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Abstract. We study the Mott transition in the half-filled Hubbard model with spatially alternating in-
teractions by means of the coherent potential approximation. The phase boundary between metallic and
insulating phases at zero temperature is derived and the nature of the Mott states is also considered. Our
results are in good agreement with the ones recently obtained by the two-site dynamical mean-field theory.

1 Introduction

Ultracold atomic gases are versatile systems for probing
fundamental condensed matter problems [1–5], as well as
understanding atomic and molecular physics [6,7]. Partic-
ularly, ultracold fermionic atoms in optical lattice realize
the Hubbard model which captures the essential physics
of strongly correlated materials and contains extremely
rich phenomena such as metallic and insulating phases,
magnetic order and superconductivity. In addition, all the
parameters of the Hubbard Hamiltonian (hopping, on-site
Coulomb interaction, filling, lattice geometry and dimen-
sionality) now can easily be controlled by varying the pa-
rameters of lasers being used [8].

The Mott metal-insulator transition (MIT) is a funda-
mental problem in condensed matter physics. It has been
established that the Hubbard on-site Coulomb interaction
between electrons can lead to a localization of the atoms
in the lattice sites and drive the transition from a metallic
to an insulating states. Most studies on the MIT focus on
the lattice system with uniform interactions [9–11]. Re-
cently, the spatial modulation of the interaction has been
realized in 174Yb gas system [12] and the MIT in half-filled
Hubbard model with alternating interaction has been the-
oretically investigated by means of the two-site dynamical
mean field theory (DMFT). It has been found that a sin-
gle Mott transition occurs when two kinds of interaction
are increased [13]. The nature of phase transition between
metallic and Mott insulating phases has also been consid-
ered by using different impurity solvers in DMFT [14]. In
this paper we employ the coherent potential approxima-
tion (CPA), which is a successful theory for a number of
strongly correlated electron systems [15–19] to study the
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MIT in the half-filled model with site-dependent interac-
tions. We derive an analytical expression for the phase
boundary between metallic and insulating states in the
phase diagram as well as support the main results ob-
tained in reference [13].

2 Model and formalism

We consider the following Hubbard model with alternating
interactions on a bipartite lattice (sublattices A and B)

H = −t
∑

〈ij〉σ
[c+

iσcjσ + H.c.] − μ
∑

iσ

niσ

+
∑

α,i∈α

Uα

(
ni↑ni↓ − 1

2
[ni↑ + ni↓]

)
, (1)

where ciσ(c+
iσ) annihilates (creates) a fermion with spin σ

at site i, niσ = c+
iσciσ and ni = ni↑ + ni↓. Uα is the site-

dependent onsite Coulomb interaction in the sublattice
α(= A, B), t is the nearest neighbor hopping parameter.
The chemical potential is chosen so that the average oc-
cupancy is 1 (half-filling).

In order to investigate the Hamiltonian (1), we firstly
consider an alloy problem which is expressed by the fol-
lowing Hamiltonian:

H =
∑

i∈A,σ

EAσnAσ +
∑

j∈B,σ

EBσnBσ

− t
∑

i∈A,j∈B,σ

[
c+
iσcjσ + H.c.

]
, (2)
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where

Eασ =

{−μ − Uα

2 with probability 1 − nα,σ,

−μ + Uα

2 with probability nα,σ.
(3)

Here α = A, B and nασ is the average occupation with
spin σ in the α-sublattice. As in reference [13] we focus
in this paper on the paramagnetic case, for which nA↑ =
nA↓ = nA

2 , nB↑ = nB↓ = nB

2 . Hereafter we will skip the
spin index σ and choose the chemical potential μ so that
the system is half-filled, i.e., nA + nB = 2.

The Green function corresponding to the
Hamiltonian (2) has to be averaged over all possible
configurations of the random potential which can be
considered to be due to alloy constituents. As a second
approximation we apply the CPA to the alloy problem.
By using the semi-elliptic density of states (DOS) for non-
interacting electrons, ρ0 (ε) = 2

πW 2

√
W 2 − ε2, where W

is the half-width of the band to be set as the energy unit,
the averaged local Green function for the A-sublattice
GA takes the form [17]

GA =
2

W 2

[
ω −

∑
B
−
[(

ω−
∑

B

)2

− ω−∑
B

ω−∑
A

W 2

] 1
2
]
,

(4)
where

∑
α is the self-energy for the α-sublattice. GB(ω)

is obtained by making the replacement A ↔ B. The CPA
demands that the scattering matrix vanishes on average.
This yields an expression for

∑
α of the form

∑
α

=Eα −
(

μ +
Uα

2
+

∑
α

)
Gα (ω)

(
μ − Uα

2
+

∑
α

)

(5)
where Eα = −μ + Uα(nα − 1)/2. Eliminating Σα(ω)
from (4) and (5) leads to a pair of equations for GA(ω)
and GB(ω):

1
16

G2
ᾱ(ω)Gα(ω) − 1

2
(μ + ω)Gᾱ(ω)Gα(ω)

+
[
(μ + ω)2 − U2

α

4

]
Gα(ω) +

1
4
Gᾱ(ω)

− μ − ω − Uα

2
(nα − 1) = 0. (6)

Equations (6) must now be solved with nA +nB = 2,
where nα = −2/π

∫ 0

−∞ �Gα(ω)dω (the chemical poten-
tial equals zero due to the electron-hole symmetry in the
half-filled system). To study the MIT in the system with
alternating interactions, we calculate the DOS for each
sublattice ρα(ω) = −�Gα(ω)/π, DOS at the Fermi level
ρα(0) and double occupancy Dα = 〈nα↑nα↓〉. We have
also checked a charge ordered solution of equation (6) and
then constructed the phase diagram for the homogeneous
phases at T = 0 K.

3 Results and discussions

We first consider limiting cases. Setting UA = UB in equa-
tion (6) we reproduce the CPA equation for the Green
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Fig. 1. The DOS for the sublattice A(B) for UB = 0 and two
values of UA. In both cases the system is in the metallic state.
Energy scale: W = 1.

function obtained by Velicky et al. in the usual Hubbard
model [15]. The critical Coulomb repulsion for the Mott-
Hubbard metal-insulator is found to be Uc = W = 1. In
Figure 1 we show the DOS for each sublattice for UB = 0
and for two values of UA. It can be seen that in both
cases the sharp quasiparticle peaks for B-sublattice ap-
pear in the vicinity of the Fermi level (ω = 0), which
implies that the system is metallic. Note that in the ac-
tual calculations we make ρα(ω) = −�Gα(ω + iη)/π with
η = 0.001. Figure 2 shows the DOS for each sublattice for
fixed value UB/UA = 2 and for two values of UA. When
UA/W = −0.6 the DOS for both sublattices at Fermi
level is nonzero, which indicates that system is in a metal-
lic state. In contrast, when UA/W = −1.5 the DOS for
both sublattices shows a gap around ω = 0, indicating an
insulating phase. From Figures 1 and 2 one can see that
in all cases the DOS for each sublattice are symmetric
(ρα(ω) = ρα(−ω)), which means that the solution of (6)
is the homogeneous phase with nA = nB = 1. We have
solved system of equations (6) numerically for a wide range
of system parameters and then we may conclude that in
contrast to the half-filled extended and the ionic Hubbard
models [17,18,20,21], within the CPA there is no charge
ordered solution with nA �= nB in the half-filled system
with alternating interactions.

We turn now to analyze system of equations (6) for the
homogeneous phase with nA = nB = 1. It is easy to show
that in this case, (6) is reduced to a biquadratic equation
for Gα(0) and the condition for the yielding a positive
DOS in the Fermi level is |UAUB| < W 2. As a result,
the phase boundary between the metallic and insulating
phases in the system with alternating interactions at half-
filling is given as

UAUB = ±W 2. (7)

Expression (7) is our main result. In the case of the usual
Hubbard model UA = UB, we have well-known result:
Uc = W for the Bethe lattice. Furthermore, we find from
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Fig. 2. The DOS for the sublattice A(B) for UB/UA = 2.
Upper (lower) panel shows the results for the metallic state
with UA = −0.6 W (the insulating state with UA = −1.5 W).
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Fig. 3. The DOS at Fermi energy ρα(0) as a function of UA for
different fixed values of UB/UA = 1.0 (a), 2.0 (b), −0.6 (c), and
−2.0 (d). In the CPA the phase transition is clearly continuous.

the biquadratic equation for Gα(0) that

|Uα|ρα(0) =
2

πW 2

√
W 2|UAUB| − (UAUB)2, (8)

under the condition of a positive square root for |UAUB| <
W 2. Therefore, both ρA(0) and ρB(0) simultaneously van-
ish in the strong coupling region |UAUB| ≥ W 2. The DOS
at Fermi level for each sublattice ρα(0) as a function of
UA for different values of UA/UB are shown in Figure 3.
One can see that exclusive of the vicinity of UA = UB = 0,
ρα(0) is larger in the sublattice with a smaller local inter-
action. As in DMFT with the NRG method [14], in the
CPA the phase transition at zero temperature is clearly
continuous. The ground state phase diagram is shown in
Figure 4. The shapes of our metallic and four Mott states
regions are similar to the ones obtained in [13]. Next, to
clarify these Mott states we calculate the double occu-
pancy Dα = 〈nα↑nα↓〉. The numerical results are plotted

Fig. 4. The phase diagram of the half-filled Hubbard model
with spatially-modulated interactions at zero temperature.
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Fig. 5. The double occupancy Dα as a function of UA for
different fixed values of UB/UA = 1.0 (a), 2.0 (b), −0.6 (c),
and −2.0 (d).

in Figure 5. It can be seen that the double occupancy
in each sublattice approaches zero when the local repul-
sive interaction is large, and this quantity approaches half
as the local attractive interaction increases. Consequently,
in Mott states regions (i) and (iii) where the signs of in-
teractions are the same (UAUB > W 2), the singly occu-
pied states as well as the empty or doubly occupied states
are realized simultaneously at each sublattice, as shown
in Figures 5a and 5b. In contrast, in Mott states regions
(ii) and (iv) where the signs of interactions are different
from each other (UAUB < −W 2), the Mott and pairing
transitions occur simultaneously in the corresponding sub-
lattices, as shown in Figures 5c and 5d. The same results
were obtained in [13] within the two-site DMFT, and here
we confirm these by using the CPA. However, in contrast
to [13], the calculated Dα does not vanish at the transi-
tion. This is to be expected, because virtual hopping in
the insulator produces a very small but nonzero double
occupancy, as was noted in reference [22].
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4 Conclusions

We have studied the MIT in the half-filled Hubbard model
with spatially alternating interactions by means of the co-
herent potential approximation. Within this approxima-
tion in combination with the semi-elliptical model DOS
we show that the charge ordering phase does not ex-
ist in the system and we derive the phase boundary be-
tween metallic and insulating phases at zero temperature.
We calculate the double occupancy and clarify the Mott
states, as well as find continuous phase transition between
the metallic and insulating phases. Comparing our results
with the ones obtained by DMFT [13,23], we believe that
the CPA is able to catch the essential physics at low tem-
perature and gives a correct qualitative picture of the MIT
in the system with spatially alternating interactions. In
this paper we restrict ourselves to consider only the para-
magnetic sector. At low temperature one may expect the
stability of magnetically ordered or/and superfluid states.
We leave this problem for further studies.

This work was financially supported by the National Founda-
tion for Science and Technology Development (NAFOSTED)
of Vietnam under Grant No. 103.02-2011.05.
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