoupled, the channels are just the right and left
leads, which carry no current [15]. The time dependent
oscillations of the perpendicular couplings are turned on
adiabatically

JRL
⊥ (t) = JLR

⊥ (t) = JRL
⊥ cos (Ω1t) ,

JLL
⊥ (t) = JLL

⊥0 + JLL
⊥ cos (Ω1t) ,

JRR
⊥ (t) = JLL

⊥0 + JRR
⊥ cos (Ω1t) . (4)

Here, the time independent JRL
⊥0 has been omitted, since

we want to consider the case, when the time dependent
parts are absent, the two leads are completely decoupled
and no current tunnels through the dot, as just discussed
above. The finite value of JRL

⊥0 couples the two leads
even in equilibrium, and the situation becomes compli-
cated when the time dependent parts of the coupling are
switched on. In equation (4) we also omit the phase set-off
φαβ for simplicity. The anisotropic Kondo Hamiltonian at
the Toulouse limit has well explained many universal fea-
tures of the equilibrium Kondo physics in QD [29]. It is ex-
pected to correctly describe the strong-coupling regime of
the non-equilibrium Kondo effect. Indeed, previous stud-
ies of the model with the dc [14,15] and ac [18] voltage bias
have shown all the qualitative features of Kondo-assisted
tunneling: a zero-bias anomaly that splits in an applied
magnetic field; Fermi-liquid characteristics in the low-T
and low-V differential conductance; satellites in the differ-
ential conductance at eV = ±nΩ, for an ac voltage with
frequency Ω. Recently, this model has also been adopted
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to study the problems of the interaction quench [30] and
the periodically switched on and off Kondo couplings [32].

The aim of the present work is to study the non-
equilibrium Kondo effect when the voltage V (t) is a har-
monic of the monochromatic oscillations of the Kondo
couplings Jαβ

⊥ (t), i.e., Ω1 = Ω/p, p ∈ N. In order to ne-
glect the charge fluctuations on the dot caused by hopping
processes between the central region and the conductance
band by absorbing or emitting quanta of the driving fre-
quency, the frequencies of the applied fields have to be
small enough, i.e., Ω, Ω1 � |Ed|, |U − Ed|.

2.2 Mapping onto a solvable model

In order to map the introduced non-equilibrium Kondo
model at the Toulouse limit into a solvable model we first
bosonize the Hamiltonian (1)

ψασ(x) = Fασ exp(−iΦασ(x))/
√

2πa,

where Φασ(x) =
√
π
[∫ x

−∞dx
′Πασ(x′) − φασ(x)

]
. Here Fασ

is the Klein factors, and φασ(x) are Bose fields andΠασ(x)
are their conjugate momenta, satisfying commutation re-
lations1. Next, we introduce new bosonic fields: charge
φc(x), pseudo-spin φs(x), flavor φf (x), and pseudo-flavor
φsf (x) as φc(x) =

∑
α,σ φασ/2, φs(x) =

∑
α,σ σ

z
σσφασ/2,

φf (x) =
∑

α,σ σ
z
ααφασ/2, φsf (x) =

∑
α,σ σ

z
αασ

z
σσφασ/2,

and also for Πν , Φν , Nν , ν = c, s, f, sf . Then we per-
form the transformation of the Hamiltonian UHU−1 with
U = exp[−iτzΦs(0)]. Four more Klein factors Fν are in-
troduced, which satisfy [Fν , Nν′ ] = δνν′Fν and relate to
the old ones as F †

L↓FL↑ = FsFsf , F †
R↓FR↑ = FsF

†
sf ,

F †
R↓FL↑ = FfFs, F

†
R↑FL↓ = FfF

†
s . The new impurity

fermion is thus represented as d† = Fsτ
+, d = F †

s τ
−,

τz = d†d − 1/2. We now re-fermionize these bosonic
fields as Ψm(x) = Fm exp(−iΦm(x))/

√
2πa to re-write the

Hamiltionian in which all the charge, spin, flavor, and spin
flavor degrees of freedom are separated

H′ = ivF

∑

ν=c,s,f,sf

∫ ∞

−∞
dxψ†

ν(x)∂xψν(x)

+
[
H − (Jz − 2πvF ) : ψ†

s(0)ψs(0) :
] (
d†d− 1/2

)

+
∫ ∞

−∞
dx [Vdc + Vac cos(Ωt)]ψ†

f (x)ψf (x)

+
Jt(t)

2
√

2πa

[
Ψ †

f (0) − Ψf (0)
] (
d+ d†

)

+
Ja(t)

2
√

2πa

[
Ψ †

sf (0) − Ψsf (0)
] (
d+ d†

)

+
Js(t)

2
√

2πa

[
Ψ †

sf (0) + Ψsf (0)
] (
d† − d

)
, (5)

1 The detailed bosonization technique can be found in text
books and review articles, for instance [34].

where : ψ†
s(0)ψs(0) : means normal ordering with re-

spect to the unperturbed ψs Fermi sea. Here we have also
defined

Jt(t) = JLR
⊥ (t) = JRL

⊥ cos(Ω1t),

Js(t) = (JLL
⊥0 + JRR

⊥0 )/2 + (JLL
⊥ + JRR

⊥ ) cos(Ω1t)/2,

Ja(t) = (JLL
⊥ − JRR

⊥ ) cos(Ω1t)/2.

From our assumption in equation (3), Jz = 2πvF , we are
in the Emery-Kivelson line [29], the Hamiltonian (5) re-
duces to quadratic form, which is exactly solvable in equi-
librium [29] and out of equilibrium [15,18]. The charge and
spin sectors are decoupled from the local flavor and spin
flavor, reduced to a collection of uncoupled harmonic os-
cillators. Therefore, they will be omitted from now on. Fi-
nally, by introducing Majorana fermions â = (d† + d)/

√
2

and b̂ = (d† − d)/i
√

2, one arrives at the following
Hamiltonian

H =
∑

k

[
εfk(t)c†fkcfk + εsfkc

†
sfkcsfk

− iHâb̂+
Jt(t)
2
√
πa

(c†fk − cfk)â

+
iJs(t)
2
√
πa

(c†sfk + csfk)b̂+
Ja(t)
2
√
πa

(c†sfk − csfk)â
]
, (6)

where εfk(t) = 2πvFk + e[Vdc + Vac cos(Ωt)], εsfk =
2πvFk, cjk is the Fourier image of ψj(0) in the momen-
tum space. Here after we will work with Hamiltonian (6)
to calculate physical observables.

3 Average Green’s functions

It is well known that the Keldysh Green’s function tech-
nique is an efficient method for treating non-equilibrium
systems2. This technique has been applied to deter-
mine the fully nonlinear, time dependent current through
interacting and non-interacting resonant tunneling sys-
tems [36]. However, the complete result was only obtained
for the time independent level-width function (or tunnel-
ing amplitude). Similarly, the Hamiltonian in equation (6)
has been solved exactly only when the couplings are con-
stant [18]. Later, the steady state in the Kondo model
at the Toulouse limit, in which the couplings are period-
ically switched on and off, has been investigated by ana-
lyzing exact analytical results for the local spin dynamics
at zero temperature [32]. The exact solution for the time
dependent Hamiltonian in equation (6) still remains open.
In this section, we present an average non-equilibrium
Green’s function method which gives good results in the
high enough frequency regime.

2 The Keldysh Green’s function technique can be found in
several text books as well as review articles, we show here one
book, in which we follow the detail technique [35].
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3.1 Non-interacting Green’s functions of flavor
fermions

The non-interacting Green’s function of the flavor fermion,
which is defined as:

gfk (t, t′) = −i
〈
TK

{
cfk (t) c†fk (t′)

}〉
, (7)

can be represented through its retarded, advanced, and
Keldysh components

gR,A
fk (t, t′) = ∓iΘ(±t∓ t′)e−i2πvF k(t−t′)

× e−i Vac
Ω [sin(Ωt)−sin(Ωt′)],

gK
fk (t, t′) = i [2f (2πvF k + Vdc) − 1] e−i2πvF k(t−t′)

× e−i Vac
Ω [sin(Ωt)−sin(Ωt′)], (8)

where f(x) = 1/(exp(x/T ) + 1) is the Fermi distribution
function at temperature T . We set the chemical potential
of the spin flavor lead as the reference of the energy level.
When the oscillation voltage is applied, the chemical po-
tential additionally acquires the voltage, and it oscillates
on time with amplitude Vac around the fixed value Vdc.
Using the identity exp[x(a − 1/a)/2] =

∑∞
n=−∞ anJn(x),

where Jn (x) are the integer Bessel functions of the first
kind, and changing variables

τ = t− t′,

T =
t+ t′

2
, (9)

we find

gR,A
fk (τ, T ) = ∓iΘ(±τ)

∞∑

m,n=−∞
Jn

(
Vac

Ω

)
Jm

(
Vac

Ω

)

× e−i[εk+(n+m)Ω/2]τe−iΩ(n−m)T . (10)

Because the flavor fermion chemical potential oscillates
on time with frequency Ω, one can take the average
of the non-interacting Green’s function over time T �
Ω−1 [37]. The Fourier transform regarding the time dif-
ference τ of the average Green’s function thus remains as
in equilibrium [27]

gR,A
f (ω) =

∑

k

gR,A
fk (ω) = ∓ i

2vF
. (11)

Here the linearization for the energy spectrum around the
Fermi level has been applied [34]. However, the effect of
oscilation voltage Vac (t) modifies the Keldysh component
gK

fk(t, t′). We obtain the average of the Keldysh compo-

nent gK
f (ω) in the Fourier space corresponding the time

difference τ as:

gK
f (ω) =

∑

k

gK
fk(ω)

=
i

vF

∑

n

J2
n

(
Vac

Ω

)
[2f (ω − nΩ + Vdc) − 1] .

(12)

Once the retarded, advanced and Keldysh Green’s func-
tions are determined, the Green’s functions of a combi-
nation of the flavor fermions can be calculated too. For
example, the following non-interacting Green’s function
can be calculated without difficulty

mfk(t, t′)=−i
〈
TK

[
c†fk(t)+ cfk (t)

][
c†fk(t′)− cfk(t′)

]〉
.

(13)

Indeed, its retarded, advanced, and Keldysh components
are mR,A

f (ω) = 0, and

mK
f (ω) = (2i/vF )

∑

n

J2
n

(
Vac

Ω

)

× {f (ω − nΩ + Vdc) − f (ω + nΩ − Vdc)} .
(14)

3.2 Interacting Majorana Green’s functions

In order to compute physical quantities, it is necessary
to calculate the advanced, retarded, and Keldysh com-
ponents of the Majorana Green’s functions, which are
defined as:

Gαβ (t, t′) = −i 〈TK {α (t)β (t′)}〉 , α, β = â, b̂. (15)

The Green’s functions GA
aa(t, t′) are used to calculate

the differential conductance, whereas the Keldysh Green’s
function GK

ba(t, t′) is used to calculate the magnetic
susceptibility.

Using the interaction representation, we rewrite the
Green’s functions by invoking the S matrix, with the as-
sumption of coupling parameters Ji (t) in equation (6). We
obtain the advanced Green’s functions

GA
ba(t, t′) = −H

∫ ∞

−∞
dt1Θ(t1 − t)GA

aa(t1, t′)

−
∫ ∞

−∞
dt1Γs (t1)Θ(t1 − t)GA

ba(t1, t′),

GA
aa(t, t′) = iΘ(t′ − t) +H

∫ ∞

−∞
dt1Θ(t1 − t)GA

ba(t1, t′)

−
∫ ∞

−∞
dt1Γat (t1)Θ(t1 − t)GA

aa(t1, t′), (16)

where

Γs (t) = Γs0 + 2
√
Γs0Γs cos (Ω1t) + Γs cos2 (Ω1t) ,

Γat (t) = Γat cos2 (Ω1t) . (17)

Here we have defined Γt = (JRL
⊥ )2/4πavF , Γa =

(JLL
⊥ − JRR

⊥ )2/16πavF , Γat = Γt + Γa, Γs0 = (JLL
⊥0 +

JRR
⊥0 )2/16πavF , Γs = (JLL

⊥ + JRR
⊥ )2/16πavF . Equa-

tion (16) induces the Schiller-Hershfield results when all
couplings are time independent. One can easily take the
Fourier transform of equation (16), and then obtain again
the exact formulas of the advanced Majorana Green’s
functions, which were previously obtained [15].
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In order to find the Green’s function GA
aa(t, t′), we first

change equation (16) to differential equations by taking
the derivative with respect to time t. We obtain

[∂t − Γs (t)]GA
ba (t, t′) = HGA

aa (t, t′) ,

[∂t − Γat (t)]GA
aa (t, t′) +HGA

ba (t, t′) = −iδ (t− t′) . (18)

We define the non-interacting Green’s functions gA
at/s (t, t′)

as [38]

[
∂t − Γat/s (t)

]
gA

at/s (t, t′) = δ (t− t′) , (19)

so

gA
at (t, t′) = −Θ(t′ − t) exp

[
Γat

2
(t− t′)

]

× exp
[
Γat

4Ω1
[sin (2Ω1t) − sin (2Ω1t

′)]
]
,

gA
s (t, t′) = −Θ(t′ − t) exp

[(
Γs0 +

Γs

2

)
(t− t′)

]

× exp
[
2
√
Γs0Γs

Ω1
[sin (Ω1t) − sin (Ω1t

′)]
]

× exp
[
Γs

4Ω1
[sin (2Ω1t) − sin (2Ω1t

′)]
]
. (20)

From equations (18) and (19), we obtain

∫ ∞

−∞
dt1

[[
gA

at (t, t1)
]−1

+H2gA
s (t, t1)

]
GA

aa (t1, t′) =

− iδ (t− t′) . (21)

One can see that the non-interacting Green’s functions
gA

at/s (t, t′) always oscillate on time with frequency Ω1 =
Ω/p. Therefore any cut-off for the boundary of the inte-
grals in equation (21) may result in serious shortcomings.
However, after changing time variables as in equation (9),
gA

at/s (t, t′) oscillates around smooth averaging functions

gA
at/s (τ, T ) with T � Ω−1

1 . Hence, we adopt an approx-
imation by averaging the Green’s functions over time T
in a period of 2π/Ω1. We then rewrite them in Fourier
space as:

gA
at(ω) =

∞∑

n=−∞
J2

n

(
−i Γat

4Ω1

)
i

ω + 2nΩ1 − iΓat

2

, (22)

and

gA
s (ω) =

∞∑

m,n,k=−∞
Jm−2n+2k

(
−i2

√
Γs0Γs

Ω1

)

× Jm

(
−i2

√
Γs0Γs

Ω1

)
Jn

(
−i Γs

4Ω1

)
Jk

(
−i Γs

4Ω1

)

× i

ω + (m+ 2k)Ω1 − i
(
Γs0 + Γs

2

) . (23)

Thus we obtain

GA
aa(ω) =

−i
gA

at(ω)
−1

+H2gA
s (ω)

. (24)

The meaning of the averaging method is that we have
smoothed the fine oscillations of the Green’s functions.
It works well in the high frequency regime, namely,
T � Ω−1

1 , but not too high in order to neglect the charge
fluctuations on the dot. In fact, as we discuss later, the
method works well in the regime �Ω � kBTK . It of-
fers the opportunity to compute the physical observables
non-perturbatively. The results obtained by the averag-
ing method should be close to the exact solution while
the results from the perturbation calculation cannot be.
However, the averaging method cannot be applied for the
adiabatic limit. The adiabatic regime should be considered
separately [39]. In the next section, we calculate the differ-
ential conductance and magnetic impurity susceptibility
by using this averaging method.

4 Average physical observables

In this section we will compute average differential con-
ductance and magnetic susceptibility, and discuss the
results.

4.1 Average charge current and average differential
conductance

First, we are interested in calculating the time averaged
charge current through the junction Ic. The time aver-
aged differential conductance G = dIc/dVdc is accessible
experimentally. We compute it by using the Keldysh non-
equilibrium Green’s function technique. The current at a
time t is expressed as:

Ic(t) = −(eJt(t)/8πa)	
∫ ∞

−∞
dt1Jt(t1)mK

f (t, t1)GA
aa(t1, t).

The Majorana Green’s functions GA
aa (t1, t) are calculated

averagely in the above section with its Fourier transforma-
tion is shown in equation (24). After the averaging pro-
cedure over time T , the average current at a time t is
written as:

Ic (t)=
Jt (t)

16π3avF



∫ ∞

−∞
dt1Jt (t1)

∫ ∞

−∞
dω

∫ ∞

−∞
dω1

∑

n

J2
n

(
Vac

Ω

)

× [f (ω + nΩ − Vdc) − f (ω − nΩ + Vdc)]

× e−iω(t−t1)GA
aa (ω1)e−iω1(t1−t). (25)

As discussed above, the current should oscillate on time
with period 2πΩ−1

1 . It is possible to take the average of the
current over time t in a period of 2πpΩ−1. So the average
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current is:

Ic =
Ω

2πp

∫ 2πp/Ω

0

dtIc (t)

=
Γt

8π



∫ ∞

−∞
dω

∑

n

J2
n

(
Vac

Ω

)

×
{[
f (ω + (n− 1/p)Ω − Vdc) − f (ω − (n+ 1/p)

×Ω + Vdc) + f (ω + (n+ 1/p)Ω − Vdc)

− f (ω − (n− 1/p)Ω + Vdc)
]
GA

aa (ω)
}
. (26)

Here, we have averaged the Majorana Green’s function
over the period of 2πpΩ−1. This averaging procedure has
smoothed the Majorana Green’s function, and only kept
the absorption or emission of one mode generated by the
ac couplings. The other modes already present in the av-
eraged Majorana Green’s function in equations (22)–(24),
and contribute to the average current indirectly. Instead
of the time-dependent current, the average current in
equation (26) is usually used to calculate the differential
conductance [26]

G =
dIc
dVdc

=
d

[
Ω

2πp

∫ 2πp/Ω

0 Ic (t) dt
]

dVdc
. (27)

The conductance and the magnetic susceptibility behav-
iors remain when the temperature is varied from absolute
zero to a small temperature. If the temperature is kept
increasing much below the Kondo temperature, the con-
ductance and the susceptibility behaviors are broadened
and then smeared. For convenient computation, we con-
sider the time averaged differential conductance at the
absolute zero

G =
Γt

8π



∞∑

n=−∞
J2

n

(
Vac

Ω

) {
GA

aa (Vdc − (n− 1/p)Ω)

+GA
aa (−Vdc+(n+ 1/p)Ω)+GA

aa (Vdc − (n+1/p)Ω)

+GA
aa (−Vdc + (n− 1/p)Ω)

}
. (28)

We will discuss the behavior of the average differential
conductance as a function of magnetic field and source-
drain voltage.

4.2 Average impurity magnetization and susceptibility

In addition to the tunneling conductance, the magnetic
susceptibility is also a physical quantity observed by ex-
periments. It is a response of the system to an external
magnetic field coupled to the impurity spin. The mag-
netic susceptibility is the derivative of the magnetization,
which can be calculated from the following formula

M (H) =
μBgi

4π

∫ ∞

−∞
dωGK

ba(ω) . (29)

The Majorana Green’s function GK
ba (ω) is calculated av-

eragely in the same way as we have calculated for GA
aa (ω).

The magnetization is understood as the “average” one and
is expressed as:

M (H)=
(μBgi)H

4π

∞∫

−∞
dω

gK
s (ω)

[
gK

at (ω)Λat (ω)+Λs (ω)
]

1 +H2gK
at (ω)gK

s (ω)
,

(30)
where the average non-interacting Green’s functions

gK
at(ω) =

∞∑

n=−∞
J2

n

(
i
Γat

4Ω1

)
i

ω + 2nΩ1 + iΓat

2

, (31)

gK
s (ω) =

∞∑

m,n,k=−∞
Jm−2n+2k

(
i
2
√
Γs0Γs

Ω1

)

× Jm

(
i
2
√
Γs0Γs

Ω1

)
Jn

(
i
Γs

4Ω1

)
Jk

(
i
Γs

4Ω1

)

× i

ω + (m+ 2k)Ω1 + i
(
Γs0 + Γs

2

) , (32)

and the average Λat/s (ω) are:

Λat(ω) = GA
aa(ω)

{
Γa [f(ω −Ω/p) + f(ω +Ω/p) − 1]

+
Γt

2

∑

n

J2
n

(
Vac

Ω

) [
f(ω − (n+ 1/p)Ω + Vdc)

+ f(ω + (n− 1/p)Ω − Vdc) + f(ω − (n− 1/p)

×Ω + Vdc) + f(ω + (n+ 1/p)Ω − Vdc) − 2
]}
,

(33)

Λs(ω) = gA
s (ω) GA

aa(ω)
{
2Γs0 [2f(ω) − 1]

+ Γs [f(ω −Ω/p) + f(ω +Ω/p) − 1]
}
. (34)

From equation (30), when the system is applied either a
constant voltage bias Vsd = Vdc or a time dependent one
Vsd = Vdc+Vac cos (Ωt) and the Kondo couplings are time
independent, again, we recover the results of the Schiller-
Hershfield theory [15,18].

5 Results and discussions

In this section we present typical results of the tunneling
conductance and the magnetic susceptibility. In all plots,
the horizontal axis is the magnetic energy H = μBgiB, B
is the amplitude of the applied magnetic field, the vertical
axis is either the tunneling conductance G/(e2/�) or the
magnetic susceptibility χ/(giμB)2. We choose Γs0 = 1 as
the energy scale. We find that the results obtained at very
small temperature and at absolute zero are similar. For
convenience, we calculate the tunneling conductance at
absolute zero and the magnetic susceptibility at very small
temperature (T = 0.05).
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Fig. 1. The magnetic field dependence of the conductance
G (H) for Vac = 4, Γat = 0.3, Γs = 0.05, Γt = 0.25, Vdc = 0,
and (a) �Ω = 2 and (b) �Ω = 1.5. The dotted black line is
the conductance without the harmonic time-dependent fields;
the Kondo peak is at μBgiB = 0. The dashed black line is
the conductance with the harmonic time-dependent voltage
only, the constant couplings are: Jαβ

⊥ = Jαβ
⊥0 +Jαβ

⊥1 ; the Kondo
satellites peak at μBgiB = n�Ω; the highest peak’s position
depends on eVac/�Ω. When both voltage and couplings are
oscillating in time, the peaks occur at μBgiB = (n ± 1/p) �Ω;
the solid red, blue, green lines are the conductance for the
p = 1, 2, 3, respectively. The peak splitting due to the time-
dependent couplings can be seen at the highest peak.

In Figures 1 and 3, the conductance G and the sus-
ceptibility χ are plotted as functions of magnetic field H
for different cases: in the absence of the ac fields (dot-
ted black curves), with only time-dependent voltage (the
couplings are time independent) (dashed black curves),
and in the presence of both time-dependent voltage and
couplings with various values of p (red, blue, and green
lines for p = 1, p = 2, and p = 3, respectively). As
we have discussed in Section 2, when the time-dependent
parts of the couplings vanish, the two leads are decou-
pled and there is no tunneling current. However, when the
couplings are time independent, in addition to these time-
independent couplings we include also the finite ampli-
tude constants Jαβ

λ1 (without the oscillation parts), there
is a tunneling current through the dot. This case is re-
ferred as the constant couplings in these figures. Figure 1
shows that the conductance is strongly reduced when the
couplings are time independent. The satellites appear at
μBgiB = eVdc ± n�Ω (n ∈ Z) due to the oscillation

of source-drain voltage Vac (t) [16,18–26]. However, the
satellites only appear when eVac/�Ω is big enough com-
pare to 1 (but eVac ∼ �Ω, as well as �Ω ∼ kBTK and
�Ω > kBTK in order to avoid decoherences), and this
ratio determines the height of side-band peaks. For in-
stance, in Figure 1a plotted for 1 < eVac/�Ω ≤ 2, the
highest peak is at μBgiB = �Ω besides the trivial main
peak at μBgiB = 0. The strength of the ac fields is small
compared to the strength of the magnetic field, which re-
duces strongly the Kondo conductance. When the oscil-
lation amplitude increases, it is dominant over the mag-
netic field, and reduces strongly the peak at μBgiB = 0,
while at the same time it increases the satellite peak at
μBgiB = 2�Ω as shown in Figure 1b for eVac/�Ω > 2.
One can say that the highest satellite peak position de-
pends on the ratio eVac/�Ω. However, it is impossible to
see the highest satellite peak at high magnetic fields, for
instance at μBgiB = 3�Ω, due to the strong suppression
of the satellite peaks by both magnetic field and voltage.

We now discuss the effect of the ac Kondo couplings.
In fact, the oscillation of Kondo couplings comes from the
oscillation of the gate voltage of a QD. It can be considered
as an indirect effect. In Figure 1, one can see that when the
couplings oscillate with frequency Ω1 = Ω/p with p ∈ N,
each main satellite peak splits into two peaks. When a
peak is split into two peaks, the height of these two peaks
relate to the height of original peak. The distance between
an original peak and its split peak is dpeak = �Ω/p. This
can be understood by investigating the Green’s function
GA

aa(ω). The difference between the coupling frequency
and the voltage frequency is described by an integer num-
ber p ≥ 1. However, p cannot be too big because the slow
oscillation in couplings can be considered as constant com-
pared to the fast oscillation of voltage. When p = 1, the
couplings oscillate on time with the same frequency as
the voltage, the satellite peaks split into two peaks with
the distance dpeak = �Ω equal to the satellite peak dis-
tance. Thus, for p = 1, the peaks remain but their height
changes drastically due to the re-contribution of energy
through the peak splitting. This peak splitting effect can
be seen clearly if p = 2, or p = 3. As we have explained
the number p can also be bigger than 1. The peak splitting
can be seen clearly at the highest satellite peak. When we
increase p the splitting distance dpeak decreases, the split-
ting becomes weak then approaches the limit in which the
couplings are constant. This result implies a possibility
that one sees peaks appearing at a distance μBgiB < �Ω
in the regime of weak magnetic field. We predict p is a
frequency dependent systematic parameter. For the case
p = 1, we can check the height of the satellite peaks to
confirm the oscillations on voltage and couplings.

Besides, from Figure 2, we find that the main charac-
teristic of G (H) lightly depends on scales Γi, (i = at, s, t).
Γi are chosen much smaller than Γs0 because the ac parts
in the couplings should be small compared to the exist-
ing dc parts. We vary each energy scale Γs, Γat, Γt, while
the other parameters are fixed. Γt ∼

(
JLR
⊥

)2 concerns the
coupling between two leads and it controls the spin-flip
tunneling of electrons through QD. Γs ∼ [

JLL
⊥ + JRR

⊥
]2
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Fig. 2. The magnetic field dependence of the conductance
G (H) for Vac = 4, �Ω = 1.5, p = 3, Vdc = 0. The other
model parameters are indicated in the plots. Notice that the
conductance amplitude strongly depends on Γt.

concerns the sum of separated couplings in each lead and is
small compared to Γs0.

(
JLL
⊥ − JRR

⊥
)2 contributes to Γat.

Both energy scales Γat and Γs affect slightly the G (H)
behavior. Figure 2c shows that the amplitude of conduc-
tance strongly decreases with decreasing Γt. It vanishes
when Γt = 0. Thus, any small oscillation in the trans-
verse couplings drives the system away from the uncoupled
isotropic two-channel Kondo situation.

In Figure 3, the magnetic susceptibility is plotted as
a function of magnetic field at temperature T = 0.05.
As previously found from G (H) characteristic, dc voltage
Vdc also splits the satellite peaks [16] when it is smaller
than the ac voltage Vac. The fact that Vdc splits peaks
by a distance ±eVdc is understood in non-equilibrium dc
Kondo physics of a QD [15]. Significantly, if Vdc is bigger
than Vac, we see the peak splitting due to the oscillations
of couplings. If Vdc = 0, we see the satellite peaks dom-
inate at μBgiB = 0. The other peaks at μBgiB = k�Ω
(k = ±1, ±2, . . .) are very weak. To study the satellite
peak splitting due to the coupling oscillation, we choose
Vdc > Vac. We find that all susceptibility-magnetic field
and conductance-magnetic field characteristics are the
same. It is evident that the relation between susceptibility
and conductance shown in formula (8.9) of reference [15]
can be generalized when the system is in the ac fields.
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Fig. 3. The conductance G (H) (a) and the susceptibility
χ (H) (b) as a function of the magnetic field for �Ω =
1.35, eVac = 2, Vdc = 5, Γat = 0.3, Γs = 0.1, Γt = 0.25.
The dotted black line is the results without the harmonic
time-dependent fields; the Kondo peak is at μBgiB = eVdc.
The dashed black line is the results with the harmonic time-
dependent voltage only, the constant couplings are: the Kondo
satellites peak at μBgiB = eVdc±n�Ω. When both the voltage
and the Kondo couplings are oscillating in time, the peaks oc-
cur at μBgiB = eVdc ± (n ± 1/p) �Ω; the solid red, blue, green
curves are the results for the p = 1, 2, 3, respectively.

The differential conductance G and magnetic suscep-
tibility χ are also plotted as functions of dc voltage Vdc

in Figures 4 and 5. In order to investigate the effect of
the ac fields, we consider the case in which no magnetic
field is applied. Again, we find the two-fold peak splitting
(i.e., the Kondo satellite splitting) due to both voltage
and Kondo coupling oscillations. There is more challenge
to determine it in the cases p = 1 and p = 2. The distance
between peaks is still �Ω. For p = 1, the positions of peaks
are the same as those in the case when only voltage oscil-
lates, but the peak heights are re-contributed. For p = 2,
both the positions and heights of peaks are re-contributed,
satellite peaks are shifted by �Ω/2. For p ≥ 3, our inter-
esting results show that one has a chance to see two peaks,
whose distance is much smaller than �Ω. For instance, as
shown in Figures 4 and 5, when p = 3, two peaks are
split from a satellite peak at a distance of 2�Ω/3. More-
over, one can also additionally find two peaks at a dis-
tance of �Ω/3. They are the peaks that are split from the
consecutive satellite peaks.
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Fig. 4. The conductance G (Vdc) as a function of the con-
stant voltage Vdc for �Ω = 1.3, eVac = 3, Γat = 0.3, Γs =
0.05, Γt = 0.2, H = 0. The dotted black line is the conduc-
tance without the harmonic time-dependent fields; the Kondo
peak is at eVdc = 0. The dashed black line is the conductance
with the harmonic time-dependent voltage only; the Kondo
satellites are at eVdc = ±n�Ω. When both the voltage and
the Kondo couplings are oscillating in time, the peaks occur at
eVdc = ± (n ± 1/p) �Ω; the solid red, blue, green lines are the
conductance for the p = 1, 2, 3, respectively.

6 Conclusions

In this paper, we have investigated the satellite split-
ting due to the ac fields in the non-equilibrium Kondo
model at the Toulouse limit. Both the oscillations in
the source-drain voltage and in the Kondo couplings
are investigated. The bosonization technique and the
non-equilibrium Green’s function method are employed.
We have proposed a non-perturbative approximation, in
which we have smoothed the fine fast oscillations around
its average form. Thus, the Green’s functions and the
observables are averaged. Our averaging method works
well for the cases �Ω � kBTK ∼ Γs0 � Γat/s/t but
�Ω � |Ed|, |U − Ed| in which the external fields do not
ionize the dot and/or induce charge fluctuations on it.

The center result of our work is the satellite peak split-
ting. This feature occurs when the oscillation parts are
added to the Kondo couplings. The distance between two
peaks, which are split from a satellite, is 2�Ω/p, the dis-
tance between two peaks, which are split from two consec-
utive satellites, is (p− 1) �Ω/p, while the distance between
two satellites is �Ω. All the satellite splitting distances
depend on the number p, which describes the difference
between the frequency of the Kondo couplings and the fre-
quency of the voltage. We find the two close peaks clearly
at small magnetic field in G (H) , χ (H) characteristics and
small dc voltage in G (Vdc) , χ (Vdc) characteristics.

Magnetic field and applied dc and ac voltages sup-
press the Kondo correlation, alternatively. When an ac
source-drain voltage is applied, the Kondo peak is ex-
panded into satellites with dpeak = n�Ω [16,18–25]. When
all above external fields are applied to a QD system, the
equilibrium Kondo peak is split into satellites. The po-
sition of a satellite is determined based on the relation:
μBgiB = ±eVdc ± (n± 1/p)�Ω if the Kondo couplings
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Fig. 5. The magnetic susceptibility χ (Vdc) as a function of
the constant voltage Vdc for �Ω = 1.5, eVac = 2.5, Γat =
0.3, Γs = 0.1, Γt = 0.25, H = 0. The dotted black line is
the susceptibility without the harmonic time-dependent fields;
the Kondo peak is at eVdc = 0. The dashed black line is the
susceptibility with the harmonic time-dependent voltage only;
the Kondo satellites are at eVdc = ±n�Ω. When both the
voltage and the Kondo couplings are oscillating in time, the
satellites peaks occur at eVdc = ± (n ± 1/p) �Ω; the solid red,
blue, green lines are the susceptibility for the p = 1, 2, 3,
respectively.

are considered oscillating on time with frequency �Ω/p.
However, so far we have shown the satellite splitting only
at the Toulouse limit, but it is also expected away from
the Toulouse limit. It is worth to investigate the time-
dependent the Kondo model away from the Toulouse limit.
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