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We construct a D4 flavor model based on SU(3)C ⊗ SU(3)L ⊗ U(1)X gauge symmetry
responsible for fermion masses and mixings. The neutrinos get small masses from anti-
sextets which are in a singlet and a doublet under D4. If the D4 symmetry is violated as
perturbation by a Higgs triplet under SU(3)L and lying in 1 ′′′ of D4, the corresponding
neutrino mass mixing matrix gets the most general form. In this case, the model can fit
the experimental data in 2012 on neutrino masses and mixing. Our results show that
the neutrino masses are naturally small and a little deviation from the tribimaximal
neutrino mixing form can be realized. The quark masses and mixing matrix are also
discussed. In the model under consideration, the CKM matrix can be different from the

unit matrix. The scalar potential of the model is more simpler than those of the model
based on S3 and S4. Assignation of VEVs to antisextets leads to the mixing of the new
gauge bosons and those in the Standard Model. The mixing in the charged gauge bosons
as well as the neutral gauge boson is considered.

Keywords: Neutrino mass and mixing; nonstandard-model neutrinos; right-handed neu-
trinos; extensions of electroweak Higgs sector; charge conjugation; parity; time reversal;
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1. Introduction

Following the discovery of neutrino oscillations, there has been a considerable

progress in determining values for neutrino mass square differences m2
i −m2

j and

the mixing angles relating mass eigenstates to flavor eigenstates. The most recent
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fits suggest that one of the mixing angles is approximately zero and another has a

value that implies a mass eigenstate that is nearly an equal mixture of νµ and ντ .

The data in PDG20121–5 imply:

sin2(2θ12) = 0.857± 0.024 (t12 ≃ 0.6717) ,

sin2(2θ13) = 0.098± 0.013 (s13 ≃ 0.1585) ,

sin2(2θ23) > 0.95 ,

∆m2
21 = (7.50± 0.20)× 10−5 eV2 ,

∆m2
32 = (2.32+0.12

−0.08)× 10−3 eV2 .

(1)

These large neutrino mixing angles are completely different from the quark mix-

ing ones defined by the Cabibbo–Kobayashi–Maskawa (CKM) matrix.6,7 This has

stimulated work on flavor symmetries and non-Abelian discrete symmetries are

considered to be the most attractive candidate to formulate dynamical princi-

ples that can lead to the flavor mixing patterns for quarks and lepton. There are

many recent models based on the non-Abelian discrete symmetries, such as A4,
8–25

A5,
26–38 S3,

39–80 S4,
81–109 D4,

110–121 D5,
122,123 T ′,124–128 and so forth. An alterna-

tive extension of the Standard Model (SM) is the 3-3-1 models, in which the SM

gauge group SU(2)L⊗U(1)Y is extended to SU(3)L⊗U(1)X , has been investigated

in Refs. 129–142. The anomaly cancelation and the QCD asymptotic freedom in the

models require that the number of fermion families is 3, and one family of quarks

has to transform under SU(3)L differently from the other two. In our previous

works,143–145 the discrete symmetries have been explored to the 3-3-1 models. The

simplest explanation is probably due to a S3 flavor symmetry which is the smallest

non-Abelian discrete group, has been explored in our previous work.145 In Ref. 144,

we have studied the 3-3-1 model with neutral fermions based on S4 group, in which

most of the Higgs multiplets are in triplets under S4 except χ lying in a singlet,

and the exact tribimaximal form146–149 is obtained, where θ13 = 0.

As we know, the recent considerations have implied θ13 6= 0,8–25,39–109 but small

as given in (1). This problem has been improved in Ref. 145 by adding a new

triplet ρ and another antisextet s′, in which s′ is regarded as a small perturbation.

Therefore, the model contains up to eight Higgs multiplets, and the scalar potential

of the model is quite complicated.

In this paper, we investigate another choice with D4, the group of a square,

which is the second smallest non-Abelian discrete symmetry. D4 contains one dou-

blet irreducible representation and four singlets. This feature is useful to separate

the third family of fermions from the others. The group contains a 2 irreducible

representation which can connect two maximally mixed generations. Besides the

facilitating maximal mixing through 2, it provides four inequivalent singlet repre-

sentations 1 , 1 ′, 1 ′′ and 1 ′′′ which play a crucial role in consistently reproducing

fermion masses and mixing as a perturbation. We will point out that this model is

simpler than the S3 one, since fewer Higgs multiplets are needed in order to allow
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the fermions to gain masses and to break symmetries and the physics we will see is

different from the former. On the other hand, the neutrino sector is more simpler

than that of S3 one. The boson masses and mixings are considered more generally

and more detail than those in Ref. 150.

There are two typical variants of the 3-3-1 models as far as lepton sectors are con-

cerned. In the minimal version, three SU(3)L lepton triplets are (νL, lL, l
c
R), where

lR are ordinary right-handed charged-leptons.129–133 In the second version, the third

components of lepton triplets are the right-handed neutrinos, (νL, lL, ν
c
R).

134–138 To

have a model with the realistic neutrino mixing matrix, we should consider another

variant of the form (νL, lL, N
c
R) where NR are three new fermion singlets under

standard model symmetry with vanishing lepton-numbers.143,144

The rest of this paper is organized as follows. In Secs. 2 and 3, we present

the necessary elements of the 3-3-1 model with the D4 symmetry as well as intro-

ducing necessary Higgs fields responsible for the charged lepton masses. In Sec.

4, we discuss on quark sector. Section 5 is devoted for the neutrino mass and

mixing. In Sec. 6, we consider the Higgs potential and minimization conditions.

Section 7 is devoted for the gauge boson mass and mixing. We summarize our

results and make conclusions in Sec. 8. Appendix A presents a brief of theD4 theory.

Appendix B provides the lepton number (L) and lepton parity (Pl) of particles in the

model.

2. Fermion Content

The gauge symmetry is based on SU(3)C ⊗ SU(3)L ⊗ U(1)X , where the electro-

weak factor SU(3)L ⊗ U(1)X is extended from those of the SM where the strong

interaction sector is retained. Each lepton family includes a new electrically- and

leptonically-neutral fermion (NR) and is arranged under the SU(3)L symmetry as

a triplet (νL, lL, N
c
R) and a singlet lR. The residual electric charge operator Q is

therefore related to the generators of the gauge symmetry by

Q = T3 −
1√
3
T8 +X ,

where Ta (a = 1, 2, . . . , 8) are SU(3)L charges with TrTaTb = 1
2δab and X is the

U(1)X charge. This means that the model under consideration does not contain

exotic electric charges in the fundamental fermion, scalar and adjoint gauge boson

representations.

Since the particles in the lepton triplet have different lepton number (1 and 0), so

the lepton number in the model does not commute with the gauge symmetry unlike

the SM. Therefore, it is better to work with a new conserved charge L commuting

with the gauge symmetry and related to the ordinary lepton number by diagonal

matrices143,144,151

L =
2√
3
T8 + L .
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The lepton charge arranged in this way (i.e. L(NR) = 0 as assumed) is in order

to prevent unwanted interactions due to U(1)L symmetry and breaking (due to the

lepton parity as shown below) to obtain the consistent lepton and quark spectra. By

this embedding, exotic quarks U , D as well as new non-Hermitian gauge bosons X0,

Y ± possess lepton charges as of the ordinary leptons: L(D) = −L(U) = L(X0) =

L(Y −) = 1. A brief of the theory of D4 group is given in App. A. The D4 contains

one doublet irreducible representation 2 and four singlets 1, 1 ′, 1 ′′ and 1 ′′′. In this

paper we work in real basic, in which the two-dimensional representation 2 of D4

is real, 2∗(1∗, 2∗) = 2(1∗, 2∗), and

2(1, 2)⊗ 2(1, 2) = 1(11 + 22)⊕ 1 ′(11− 22)⊕ 1 ′′(12 + 21)⊕ 1 ′′′(12− 21) . (2)

In the model under consideration, we put the first family of leptons in sin-

glets 1 of D4, while the two other families are in the doublets 2 . Under the

[SU(3)L, U(1)X , U(1)L, D4] symmetries as proposed, the fermions of the model

transform as follows

ψ1L ≡ (ν1L l1L N c
1R)

T ∼ [3,−1/3, 2/3,1] ,

ψiL = (νiL liL N c
iR)

T ∼ [3,−1/3, 2/3,2] ,

l1R ∼ [1,−1, 1, 1] , liR ∼ [1,−1, 1, 2] (i = 2, 3) ,

Q3L = (u3L d3L UL)
T ∼ [3, 1/3,−1/3,1] ,

QαL ≡ (dαL − uαL DαL)
T ∼ [3∗, 0, 1/3, 2] ,

u3R ∼ [1, 2/3, 0, 1] , uαR ∼ [1, 2/3, 0, 2] ,

d3R ∼ [1,−1/3, 0, 1] , dαR ∼ [1,−1/3, 0,2] ,

UR ∼ [1, 2/3,−1, 1] , DαR ∼ [1,−1/3, 1, 2] (α = 1, 2) ,

where the subscript numbers on field indicate to respective families which also

in order define components of their D4 multiplets. In the following, we consider

possibilities of generating the masses for the fermions. The scalar multiplets needed

for the purpose are also introduced.

3. Charged Lepton Masses

To generate masses for charged leptons, we need a minimum of five SU(3)L Higgs

triplets lying in 1 , 1 ′, 1 ′′, 1 ′′′ and 2. In decomposing of 2 ⊗ 2 into irreducible

representations, there is no 2 one. So, it is required two Higgs scalars

φ =









φ+1

φ02

φ+3









∼ [3, 2/3,−1/3,1] , φ′ =









φ′+1

φ′02

φ′+3









∼ [3, 2/3,−1/3,1 ′] , (3)
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with VEVs as follows:

〈φ〉 = (0 v 0)T , 〈φ′〉 = (0 v′ 0)T . (4)

The Yukawa interactions are

−Ll = h1(ψ̄1Lφ)1 l1R + h2(ψ̄iLφ)2 liR + h3(ψ̄iLφ
′)2 liR + h.c.

= h1(ψ̄1Lφ)1 l1R + h2(ψ̄2Lφl2R + ψ̄3Lφl3R)

+ h3(ψ̄2Lφ
′l2R − ψ̄3Lφ

′l3R) + h.c.

The mass Lagrangian of the charged leptons reads

−Lmass
l = (l̄1L, l̄2L, l̄3L)Ml(l1R, l2R, l3R)

T + h.c. ,

Ml =





h1v 0 0

0 h2v + h3v
′ 0

0 0 h2v − h3v
′



 =





me 0 0

0 mµ 0

0 0 mτ



 .

It is then diagonalized, and

U+
eL = UeR = I .

This means that the charged leptons l1,2,3 by themselves are the physical mass

eigenstates, and the lepton mixing matrix depends on only that of the neutrinos

that will be studied in Sec. 5.

We see that the masses of muon and tauon are separated by the φ′ triplet. This

is the reason why we introduce φ′ in addition to φ. The charged lepton Yukawa

couplings h1,2,3 relate to their masses as follows:

h1v = me , 2h2v = mτ +mµ , 2h3v
′ = mµ −mτ . (5)

The experimental values for masses of the charged leptons at the weak scale are

given as:152,153

me = 0.511 MeV , mµ = 106.0 MeV , mτ = 1.77 GeV . (6)

Thus, we get

h1v = 0.511 MeV , h2v = 938 MeV , |h3v′| = 832 MeV . (7)

It follows that if v′ and v are of the same order of magnitude, h1 ≪ h2 and h2 ∼ |h3|.

4. Quark Masses

To generate masses for quarks with a minimal Higgs content, we additionally intro-

duce the following Higgs triplets

χ =
(

χ0
1 χ−

2 χ0
3

)T ∼ [3,−1/3, 2/3,1] ,

η =
(

η01 η−2 η03
)T ∼ [3,−1/3,−1/3,1] ,

η′ =
(

η′01 η′−2 η′03
)T ∼ [3,−1/3,−1/3,1 ′] .

(8)
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The Yukawa interactions are:

−Lq = f3(Q̄3LUR)1χ+ f(Q̄αLDαR)1χ
∗

+ hd3(Q̄3Ld3R)1φ+ hd(Q̄αLdαR)1 η
∗

+ h′d(Q̄αLdαR)1 ′η′
∗
+ hu3 (Q̄3Lu3R)1 η

+ hu(Q̄αLuαR)1φ
∗ + h′u(Q̄αLuαR)1 ′φ′

∗
+ h.c.

= f3(Q̄3LUR)1χ+ f
(

Q̄1LD1R + Q̄2LD2R

)

χ∗

+ hd3(Q̄3Ld3R)1φ+ hd
(

Q̄1Ld1R + Q̄2Ld2R
)

η∗

+ h′d
(

Q̄1Ld1R − Q̄2Ld2R
)

η′
∗
+ hu3 (Q̄3Lu3R)1 η

+ hu
(

Q̄1Lu1R + Q̄2Lu2R
)

φ∗

+ h′u(Q̄1Lu1R − Q̄2Lu2R)φ
′∗ + h.c. (9)

We now introduce a residual symmetry of lepton number Pl ≡ (−1)L, called “lepton

parity,”143,145 in order to suppress the mixing between ordinary quarks and exotic

quarks (for lepton number of the model particles, see App. B). The particles with

even parity (Pl = 1) have L = 0,±2 and the particles with odd parity (Pl = −1)

have L = ±1. In this framework we assume that the lepton parity is an exact

symmetry, not spontaneously broken. This means that due to the lepton parity

conservation, the fields carrying lepton number (L = ±1) η3, η
′
3 and χ1 cannot

develop VEV. Suppose that the VEVs of χ, η and η′ are

〈χ〉 =





0

0

ω



 , 〈η〉 =





u

0

0



 , 〈η′〉 =





u′

0

0



 , (10)

then the exotic quarks get masses

mU = f3w , mD1,2
= fw , (11)

and the mass Lagrangian of the ordinary quarks reads:

−Lmass
q = hd3vd̄3Ld3R + hdu

(

d̄1Ld1R + d̄2Ld2R
)

+ h′du′
(

d̄1Ld1R − d̄2Ld2R
)

+ hu3uū3Lu3R − huv
(

ū1Lu1R + ū2Lu2R
)

− h′uv′
(

ū1Lu1R − ū2Lu2R
)

+ h.c.

= (ū1L, ū2L, ū3L)Mu(u1R, u2R, u3R)
T

+ (d̄1L, d̄2L, d̄3L)Md(d1R, d2R, d3R)
T + h.c. (12)
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From (12), the mass matrices for the ordinary up-quarks and down-quarks are,

respectively, obtained as follows:

Mu =





−huv − h′uv′ 0 0

0 −huv + h′uv′ 0

0 0 hu3u



 =





mu 0 0

0 mc 0

0 0 mt



 ,

Md =





hdu+ h′du′ 0 0

0 hdu− h′du′ 0

0 0 hd3v



 =





md 0 0

0 ms 0

0 0 mb



 .

(13)

In similarity to the charged leptons, the masses of u and c quarks are also separated

by the φ′ scalar. We see also that the introduction of η′ in addition to η is necessary

to provide the different masses for d and s quarks. The expression (13) leads to the

relations:

hu3u = mt , −2huv = mu +mc , −2h′uv′ = mu −mc ,

hd3v = mb , 2hdu = md +ms , 2h′du′ = md −ms .

The current mass values for the quarks are given by152,153

mu = (1.8÷ 3.0) MeV , md = (4.5÷ 5.5) MeV ,

mc = (1.25÷ 1.30) GeV , ms = (90.0÷ 100.0) MeV ,

mt = (172.1÷ 174.9) GeV , mb = (4.13÷ 4.37) GeV .

(14)

Hence,

hu3u = (172.1÷ 174.9) GeV , hd3v = (4.13÷ 4.37) GeV ,

|huv| = (625.9÷ 651.5) MeV , hdu = (47.25÷ 52.75) MeV ,

|h′du′| = (42.75÷ 47.25) MeV , h′uv′ = (624.1÷ 648.5) MeV .

(15)

It is obvious that if |u| ∼ |v| ∼ |v′| ∼ |u′|, the Yukawa coupling hierarchies

are |h′d| ∼ hd ≪ hu ∼ h′u ≪ hu3 , h
d
3, and the couplings between up-quarks

(hu, h′u, hu3 ) and Higgs scalar multiplets are slightly heavier than those of down-

quarks (hd, h′d, hd3), respectively.

The unitary matrices, which couple the left-handed up and down-quarks to those

in the mass bases, are Uu
L = 1 and Ud

L = 1, respectively. Therefore, we get the CKM

matrix

UCKM = Ud†
L Uu

L = 1 . (16)

This is a good approximation for the realistic quark mixing matrix, which implies

that the mixings among the quarks are dynamically small. The small permutations

such as a breaking of the lepton parity due to the odd VEVs 〈η03〉, 〈η′03 〉, 〈χ0
1〉, or a

violation of L and/or D4 symmetry due to unnormal Yukawa interactions, namely

Q̄3Lχu3R, Q̄αLχ
∗dαR, Q̄3LχuαR, Q̄αLχ

∗d3R and so forth, will disturb the tree level
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matrix resulting in mixing between ordinary and exotic quarks and possibly pro-

viding the desirable quark mixing pattern. This also leads to the flavor changing

neutral current at the tree level but strongly suppressed.143,144

Note that Q̄αLdαR and Q̄αLuαR transform as 1 ⊕ 1′ ⊕ 1′′ ⊕ 1′′′ under D4. All

terms of the Yukawa interactions responsible for quarks masses in (9) are invariant

under the [SU(3)L, U(1)X , U(1)L, D 4] symmetries. If Q̄αLdαR and Q̄αLuαR lying

in 1′′ and/or 1′′′, the 1–2 mixing of ordinary quarks will take place. In this work,

we add soft terms which violate D4 symmetry with 1′′. Hence, the total Lagrangian

of the ordinary quarks is added two extra terms −∆Ld
q and −∆Lu

q , given by

−∆Ld
q = kd(Q̄αLdαR)1 ′′η∗ + h.c.

= kdud̄1Ld2R + kdud̄2Ld1R + h.c. , (17)

−∆Lu
q = ku(Q̄αLuαR)1 ′′φ∗

= −kuvū1Lu2R − kuvū2Ld1R + h.c. (18)

The total mass matrices for the ordinary up-quarks and down-quarks then take the

form:

M ′
u = Mu +∆Mu =





−huv − h′uv′ −kuv 0

−kuv −huv + h′uv′ 0

0 0 hu3u



 , (19)

M ′
d = Md +∆Md =





hdu+ h′du′ kdu 0

kdu hdu− h′du′ 0

0 0 hd3v



 . (20)

The M ′
u in (19) is diagonalized as

V u+
L M ′

uV
u
R = diag

(

m′
u,m

′
c,m

′
t

)

,

where

m′
u =

[(ku)2 − (hu)2]v2 + (h′u)2v′ 2
√

(ku)2v2 + (huv − h′uv′)2
,

m′
c =

[(ku)2 − (hu)2]v2 + (h′u)2v′ 2
√

(ku)2v2 + (huv + h′uv′)2
,

m′
t ≡ mt = hu3u

(21)

and

V u
R = 1 , V u

L =

















huv − h′uv′
√

(ku)2v2 + (huv − h′uv′)2
−

kuv
√

(ku)2v2 + (huv + h′uv′)2
0

−
kuv

√

(ku)2v2 + (huv + h′uv′)2
huv + h′uv′

√

(ku)2v2 + (huv + h′uv′)2
0

0 0 1

















.
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The terms in (18) and (17) violate the D4 symmetry, therefore they should be much

weaker than those in (9). This means that

ku ≪ hu, h′u , (22)

kd ≪ hd, h′d . (23)

From condition (22), it follows that

P ≡ 2hukuv2
√

(ku)2v2 + (huv − h′uv′)2
√

(ku)2v2 + (huv + h′uv′)2

is very small, and

V u+
L V u

L =





1 −P 0

−P 1 0

0 0 1



 ≃ I .

Similarly, the M ′
d in (20) is diagonalized as

V d+
L M ′

dV
d
R = diag

(

m′
d,m

′
s,m

′
b

)

,

where

m′
d =

[(kd)2 − (hd)2]u2 + (h′d)2u′ 2
√

(kd)2u2 + (hdu− h′du′)2
,

m′
s =

[(kd)2 − (hd)2]u2 + (h′d)2u′ 2
√

(kd)2u2 + (hdu+ h′du′)2
,

m′
b ≡ mb = hd3v ,

(24)

and

V d
R = 1 , V d

L =

















−(hdu− h′du′)
√

(kd)2u2 + (hdu− h′du′)2
−

kdu
√

(kd)2u2 + (hdu+ h′du′)2
0

kdu
√

(kd)2u2 + (hdu− h′du′)2
hdu+ h′du′

√

(kd)2u2 + (hdu+ h′du′)2
0

0 0 1

















.

(25)

Analogously, from condition (23), we see that the value defined as

K ≡ 2hdkdu2
√

(kd)2u2 + (hdu− h′du′)2
√

(kd)2u2 + (hdu+ h′du′)2

is very small, and

V d+
L V d

L =





1 K 0

K 1 0

0 0 1



 ≃ I .
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The CKM matrix then takes the form:

VCKM = V u+
L V d

L =





V11 V12 0

V21 V22 0

0 0 1



 , (26)

where

V11 =
−(huhd + kukd)uv + huh′du′v + h′uhduv′ − h′uh′du′v′
√

(kd)2u2 + (hdu− h′du′)2
√

(ku)2v2 + (huv − h′uv′)2
,

V12 =
−(hukd + kuhd)uv − kuh′du′v + h′ukduv′

√

(kd)2u2 + (hdu+ h′du′)2
√

(ku)2v2 + (huv − h′uv′)2
,

V21 =
(hukd + kuhd)uv − kuh′du′v + h′ukduv′

√

(kd)2u2 + (hdu− h′du′)2
√

(ku)2v2 + (huv + h′uv′)2
,

V22 =
kukduv + hdu(huv + h′uv′) + h′du′(huv + h′uv′)

√

(kd)2u2 + (hdu+ h′du′)2
√

(ku)2v2 + (huv + h′uv′)2
.

With the help of conditions (22) and (23) we have:

V11 ≃ 1 , V12 ≃ 0 , V21 ≃ 0 , V22 ≃ 1 ,

and the VCKM in (26) becomes

VCKM ≃ I .

If SU(3)L Higgs triplet φ in (3) lying in 2 under D4, the 1–3 and 2–3 mixings of

the ordinary quarks will take place. A detailed study on these problems are out of

the scope of this work and should be skipped.

5. Neutrino Mass and Mixing

The neutrino masses arise from the couplings of ψ̄c
iLψiL, ψ̄

c
1Lψ1L and ψ̄c

1LψiL to

scalars, where ψ̄c
iLψiL transforms as 3∗ ⊕ 6 under SU(3)L and 1 ⊕ 1 ′ ⊕ 1 ′′ ⊕ 1 ′′′

under D4; ψ̄
c
1Lψ1L transforms as 3∗⊕6 under SU(3)L and 1 under D4, and ψ̄

c
1LψiL

transforms as 3∗ ⊕ 6 under SU(3)L and 2 under D4. For the known scalar triplets

(φ, φ′, χ, η, η′), the available interactions are only (ψ̄c
iLψiL)φ and (ψ̄c

iLψiL)φ
′, but

explicitly suppressed because of the L-symmetry. We will therefore propose new

SU(3)L antisextets, lying in either 1 , 1 ′, 1 ′′ or 1 ′′′ under D4, interact with ψ̄
c
LψL

to produce masses for the neutrino. To obtain a realistic neutrino spectrum, the

antisextets transform as follows

σ =











σ0
11 σ+

12 σ0
13

σ+
12 σ++

22 σ+
23

σ0
13 σ+

23 σ0
33











∼ [6∗, 2/3,−4/3,1] ,
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sk =











s011 s+12 s013

s+12 s++
22 s+23

s013 s+23 s033











k

∼ [6∗, 2/3,−4/3,2] ,

where the numbered subscripts on the component scalars are the SU(3)L indices,

whereas k = 1, 2 is that of D4. The VEV of s and σ is set as (〈s1〉, 〈s2〉) under D4,

in which

〈σ〉 =





λσ 0 vσ
0 0 0

vσ 0 Λσ



 , (27)

〈sk〉 =





λk 0 vk
0 0 0

vk 0 Λk



 . (28)

Following the potential minimization conditions, we have several VEV alignments.

The first alignment is that 〈s1〉 = 〈s2〉 or 〈s1〉 6= 0 = 〈s2〉 or 〈s1〉 = 0 6= 〈s2〉 then
the D4 is broken into Z2 that consists of the elements {e, a3b} or {e, b} or {e, a2b},
respectively. The second one is that 0 6= 〈s1〉 6= 〈s2〉 6= 0, then the D4 is broken into

{identity} (or Z2 → {identity}). In this work, we impose the first case in the first

alignment of D4 breaking, i.e.

λ1 = λ2 ≡ λs , v1 = v2 ≡ vs , Λ1 = Λ2 ≡ Λs .

And, we additionally introduce another scalar triplet lying in either 1 ′, 1 ′′ or 1 ′′′

responsible for breaking the Z2 subgroup as the second stage of D4 breaking. This

can be achieved by introducing a new SU(3)L triplet, ρ lying in 1 ′′′ as follows

ρ =











ρ+1

ρ02

ρ+3











∼ [3, 2/3,−4/3,1 ′′′] , (29)

with the VEV given by

〈ρ〉 = (0, vρ, 0)
T . (30)

The Yukawa interactions are:

−Lν =
1

2
x
(

ψ̄c
1Lψ1L

)

1
σ +

1

2
y
(

ψ̄c
2Lψ2L + ψ̄c

3Lψ3L

)

σ

+
1

2
z
[(

ψ̄c
1LψiL

)

s+
(

ψ̄c
iLψ1L

)

s
]

+
1

2
τ
(

ψ̄c
iLψiL

)

1′′′
ρ+ h.c.
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=
1

2
x
(

ψ̄c
1Lψ1L

)

1
σ +

1

2
y
(

ψ̄c
2Lψ2L + ψ̄c

3Lψ3L

)

σ

+
1

2
z
(

ψ̄c
1Lψ2Ls1 + ψ̄c

1Lψ3Ls2 + ψ̄c
2Lψ1Ls1 + ψ̄c

3Lψ1Ls2
)

+
1

2
τ
(

vρN̄2Rν3L − vρν̄
c
2LN

c
3R − vρN̄3Rν2L + vρν̄

c
3LN

c
2R

)

+ h.c. (31)

The neutrino mass Lagrangian can be written in matrix form as follows

−Lmass
ν =

1

2
χ̄c
LMνχL + h.c. , (32)

where

χL ≡
(

νL N c
R

)T
, Mν ≡

(

ML MT
D

MD MR

)

,

νL = (ν1L, ν2L, ν3L)
T , NR = (N1R, N2R, N3R)

T ,

and the mass matrices are then obtained by

ML,R,D =





aL,R,D bL,R,D bL,R,D

bL,R,D cL,R,D dL,R,D

bL,R,D −dL,R,D cL,R,D



 , (33)

with

aL = λσx , aD = vσx , aR = Λσx ,

bL = λsz , bD = vsz , bR = Λsz ,

cL = λσy , cD = vσy , cR = Λσy ,

dL = 0 , dD = vρτ ≡ d , dR = 0 .

(34)

Three observed neutrinos gain masses via a combination of type I and type II seesaw

mechanisms derived from (32) and (33) as

Meff =ML −MT
DM

−1
R MD =





A B1 B2

B1 C1 D1

B2 D1 C2



 , (35)

where

A =

(

2aRb
2
D − 4aDbDbR + 2aLb

2
R + a2DcR − aLaRcR

)

(

2b2R − aRcR
) ,

B1 =

[

−2b2DbR+bL(2b
2
R−aRcR)+bD(aDcR+aRcD−aRdD)−aDbR(cD−dD)

]

(

2b2R − aRcR
) ,

B2 =

[

−2b2DbR+bL(2b
2
R−aRcR)+bD(aDcR+aRcD+aRdD)−aDbR(cD+dD)

]

(

2b2R−aRcR
) ,
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C1 =

[

−2bDbRcR(cD − dD)− b2R[(cD + dD)2 − 2cLcR]

+ cR(b
2
DcR + aRc

2
D − aRcLcR + aRd

2
D)
]

[cR(2b2R − aRcR)]
,

C2 =

[

−2bDbRcR(cD + dD)− b2R[(cD − dD)2 − 2cLcR]

+ cR(b
2
DcR + aRc

2
D − aRcLcR + aRd

2
D)
]

[cR(2b2R − aRcR)]
,

D1 =

[

(bRcD − bDcR)
2 − b2Rd

2
D

]

[cR(2b2R − aRcR)]
. (36)

5.1. Experimental constraints in the case without the ρ triplet

In the case without the ρ contribution (vρ = 0), λ1 = λ2 = λs, v1 = v2 = vs,

Λ1 = Λ2 = Λs, we have B1 = B2 ≡ B, C1 = C2 ≡ C and Meff in (35) becomes

M0
eff =





A B B

B C D

B D C



 , (37)

where

A =
x
[

Λσ(Λσλσ − v2σ)xy − 2(Λ2
sλσ + Λσv

2
s − 2Λsvsvσ)z

2
]

Λ2
σxy − 2Λ2

sz
2

,

B =

[

Λ2
σλs + vσ(Λsvσ − 2Λσvs)

]

xyz + 2Λs(v
2
σ − λsΛs)z

3

Λ2
σxy − 2Λ2

sz
2

,

C =
y
{

Λ2
σ(λσΛσ − v2σ)xy −

[

Λ2
σv

2
s − 2ΛsΛσvsvσ + Λ2

s(2λσΛs − v2σ)
]

z2
}

Λ3
σxy − 2Λ2

sΛσz2
,

D = − (Λσvs − Λsvσ)
2yz2

Λ3
σxy − 2Λ2

sΛσz2
= −Λs

Λσ

Λsyz
2

(

xy − 2
Λ2

s

Λ2
σ

z2
)

(

vs
Λs

− vσ
Λσ

)2

≪ 1 .

(38)

This mass matrix takes the form similar to that of unbroken Z2 (i.e. vρ = 0).

However, the breaking of Z2 (vρ 6= 0) in this case is necessary to fit the data (see

below). Indeed, we can diagonalize M0
eff in (37) as follows:

UTMeffU = diag(m1,m2,m3) ,

where

m1 =
1

2

(

A+ C +D −
√

8B2 + (A− C −D)2
)

,

m2 =
1

2

(

A+ C +D +
√

8B2 + (A− C −D)2
)

,

m3 = C −D ,

(39)
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and the corresponding eigenstates put in the lepton mixing matrix:

U =























K√
K2 + 2

−
√
2√

K2 + 2
0

1√
K2 + 2

1√
2

K√
K2 + 2

− 1√
2

1√
K2 + 2

1√
2

K√
K2 + 2

1√
2























=

























A−m2
√

(A−m2)2 + 2B2
−

√
2B

√

(A−m2)2 + 2B2
0

1√
2

√
2B

√

(A−m2)2 + 2B2

1√
2

A−m2
√

(A−m2)2 + 2B2
− 1√

2

1√
2

√
2B

√

(A−m2)2 + 2B2

1√
2

A−m2
√

(A−m2)2 + 2B2

1√
2

























, (40)

with

K =
A− C −D −

√

8B2 + (A− C −D)2

2B
.

Relations between K and m1, m2, m3 take the forms:

m1 = KB + C +D , m2 = −KB +A , m3 = C −D ,

m1 +m2 +m3 = A+ 2C , m1m2 = −2B2 +A(C +D) .
(41)

The U matrix in (40) can be parametrized in three Euler’s angles, which implies:

θ13 = 0 , θ23 =
π

4
, tan θ12 =

√
2B

A−m2
≡

√
2

K
. (42)

The recent data imply that θ13 6= 0.1–5 If it is correct, this case will fail. However,

the following case improves this.

5.2. Experimental constraints in the case with the ρ triplet

In this case with the ρ contribution, vρ 6= 0, the general neutrino mass matrix in

(35) can be rewritten in the form:

Meff =





A B B

B C D

B D C



+





0 p1 −p1
p1 q1 r

−p1 r q2



 , (43)

where A, B, C and D are given by (38) due to the contribution from the scalar

antisextets s and σ only. The second matrix in (43) is a deviation arising from

the contribution due to the scalar triplet ρ, namely p1 = B1 − B = −(B2 − B),

q1,2 = C1,2 − C and r = D1 − D, with the A, B1,2, C1,2 and D1 being defined in
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(36). Indeed, if the ρ contribution is neglected, the deviations p1, q1,2, r will vanish.

Hence the mass matrix Meff in (35) reduces to its form in (37). The first term, as

shown in Subsec. 5.1 can approximately fit the Particle Data Group 2010152 with

a small deviation for θ13. The second term is proportional to p1, q1,2, r due to

contribution of the triplet ρ, will take the role for such a deviation of θ13. So, in

this work we consider the ρ contribution as a small perturbation and terminating

the theory at the first-order.

Assuming that λs ≪ vs ≪ Λs, λσ ≪ vσ ≪ Λσ or λs

Λs

≃ λσ

Λσ

≪ 1, vs
Λs

≃ vσ
Λσ

≪ 1,

vρ ≪ vs, vσ, Λσ ∼ Λs and x, y, z, τ being in the same order then we get

p1 =
τvρ(Λσvs − Λsvσ)xz

Λ2
σxy − 2Λ2

sz
2

≃ −τvρ
(

vs
Λs

− vσ
Λσ

)

, (44)

q1 =
τvρ
[

−Λ2
στvρxy + Λs(Λsτvρ − 2Λσvsy + 2Λsvσy)z

2
]

Λσy(Λ2
σxy − 2Λ2

sz
2)

≃ 2τvρ

(

vs
Λs

− vσ
Λσ

)

, (45)

q2 =
τvρ
[

−Λ2
στvρxy + Λs(Λstvρ + 2Λσvsy − 2Λsvσy)z

2
]

Λσy(Λ2
σxy − 2Λ2

sz
2)

≃ −q1 , (46)

which all start from the first-order of the perturbation

r =
Λ2
sτ

2v2ρz
2

Λ3
σxy

2 − 2Λ2
sΛσyz2

≃ −τvρ
(

vρ
Λσ

)

. (47)

Because of vs ≪ Λs, vσ ≪ Λσ and vρ ≪ vs, vσ so r in (47) is the second-order

of the perturbation. Consequently, it can be ignored. The last matrix in (43) now

takes the form:




0 p1 −p1
p1 q1 r

−p1 r q2



 ≈ ǫvρτ





0 −1 1

−1 2 0

1 0 −2



 , (48)

where ǫ = vs
Λs

− vσ
Λσ

is very small and plays the role of the perturbation parameter.

The explicit form of the mass matrix (35) is thus given by

Meff =





A B B

B C D

B D C



+ ǫM (1) , (49)

where M (1) is the perturbation contribution at the first-order:

M (1) ≡ vρτ





0 −1 1

−1 2 0

1 0 −2



 .

It is clear that the first term in (49) can approximately fit the data with a “small”

deviation as shown in Subsec. 5.1. So, in this case we consider ǫ being small as a

perturbation parameter.

1350159-15



December 30, 2013 13:48 WSPC/139-IJMPA S0217751X13501595

V. V. Vien & H. N. Long

At the first-order of perturbation theory, the matrix M (1) does not give contri-

bution to eigenvalues. However, it changes the eigenvectors. The physical neutrino

masses are thus obtained as:

m′
1 = m1 , m′

2 = m2 , m′
3 = m3 ,

where m1,2,3 are the masses in the case without contribution of ρ given by (39).

For the corresponding perturbed eigenstates, we put:

U → U ′ = U +∆U ,

where U is defined by (40), and

∆U =

























0 0 −ǫ

√

2K(K − 2)τvρ
(K2 + 2)(m1 −m3)

−ǫ
(K − 2)τvρ

√

K2 + 2(m1 −m3)
ǫ

√

2(K + 1)τvρ
√

K2 + 2(m2 −m3)
−ǫ

√

2(K − 2)τvρ
(K2 + 2)(m1 −m3)

ǫ
(K − 2)τvρ

√

K2 + 2(m1 −m3)
−ǫ

√

2(K + 1)τvρ
√

K2 + 2(m2 −m3)
−ǫ

√

2(K − 2)τvρ
(K2 + 2)(m1 −m3)

























.

(50)

The lepton mixing matrix in this case can still be parametrized in three new Euler’s

angles θ′ij , which are also a perturbation from the θij (without contribution from

the ρ triplet), defined by

s′13 = −U ′
13 = ǫ

√
2K(K − 2)τvρ

(K2 + 2)(m1 −m3)
,

t′12 = −U
′
12

U ′
11

=

√
2

K
≡ t12 ,

t′23 = −U
′
23

U ′
33

= 1 +
4ǫ(K − 2)vρτ

2ǫ(K − 2)vρτ + (K2 + 2)(m1 −m3)
.

It is easy to show that our model is consistent since the five experimental constraints

on the mixing angles and squared mass differences of neutrinos can be respectively

fitted with four Yukawa coupling parameters x, y, z and τ of the s, σ antisextets

and ρ triplet scalars, with the given VEVs. To see this, let us take the data in

2012 as shown in (1). It follows K ≃ 2.1054, and t′23 = 1.2383 [θ′23 ≃ 51.08◦,

sin2(2θ′23) = 0.9556 satisfying the condition sin2(2θ′23) > 0.95].

Until now values of neutrino masses (or the absolute neutrino masses) as well as

the mass ordering of neutrinos is unknown. The tritium experiment154,155 provides

an upper bound on the absolute value of neutrino mass

mi ≤ 2.2 eV .

A more stringent bound was found from the analysis of the latest cosmological

data156

mi ≤ 0.6 eV ,

1350159-16



December 30, 2013 13:48 WSPC/139-IJMPA S0217751X13501595

The D4 Flavor Symmetry in 3-3-1 Model with Neutral Leptons

while arguments from the growth of large-scale structure in the early Universe yield

the upper bound157

3
∑

i=1

mi ≤ 0.5 eV .

The neutrino mass spectrum can be the normal mass hierarchy (m1 ≃ m2 <

m3), the inverted hierarchy (m3 < m1 ≃ m2) or nearly degenerate (m1 ≃ m2 ≃
m3). The mass ordering of neutrino depends on the sign of ∆m2

23 which is currently

unknown. In the case of 3-neutrino mixing, in the model under consideration, the

two possible signs of ∆m2
23 corresponding to two types of neutrino mass spectrum

can be provided as shown below.

5.2.1. Normal case (∆m2
23 > 0)

In this case, the neutrino masses are functions of δ = ǫvρτ as follows

m1 = −0.00388981

δ
+ 0.153928δ , (51)

m2 = ±8× 10−3

√

−17.5391+
0.236416

δ2
+ 370.216δ2 , (52)

m3 = −0.00388981

δ
− 0.153928δ . (53)

In Fig. 1, we have plotted the absolute value |mi| (i = 1, 2, 3) as a function of δ with

the values of δ ∈ (−0.5, 0.5) eV. This figure shows that there exist allowed regions

for value of δ where either normal or quasi-degenerate neutrino masses spectrum

achieved. The quasi-degenerate mass hierarchy obtained when δ → 0 or δ → ±∞
(|δ| increase but must be small enough because of the scale of ǫ, vρ, τ). The normal

mass hierarchy will be obtained if δ takes the values around (−0.20,−0.15) eV or

(0.15, 0.20) eV as shown in Figs. 2(a) and 2(b), respectively. Figures 3(a) and 3(b)

give three absolute neutrino masses mi with δ ∈ (−0.2,−0.15) and δ ∈ (0.15, 0.20),

respectively. The values
∑3

i=1mi as well as
∑3

i=1 |mi| as a functions of δ are plotted
in Figs. 4 and 5, respectively.

To get explicit values of the model parameters, we assume δ ≡ ǫvρτ =

0.15 eV, which is safely small. Then the neutrino masses are explicitly given as

m1 ≃ −0.00284 eV, m2 ≃ ±0.00911 eV and m3 ≃ −0.04902 eV. It follows

that A ≃ 8.75 × 10−4 eV, B ≃ −3.913 × 10−3 eV, C ≃ −2.18 × 10−2 eV and

D ≃ 2.72× 10−2 eV (equivalently to m2 = 0.00911 eV), or A ≃ −7.16× 10−3 eV,

B ≃ −2.05× 10−3 eV, C ≃ −2.69× 10−2 eV and D ≃ 2.21× 10−2 eV (equivalently

to m2 = −0.00911 eV). This solution means a normal neutrino mass spectrum as

mentioned above. Furthermore, if λs = λσ = 1 eV, vs = vσ, Λs = −Λσ = −v2s eV,

we obtain x ≃ −1.57× 10−4, y ≃ −7.16× 10−3, z ≃ 1.09 × 10−3 (equivalently to

m2 = 0.00911 eV), or x ≃ −3.68 × 10−3, y ≃ −1.12 × 10−2, z ≃ −3.69 × 10−2

(equivalently to m2 = −0.00911 eV) and τ ≃ 150
vρ

. If vρ ∼ 1.5 × 10−3 GeV then

τ ∼ 1.5× 10−4 which is on the same order in magnitude with x, y, z.
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Fig. 1. The absolute values |m1|, |m2|, |m3| as functions of δ with δ ∈ (−0.5, 0.5) eV in the case
of ∆m2

23
> 0.

Fig. 2. The values mi (i = 1, 2, 3) as functions of δ. (a) δ ∈ (−0.20,−0.15) eV, (b) δ ∈
(0.15, 0.20) eV in the case of ∆m2

23
> 0.

Fig. 3. The absolute values |mi| (i = 1, 2, 3) as functions of δ. (a) δ ∈ (−0.20,−0.15) eV,

(b) δ ∈ (0.15, 0.20) eV in the case of ∆m2

23
> 0.
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Fig. 4. The value
∑

mi as a function of δ in the case of ∆m2

23
> 0. (a) δ ∈ (−0.20,−0.15) eV,

(b) δ ∈ (0.15, 0.20) eV.

Fig. 5. The value
∑

|mi| as a function of δ in the case of ∆m2

23
> 0. (a) δ ∈ (−0.20,−0.15) eV,

(b) δ ∈ (0.15, 0.20) eV.

5.2.2. Inverted case (∆m2
23 < 0)

In this case, the neutrino masses are functions of δ = ǫvρτ as follows

m1 =
0.00364619

δ
+ 0.153928δ , (54)

m2 = ±8× 10−3

√

18.7109 +
0.207729

δ2
+ 370.216δ2 , (55)

m3 =
0.00364619

δ
− 0.153928δ . (56)

In Fig. 6, we have plotted the values mi (i = 1, 2, 3) as a function of δ with the

values of δ ∈ (−0.5, 0.5) eV. This figure shows that there exist the allowed regions

for value of δ where either inverted (|m1| ≃ |m2| > |m3|) or quasi-degenerate

neutrino masses spectrum (|m1| ≃ |m2| ≃ |m3|) achieved. The quasi-degenerate

mass hierarchy obtained when δ → 0 or δ → ±∞. The inverted mass hierarchy
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Fig. 6. The absolute values |m1|, |m2|, |m3| as functions of δ with δ ∈ (−0.5, 0.5) eV in the case
of ∆m2

23
< 0.

Fig. 7. The values mi (i = 1, 2, 3) as functions of δ. (a) δ ∈ (−0.20,−0.15) eV, (b) δ ∈
(0.15, 0.20) eV in the case of ∆m2

23
< 0.

is obtained if δ takes the values around (−0.20,−0.15) eV or (0.15, 0.20) eV as

shown in Figs. 7(a) and 7(b), respectively. Figures 8(a) and 8(b) give three absolute

neutrino masses mi with δ ∈ (−0.2,−0.15) and δ ∈ (0.15, 0.20), respectively. The

values
∑3

i=1mi as well as
∑3

i=1 |mi| as a functions of δ are plotted in Figs. 9 and

10, respectively.

In similarity to the normal case, to get explicit values of the model parameters,

we also assume δ ≡ ǫvρτ = 0.15 eV, which is safely small. Then the neutrino masses

are explicitly given as

m1 ≃ 4.74× 10−2 eV , m2 ≃ 4.82× 10−2 eV , m3 ≃ 1.22× 10−3 eV , (57)

or

m1 ≃ 4.74× 10−2 eV , m2 ≃ −4.82× 10−2 eV , m3 ≃ 1.22× 10−3 eV . (58)

From (57) we find out

A ≃ 4.76× 10−2 eV , B ≃ 2.57× 10−4 eV ,

C ≃ 2.46× 10−2 eV , D ≃ 2.34× 10−2 eV .
(59)
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Fig. 8. The absolute values |mi| (i = 1, 2, 3) as functions of δ. (a) δ ∈ (−0.20,−0.15) eV,
(b) δ ∈ (0.15, 0.20) eV in the case of ∆m2

23
< 0.

Fig. 9. The value
∑

mi as a function of δ in the case of ∆m2

23
< 0. (a) δ ∈ (−0.20,−0.15) eV,

(b) δ ∈ (0.15, 0.20) eV.

Fig. 10. The values m1,2,3 as functions of δ in the case of ∆m2

23
< 0.

1350159-21



December 30, 2013 13:48 WSPC/139-IJMPA S0217751X13501595

V. V. Vien & H. N. Long

Fig. 11. The value C as a function of a in the case of ∆m2

23
< 0.

Furthermore, suppose that

λs = λσ = 1 eV , vs = vσ , Λs = Λσ = v2s ,
vσ
Λσ

= a
vs
Λs

, (60)

we obtain the relation between C and a as in Fig. 11. Then the satisfied value of

a, which can be inferred from this figure, is as follows a = −0.950. With this value

of a we get x ≃ 1.22× 10−2, y ≃ 1.23× 10−2, z ≃ 1.11.

In a similar way, from (58) we get A ≃ −1.85× 10−2 eV, B ≃ −3.13× 10−2 eV,

C ≃ 9.45 × 10−3 eV, D ≃ 8.23 × 10−3 eV. With the assumption in (60) we get

a ≃ −0.9815, and it follows x ≃ −3.47× 10−2, y ≃ 3.32× 10−2, z ≃ −9.12× 10−3.

In both case, the parameter τ ∼ 1.5 × 10−4 provided that ǫ ∼ 10−3 eV and

vρ ∼ 1.5×10−3 GeV. The solutions in (57) and (58) mean a inverted neutrino mass

spectrum.

6. Vacuum Alignment

In order to make this work complete we write out the scalar potentials of the

model. It is to be noted that (TrA)(TrB) = Tr(ATrB) and we have used the

following notation: V (X → X ′, Y → Y ′, . . .) ≡ V (X,Y, . . .)|X=X′,Y=Y ′,.... The

general potential invariant under all subgroups takes the form:

Vtotal = Vtri + Vsext + Vtri-sext , (61)

where Vtri comes from only contributions of SU(3)L triplets given as a sum of:

V (χ) = µ2
χχ

†χ+ λχ(χ†χ)2 , (62)

V (φ) = V (χ→ φ) , V (φ′) = V (χ → φ′) , V (η) = V (χ→ η) ,

V (η′) = V (χ→ η′) , V (ρ) = V (χ→ ρ) ,
(63)

V (φ, χ) = λφχ1 (φ†φ)(χ†χ) + λφχ2 (φ†χ)(χ†φ) , (64)
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V (φ, φ′) = V (φ, χ→ φ′) + λφφ
′

3 (φ†φ′)(φ†φ′) + λφφ
′

4 (φ′ †φ)(φ′ †φ) ,

V (φ, η) = V (φ, χ→ η) , V (φ, η′) = V (φ, χ → η′) ,

V (φ, ρ) = V (φ, χ→ ρ) , V (φ′, χ) = V (φ→ φ′, χ) ,

V (φ′, η) = V (φ→ φ′, χ→ η) , V (φ′, η′) = V (φ→ φ′, χ→ η′) ,

V (φ′, ρ) = V (φ→ φ′, χ→ ρ) , V (χ, η) = V (φ→ χ, χ→ η) ,

V (χ, η′) = V (φ→ χ, χ→ η′) , V (χ, ρ) = V (φ→ χ, χ→ ρ) ,

V (η, η′) = V (φ→ η, χ→ η′) + ληη
′

3 (η†η′)(η†η′) + ληη
′

4 (η′ †η)(η′ †η) ,

V (η, ρ) = V (φ→ η, χ→ ρ) , V (η′, ρ) = V (φ→ η′, χ→ ρ) ,

Vχφφ′ηη′ρ = µ1χφη + µ′
1χφ

′η′ + λ11(φ
†φ′)(η†η′) + λ21(φ

†φ′)(η′ †η)

+ λ31(φ
†η)(η′ †φ′) + λ41(φ

†η′)(η†φ′) + h.c.

(65)

The Vsext is summed over only antisextet contributions:

V (s) = µ2
s Tr(s

†s) + λs1 Tr
[

(s†s)1 (s
†s)1

]

+ λs2 Tr
[

(s†s)1′ (s
†s)1′

]

+ λs3 Tr
[

(s†s)1 ′′(s†s)1 ′′

]

+ λs4 Tr
[

(s†s)1 ′′′(s†s)1 ′′′

]

+ λs5 Tr(s
†s)1 Tr(s†s)1 + λs6 Tr(s

†s)1′ Tr(s
†s)1′

+ λs7 Tr(s
†s)1 ′′ Tr(s†s)1 ′′ + λs8 Tr(s

†s)1 ′′′ Tr(s†s)1 ′′′ , (66)

V (σ) = µ2
σ Tr(σ

†σ) + λσ1 Tr
[

(σ†σ)1 (σ
†σ)1

]

+ λσ2 Tr(σ
†σ)1 Tr(σ†σ)1 ,

V (s, σ) = λsσ1 Tr
[

(s†s)1 (σ
†σ)1

]

+ λsσ2 Tr
[

(s†s)1
]

Tr
[

(σ†σ)1
]

(67)

+ λsσ3 Tr
[

(s†σ)2 (σ
†s)2

]

+ λsσ4 Tr
[

(s†σ)2
]

Tr
[

(σ†s)2
]

+ h.c.

The Vtri-sext is given as a sum over all the terms connecting both the sectors:

V (φ, s) = λφs1 (φ†φ)Tr(s†s)1 + λφs2
[

(φ†s†)(sφ)
]

1
,

V (φ′, s) = V (φ→ φ′, s) , V (χ, s) = V (φ→ χ, s) ,

V (η, s) = V (φ→ η, s) , V (η′, s) = V (φ→ η′, s) ,

V (ρ, s) = V (φ→ ρ, s) +
{

λρs3 ρ
[

(ρs†)s†
]

1′
+ h.c.

}

,

V (φ, σ) = V (φ, s → σ) + λφσ3 (φ†σ)(σ†φ)1 ,

V (φ′, σ) = V (φ→ φ′, σ) , V (χ, σ) = V (φ→ χ, σ) ,

V (η, σ) = V (φ→ η, σ) , V (η′, σ) = V (φ→ η′, σ) ,

V (ρ, σ) = V (φ→ ρ, σ) +
{

λρσ3 ρ
[

(ρσ†)σ†
]

1 ′′′
+ h.c.

}

,

V (φ, s, σ) = 0 , V (φ′, s, σ) = 0 ,

V (χ, s, σ) = 0 , V (η, s, σ) = 0 ,

V (η′, s, σ) = 0 , V (ρ, s, σ) = 0 ,

(68)
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Vsσχφφ′ηη′ρ = (λ1φ
†φ′ + λ2η

†η′)Tr(s†s)1′ + λ3
[

(φ†s†)(sφ′)
]

1

+ λ4
[

(η†s†)(sη′)
]

1
+ h.c. (69)

To provide the Majorana masses for the neutrinos, the lepton number must be

broken. This can be achieved via the scalar potential violating U(1)L. However, the

other symmetries should be conserved. The violating L potential is given by

V̄ =
[

λ̄1φ
†φ+ λ̄2φ

′ †φ′ + λ̄3χ
†χ+ λ̄4η

†η + λ̄5η
′ †η′ + λ̄6ρ

†ρ

+ λ̄7η
†χ+ λ̄8 Tr(s

†s)1 + λ̄9 Tr(σ
†σ)1

]

(η†χ)

+
[

λ̄10φ
†φ′ + λ̄11φ

′ †φ+ λ̄12η
†η′ + λ̄13η

′ †η + λ̄14η
′ †χ+ λ̄15 Tr(s

†s)1′
]

(η′ †χ)

+
[

λ̄16η
†φ+ λ̄17η

′ †φ′ + λ̄18η
′ †ρ
]

(φ†χ) +
[

λ̄19η
†φ′ + λ̄20η

′ †φ
]

(φ′ †χ)

+ λ̄21 Tr(s
†s)1 ′′′(φ†ρ) + λ̄22 Tr(s

†s)1 ′′(φ′ †ρ) + λ̄23(η
†s†)(sχ)1

+ λ̄24
[

(η†σ†)(σχ)
]

1
+ λ̄25

[

(η′ †s†)(sχ)
]

1
+ λ̄26

[

(ρ†s†)(sφ)
]

1

+ λ̄27φ
[

(φs†)s†
]

1
+ λ̄28φ

[

(φσ†)σ†
]

1
+ λ̄29φ

′
[

(φ′s†)s†
]

1′

+ λ̄30φ
′
[

(φ′σ†)σ†
]

1′
+ λ̄31φ

[

(φ′s†)s†
]

1
+ λ̄32φ

′
[

(φs†)s†
]

1′
+ h.c. (70)

In the decomposing of 2 ⊗ 2, 2 ⊗ 2 = 1 ⊕ 1 ′ ⊕ 1 ′′ ⊕ 1 ′′′, there is no term which, as

shown in (68), (69) and (70), is invariant under combination of one scalar triplet

and two different antisixtets; and some couplings between ρ and some other triplets

are ruled out. As a consequence, the general scalar potential violating L and being

invariant under D4, is more simpler than those of S3 and S4.

Let us now consider the potential Vtri. The flavons χ, φ, φ
′, η, η′ with their VEVs

aligned in the same direction (all of them are singlets) are an automatical solution

from the minimization conditions of Vtri. To explicitly see this, in the system of

equations for minimization, let us put v∗ = v, v′∗ = v′, u∗ = u, u′∗ = u′, v∗χ = vχ,

v∗ρ = vρ. Then, the potential minimization conditions for triplets reduces to

∂Vtri
∂ω

= 4λχω3 + 2
(

µ2
χ + λχη1 u2 + λχη

′

1 u′ 2 + λχφ1 v2 + λχφ
′

1 v′ 2 + λχρ1 v2ρ

)

ω

− µ1uv − µ′
1u

′v′ , (71)

∂Vtri
∂vρ

= 4λρv3ρ + 2
[

µ2
ρ + λρη1 u2 + λρη

′

1 u′ 2 +
(

λρφ1 + λρφ2

)

v2

+
(

λρφ
′

1 + λρφ
′

2

)

v′ 2 + λχρ1 ω2
]

vρ , (72)

∂Vtri
∂v

= 4λφv3 + 2
[

µ2
φ + λφη1 u2 + λφη

′

1 u′ 2 +
(

λφφ
′

1 + λφφ
′

2 + λφφ
′

3 + λφφ
′

4

)

v′ 2

+
(

λρφ1 + λρφ2

)

v2ρ + ω2λφχ1

]

v +
(

λ11 + λ21

)

uu′v′ − µ1ωu , (73)
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∂Vtri
∂v′

= 4λφ
′

v′3 + 2
[

µ2
φ′ + λφ

′η
1 u2 + λφ

′η′

1 u′ 2 +
(

λφφ
′

1 + λφφ
′

2 + λφφ
′

3 + λφφ
′

4

)

v2

+
(

λρφ
′

1 + λρφ
′

2

)

v2ρ + ω2λφ
′χ

1

]

v′ +
(

λ11 + λ21

)

uu′v − µ′
1ωu

′ , (74)

∂Vtri
∂u

= 4ληu3 + 2
[

µ2
η +

(

ληη
′

1 + ληη
′

2 + ληη
′

3 + ληη
′

4

)

u′ 2

+ λφ
′η

1 v′ 2 + λφη1 v2 + ληρ1 v2ρ + ω2ληχ1

]

u+
(

λ11 + λ21

)

u′vv′ − µ1ωv , (75)

∂Vtri
∂u′

= 4λη
′

u′3 + 2
[

µ2
η′ +

(

ληη
′

1 + ληη
′

2 + ληη
′

3 + ληη
′

4

)

u2 + λφη
′

1 v2

+ λφ
′η′

1 v′ 2 + λη
′ρ

1 v2ρ + ω2λη
′χ

1

]

u′ +
(

λ11 + λ21

)

uvv′ − µ′
1ωv

′ . (76)

It is easy to see that the derivatives of Vtri with respect to the variable ω and vρ
shown in (71) and (72) are symmetric to each other. Similarly, the two pairs (v, v′)

and (u, u′) behave the same as shown in Eqs. (73)–(76). The parameters λχφ2 , λχφ
′

2 in

Eq. (71) vanish because of the interaction (φ+χ)(χ+φ) in (64), and the parameters

λχφ2,3,4, λ
χφ′

2,3,4 in Eqs. (71) and (72) vanish due to the symmetries of the model (such

as L or X or L or D4 or one of their combinations).

The system of equations (71)–(76) always has the solution (u, v, u′, v′) as

expected, even though the complication. It is also noted that the above alignment

is only one of the solutions to be imposed to have the desirable results. We have

evaluated that the Eqs. (73)–(76) have the same structure solution. The solution is

as follows

u = u′ = v′ = v = ±
√
α , (77)

with

α =
{

−ω2
(

λχη1 + λχη
′

1 + λχφ1 + λχφ
′

1

)

+ ω(µ1 + µ′
1)− µ2

η − µ2
η′ − µ2

φ − µ2
φ′

+
(

ληρ1 + λη
′ρ

1 + λφρ1 + λφ
′ρ

1 + λφρ2 + λφ
′ρ

2

)

v2ρ

}/

{

2
[

λ11 + λ21 + ληη
′

1 + ληη
′

2 + ληη
′

3 + ληη
′

4 + λφφ
′

1 + λφφ
′

2 + λφφ
′

3

+ λφφ
′

4 + λφη1 + λφη
′

1 + λφ
′η

1 + λφ
′η′

1 + λη + λη
′

+ λφ + λφ
′

]}

≃
−2ω2λχφ1 + ωµ1 − 2µ2

φ + 3λφρ1 v2ρ

2λ11 + 12λφφ
′

1 + 4λφ
. (78)

Substituting (78) into (71) and (72) we obtain

∂Vtri
∂ω

= 4λχω3 + 2
(

µ2
χ + 4λχφ1 v2 + λχρ1 v2ρ

)

ω − 2µ1v
2 , (79)

∂Vtri
∂vρ

= 4λρv3ρ + 2
(

µ2
ρ + 6λρφ1 v2 + λχρ1 ω2

)

vρ . (80)
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Noting that the solution (77) leads to special relations among coupling con-

stants: λη = λη
′

= λφ = λφ
′

and mass parameters µ2
η = µ2

η′ = µ2
φ = µ2

φ′ and so

on. In general, these couplings and mass parameters are independent, however, the

neutrino data and the discrete D4 symmetry force them being related. This is the

common property of the discrete flavor symmetries.

Considering the potential Vsex and Vtri-sex, we urge that the contribution of

Vχφφ′ηη′ρ in (65) is very small in comparison with the other terms in Vtri, so it can

be neglected. From (62) to (65) and with the help of (4), (10), (29), and imposing

that

λ∗1 = λ1 , λ∗2 = λ2 , v∗1 = v1 , v∗2 = v2 , Λ∗
1 = Λ1 , Λ∗

2 = Λ2 ,

λ∗σ = λσ , v∗σ = vσ , Λ∗
σ = Λσ ,

v∗ = v , v′∗ = v′ , u∗ = u , u′∗ = u′ , v∗χ = vχ , v∗ρ = vρ ,

we obtain a system of equations of the potential minimization for antisextets:

∂V1
∂λ∗1

= v2χλ
χs
1 λ1 + 2

(

λs1 + λs2 + λs5 + λs6
)

λ31 + 4λs7λ2Λ1Λ2

+ λsσ4 Λ1Λσλσ + 2(λs1 + λs2)Λ1v
2
1 + 2

(

λs1λ2 + λs1Λ2 − λs2λ2 − λs2Λ2

+ 3λs3λ2 + λs3Λ2 + λs4λ2 − λs4Λ2 + 4λs7λ2
)

v1v2

+ 2
(

λs3 + λs4
)

Λ1v
2
2 +

[(

λsσ1 + λsσ3 + 2λsσ4
)

λσ +
(

Λsσ
1 + λsσ3

)

Λσ

]

v1vσ

+ λ1

{

2
(

λs5 + λs6
)

Λ2
1 +

(

λsσ1 + λsσ2 + λsσ3 + λsσ4
)

λ2σ + λsσ2 Λ2
σ

+ µ2
s +

(

ληs1 + ληs2
)

u2 +
(

λη
′s

1 + λη
′s

2 )u′ 2 + λφs1 v2 + λφ
′s

1 v′ 2

+ 2
[

(

λs5 − λs6
)

Λ2
2 + λ22

(

λs1 − λs2 + 2λs3 + λs5 − λs6 + 2λs7
)

+ 2
(

λs1 + λs2 + λs5 + λs6
)

v21 +
(

λs1 − λs2 + λs3 − λs4 + 2λs5 − 2λs6
)

v22

]

+ λρs1 v
2
ρ +

(

λσs1 + 2λσs2 + λσs3
)

v2σ

}

, (81)

∂V1
∂λ∗2

= v2χλ
χs
1 λ2 + 2

(

λs1 + λs2 + λs5 + λs6
)

λ32 + 4λs7λ1Λ1Λ2

+ λsσ4 Λ2Λσλσ + 2
(

λs1 + λs2
)

Λ2v
2
2 + 2

(

λs1λ1 + λs1Λ1 − λs2λ1

− λs2Λ1 + 3λs3λ1 + λs3Λ1 + λs4λ1 − λs4Λ1 + 4λs7λ1
)

v1v2

+ 2
(

λs3 + λs4
)

Λ2v
2
1 +

[

(

λsσ1 + λsσ3 + 2λsσ4
)

λσ +
(

Λsσ
1 + λsσ3

)

Λσ

]

v2vσ

+ λ2

{

2
(

λs5 + λs6
)

Λ2
2 +

(

λsσ1 + λsσ2 + λsσ3 + λsσ4
)

λ2σ + λsσ2 Λ2
σ
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+ µ2
s +

(

ληs1 + ληs2
)

u2 +
(

λη
′s

1 + λη
′s

2

)

u′ 2 + λφs1 v2 + λφ
′s

1 v′ 2

+ 2
[

(

λs5 − λs6
)

Λ2
1 + λ21

(

λs1 − λs2 + 2λs3 + λs5 − λs6 + 2λs7
)

+ 2
(

λs1 + λs2 + λs5 + λs6
)

v22 +
(

λs1 − λs2 + λs3 − λs4 + 2λs5 − 2λs6
)

v21

]

+ λρs1 v
2
ρ +

(

λσs1 + 2λσs2 + λσs3
)

v2σ

}

, (82)

∂V1
∂v∗1

=
[

v2χ
(

2λχs1 + λχs2
)

+ 2µ2
s +

(

2ληs1 + ληs2
)

u2

+
(

2λη
′s

1 + λη
′s

2

)

u′ 2 + 2λφs1 v2 + 2λφ
′s

1 v′ 2
]

v1

− 2λs4(λ2 − Λ2)
[

(λ2 − Λ2)v1 − (λ1 − Λ1)v2
]

+ 8λs7v2(λ1λ2 + Λ1Λ2 + 2v1v2)

+ 4λs6v1

[

(

λ21 − λ22
)

+
(

Λ2
1 − Λ2

2

)

+ 2
(

v21 − v22
)

]

+ 2
{

v1

[

(

λ22 + Λ2
2

)(

λs1 − λs2
)

+ 2
(

λ21 + λ1Λ1 + Λ2
1 + v21

)(

λs1 + λs2
)

]

+ (λ1 + Λ1)(λ2 + Λ2)
(

λs1 − λs2
)

v2 + 2
(

λs1 − λs2
)

v1v
2
2

}

+ 2λ3
{

(λ2 + Λ2)
2v1 +

[

λ1(3λ2 + Λ2) + Λ1(λ2 + 3Λ2)
]

v2 + 4v1v
2
2

}

+ 4λs5v1
[

λ21 + λ22 + Λ2
1 + Λ2

2 + 2
(

v21 + v22
)]

+ 2λρs1 v1v
2
ρ + 2λsσ4 vσ(λ1λσ + Λ1Λσ + 2v1vσ) + 2λsσ2 v1

(

λ2σ + Λ2
σ + 2v2σ

)

+
(

λsσ1 + λsσ3
)[(

λ2σ + Λ2
σ

)

v1 + (λ1 + Λ1)(λσ + Λσ)vσ + 2v1v
2
σ

]

, (83)

∂V1
∂v∗2

=
[

v2χ
(

2λχs1 + λχs2
)

+ 2µ2
s +

(

2ληs1 + ληs2
)

u2

+
(

2λη
′s

1 + λη
′s

2

)

u′ 2 + 2λφs1 v2 + 2λφ
′s

1 v′ 2
]

v2

− 2λs4(λ1 − Λ1)[(λ1 − Λ1)v2 − (λ2 − Λ2)v1]

+ 8λs7v1(λ1λ2 + Λ1Λ2 + 2v1v2)

+ 4λs6v2

[

(

λ22 − λ21
)

+
(

Λ2
2 − Λ2

1

)

+ 2
(

v22 − v21
)

]

+ 2
{

v2

[

(

λ21 + Λ2
1

)(

λs1 − λs2
)

+ 2
(

λ22 + λ2Λ2 + Λ2
2 + v22

)(

λs1 + λs2
)

]

+ (λ1 + Λ1)(λ2 + Λ2)
(

λs1 − λs2
)

v1 + 2
(

λs1 − λs2
)

v2v
2
1

}

+ 2λ3
{

(λ1 + Λ1)
2v2 +

[

λ1(3λ2 + Λ2) + Λ1(λ2 + 3Λ2)
]

v1 + 4v2v
2
1

}
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+ 4λs5v2
[

λ21 + λ22 + Λ2
1 + Λ2

2 + 2
(

v21 + v22
)]

+ 2λρs1 v2v
2
ρ

+ 2λsσ4 vσ(λ2λσ + Λ2Λσ + 2v2vσ) + 2λsσ2 v2
(

λ2σ + Λ2
σ + 2v2σ

)

+
(

λsσ1 + λsσ3
)[(

λ2σ + Λ2
σ

)

v2 + (λ2 + Λ2)(λσ + Λσ)vσ + 2v2v
2
σ

]

, (84)

∂V1
∂Λ∗

1

= v2χ
(

λχs1 + λχs2
)

Λ1 + 2
(

λs1 + λs2 + λs5 + λs6
)

Λ3
1

+ 4λs7λ2λ1Λ2 + λsσ4 λ1Λσλσ + 2
(

λs1 + λs2
)

λ1v
2
1

+ 2
(

λs1λ2 + λs1Λ2 − λs2λ2 − λs2Λ2 + 3λs3Λ2 + λs3λ2

+ λs4Λ2 − λs4λ2 + 4λs7Λ2)v1v2 + 2
(

λs3 + λs4
)

λ1v
2
2

+
[

(

λsσ1 + λsσ3 + 2λsσ4
)

Λσ +
(

Λsσ
1 + λsσ3

)

λσ

]

v1vσ

+ Λ1

{

2
(

λs5 − λs6
)

λ22 +
(

λsσ1 + λsσ3 + λsσ4
)

Λ2
σ

+ µ2
s + ληs1 u

2 + λη
′s

1 u′ 2 + λφs1 v2 + λφ
′s

1 v′ 2

+ 2
[

Λ2
2

(

λs1 − λs2 + 2λs3 + λs5 − λs6 + 2λs7
)

+ 2
(

λs1 + λs2 + λs5 + λs6
)

v21

+
(

λs1 − λs2 + λs3 − λs4 + 2λs5 − 2λs6
)

v22

]

+ λρs1 v
2
ρ +

(

λσs1 + λσs3
)

v2σ + λσs2
(

λ2σ + Λ2
σ + 2v2σ

)

}

, (85)

∂V1
∂Λ∗

2

= v2χ
(

λχs1 + λχs2
)

Λ2 + 2
(

λs1 + λs2 + λs5 + λs6
)

Λ3
2

+ 4λs7λ2λ1Λ1 + λsσ4 λ2Λσλσ + 2
(

λs3 + λs4
)

λ2v
2
1

+ 2
(

λs1λ1 + λs1Λ1 − λs2λ1 − λs2Λ1 + 3λs3Λ1 + λs3λ1

+ λs4Λ1 − λs4λ1 + 4λs7Λ1

)

v1v2 + 2
(

λs1 + λs2
)

λ2v
2
2

+
[(

λsσ1 + λsσ3 + 2λsσ4
)

Λσ +
(

Λsσ
1 + λsσ3

)

λσ
]

v2vσ

+ Λ2

{

2
(

λs5 − λs6
)

λ21 +
(

λsσ1 + λsσ3 + λsσ4
)

Λ2
σ

+ µ2
s + ληs1 u

2 + λη
′s

1 u′ 2 + λφs1 v2 + λφ
′s

1 v′ 2

+ 2
[

Λ2
1

(

λs1 − λs2 + 2λs3 + λs5 − λs6 + 2λs7
)

+ 2
(

λs1 + λs2 + λs5 + λs6
)

v22

+
(

λs1 − λs2 + λs3 − λs4 + 2λs5 − 2λs6
)

v21
]

+ λρs1 v
2
ρ +

(

λσs1 + λσs3
)

v2σ + λσs2
(

λ2σ + Λ2
σ + 2v2σ

)

}

, (86)
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where V1 is a sum of Vsext and Vtri-sext:

V1 = Vsext + Vtri-sext . (87)

It is easy to see that Eqs. (81)–(86) take the same form in couples. This system of

equations yields the following solutions

λ1 = βλ2 , v1 = βv2 , Λ1 = βΛ2 , (88)

where β is a constant. It means that there are several alignments for VEVs. In

this work, to have the desirable results, we have imposed the two directions for

breaking D4 → Z2 ⊗Z2 and D4 → Z2 as mentioned, in which β = 1 and β 6= 1 but

is approximate to the unit. In the case that β = 1 or 〈s1〉 = 〈s2〉, we have

∂V1
∂λ1

=
∂V1
∂λ2

≡ ∂V1
∂λs

,
∂V1
∂v1

=
∂V1
∂v2

≡ ∂V1
∂vs

,
∂V1
∂Λ1

=
∂V1
∂Λ2

≡ ∂V1
∂Λs

, (89)

and this system reduces to

∂V1
∂λs

= 4
(

λs1 + λs3 + λs5 + λs7
)

λ3s

+ λs
[

µ2
s + 4

(

λs5 + λs7
)

Λ2
s +

(

λsσ1 + λsσ2 + λsσ3 + λsσ4
)

λ2σ

+ λsσ2 Λ2
σ + 8

(

λs1 + λs3 + λs5 + λs7
)

v2s +
(

λσs1 + 2λσs2 + λσs3 )v2σ
]

+ 4
(

λs1 + λs3
)

Λsv
2
s +

(

λsσ1 + λsσ3
)(

λσ + Λσ

)

vsvσ

+ λsσ4
(

ΛsΛσ + 2vsvσ
)

λσ , (90)

∂V1
∂vs

= 4
(

λs1 + λs3 + 2λs5 + 2λs7
)

v3s

+ vs
[

2µ2
s + 8

(

λs1 + λs3 + λs5 + λs7
)(

λ2s + Λ2
s

)

+
(

λsσ1 + 2λsσ2 + λsσ3
)(

λ2σ + Λ2
σ

)

+ 8
(

λs1 + λs3
)

λsΛs + 2
(

λσs1 + 2λσs2 + λσs3 + 2λσs4
)

v2σ
]

+
[(

λsσ1 + λsσ3
)(

λσ + Λσ

)

(λs + Λs) + 2λsσ4 (λsΛs + λσΛσ)
]

vσ , (91)

∂V1
∂Λs

= 4
(

λs1 + λs3 + λs5 + λs7
)

Λ3
s

+ Λs

[

µ2
s + 4

(

λs5 + λs7
)

λ2s +
(

λsσ1 + λsσ2 + λsσ3 + λsσ4
)

Λ2
σ + λsσ2 λ2σ

+ 8
(

λs1 + λs3 + λs5 + λs7
)

v2s +
(

λσs1 + 2λσs2 + λσs3
)

v2σ
]

+ 4
(

λs1 + λs3
)

λsv
2
s

+
(

λsσ1 + λsσ3
)

(λσ + Λσ)vsvσ + λsσ4 (λsλσ + 2vsvσ)Λσ . (92)

The derivatives of V1 with respect to the variable λs and Λs as shown in (90), (92)

are symmetric to each other.
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7. Gauge Bosons

The covariant derivative of a triplet is given by

Dµ = ∂µ − ig
λa
2
Wµa − igXX

λ9
2
Bµ = ∂µ − iPµ , (93)

where λa (a = 1, 2, . . . , 8) are Gell-Mann matrices, λ9 =
√

2
3diag(1, 1, 1), Trλaλb =

2δab, Trλ9λ9 = 2, and X is X-charged of Higgs triplets. Let us denote the following

combinations:

W ′+
µ =

Wµ1 − iWµ2√
2

, X ′0
µ =

Wµ4 − iWµ5√
2

,

Y ′−
µ =

Wµ6 − iWµ7√
2

, W ′−
µ = (W ′+

µ )∗ , Y ′+
µ = (Y ′−

µ )∗ ,

(94)

then Pµ is rewritten in a convenient form as follows:

g

2























Wµ3 +
Wµ8
√

3
+ t

√

2

3
XBµ

√

2W ′+
µ

√

2X′0
µ

√

2W ′−
µ −Wµ3 +

Wµ8
√

3
+ t

√

2

3
XBµ

√

2Y ′−
µ

√

2X′0∗
µ

√

2Y ′+
µ −

2
√

3
Wµ8 + t

√

2

3
XBµ























,

(95)

with

t =
gX
g
.

We note that W4 and W5 are pure real and imaginary parts of X0 and X0∗,

respectively.

The covariant derivative for an antisextet with the VEV part is150,158

Dµ〈si〉 =
ig

2

{

W a
µλ

∗
a〈si〉+ 〈si〉W a

µλ
∗T
a

}

+ igXT9XBµ〈si〉 . (96)

The covariant derivative (96) acting on the antisextet VEVs are given by

[Dµ〈si〉]11 = ig

(

λiWµ3 +
λi√
3
Wµ8 +

1

3

√

2

3
tλiBµ +

√
2viX

′0∗

)

,

[Dµ〈si〉]12 =
ig√
2

(

λiW
′+
µ + viY

′+
µ

)

,

[Dµ〈si〉]13 =
ig

2

(

viWµ3 −
vi√
3
Wµ8 +

2

3

√

2

3
tviBµ +

√
2λiX

′0
µ +

√
2ΛiX

′0∗
µ

)

,

[Dµ〈si〉]22 = 0 , [Dµ〈si〉]23 =
ig√
2

(

viW
′+
µ + ΛiY

′+
µ

)

,
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[Dµ〈si〉]33 = ig

(

− 2√
3
ΛiWµ8 +

1

3

√

2

3
tΛiBµ +

√
2viX

′0
µ

)

,

[Dµ〈si〉]21 = [Dµ〈si〉]12 , [Dµ〈si〉]31 = [Dµ〈si〉]13 , [Dµ〈si〉]32 = [Dµ〈si〉]23 .
The masses of gauge bosons in this model are defined

LGB
mass = (Dµ〈φ〉)+(Dµ〈φ〉) + (Dµ〈φ′〉)+(Dµ〈φ′〉) + (Dµ〈χ〉)+(Dµ〈χ〉)

+ (Dµ〈η〉)+(Dµ〈η〉) + (Dµ〈η′〉)+(Dµ〈η′〉) + (Dµ〈ρ〉)+(Dµ〈ρ〉)

+ Tr[(Dµ〈s1〉)+(Dµ〈s1〉)] + Tr[(Dµ〈s2〉)+(Dµ〈s2〉)]

+ Tr[(Dµ〈σ〉)+(Dµ〈σ〉)] , (97)

where LGB
mass in (97) is different from one in Ref. 150, by the contribution from the

ρ and the term relating to the antisextet σ. In Ref. 150 the ρ and s′ contributions

were skipped at the first-order. In the following, we note that 〈s1〉 = 〈s1〉, namely

λ1 = λ2 = λs, v1 = v2 = vs, Λ1 = Λ2 = Λs are taken into account.

Substitute the Higgs VEVs of the model from (4), (10), (27), (28) and (30) into

(97) we obtain

LGB
mass =

v2

324

[

81g2(W 2
µ1 +W 2

µ2) + 81g2(W 2
µ6 +W 2

µ7)

+ (−9gWµ3 + 3
√
3gWµ8 + 2

√
6gXBµ)

2
]

+
v′ 2

324

[

81g2(W 2
µ1 +W 2

µ2) + 81g2(W 2
µ6 +W 2

µ7)

+ (−9gWµ3 + 3
√
3gWµ8 + 2

√
6gXBµ)

2
]

+
ω2

108

[

27g2(W 2
µ4 +W 2

µ5) + 27g2(W 2
µ6 +W 2

µ7)

+ 36g2W 2
µ8 + 12

√
2ggxWµ8Bµ + 2g2XB

2
µ

]

+
u2

324

[

81g2(W 2
µ1 +W 2

µ2) + 81g2(W 2
µ4 +W 2

µ5)

+ (−9gWµ3 − 3
√
3gWµ8 +

√
6gXBµ)

2
]

+
u′ 2

324

[

81g2(W 2
µ1 +W 2

µ2) + 81g2(W 2
µ4 +W 2

µ5)

+ (−9gWµ3 − 3
√
3gWµ8 +

√
6gXBµ)

2
]

+
v2ρ
324

[

81g2(W 2
µ1 +W 2

µ2) + 81g2(W 2
µ6 +W 2

µ7)

+ (−9gWµ3 + 3
√
3gWµ8 + 2

√
6gXBµ)

2
]

1350159-31



December 30, 2013 13:48 WSPC/139-IJMPA S0217751X13501595

V. V. Vien & H. N. Long

+
g2

6

[

2(2Λsvs + Λσvσ)
(

3Wµ3Wµ4 + 3Wµ1Wµ6 − 3Wµ2Wµ7 − 5
√
3Wµ4Wµ8

)

+ 3(2v2s + v2σ + 2λ2s + λ2σ)(W
2
µ1 +W 2

µ2) + 3(2v2s + v2σ + 4λ2s + 2λ2σ)W
2
µ3

+ 3(8v2s + 4v2σ + 2λ2s + λ2σ + 2Λ2
s + Λ2

σ + 4Λsλs + 2Λσλσ)W
2
µ4

+ 3
(

8v2s + 4v2σ + 2λ2s + λ2σ + 2Λ2
s + Λ2

σ − 4Λsλs − 2Λσλσ
)

W 2
µ5

+ 3
(

2v2s + v2σ + 2Λ2
s + Λ2

σ

)

W 2
µ6 + 3

(

2v2s + v2σ + 2Λ2
s + Λ2

σ

)

W 2
µ7

+ 2
√
3
(

−2v2s − v2σ + 4λ2s + 2λ2σ
)

Wµ3Wµ8

+
(

2v2s + v2σ + 4λ2s + 2λ2σ + 18Λ2
s + 8Λ2

σ

)

W 2
µ8

+ 18
(

2λsvs + λσvσ
)

Wµ3Wµ4 + 6(2λsvs + λσvσ)Wµ1Wµ6

− 6(2λsvs + λσvσ)Wµ2Wµ7 + 2
√
3(2λsvs + λσvσ)Wµ4Wµ8

]

+
2

27
t2g2

(

2λ2s + λ2σ + 2Λ2
s + Λ2

σ + 4v2s + 2v2σ
)

B2
µ

− 2
√
6

9
tg2
(

2λ2s + λ2σ + 2v2s + v2σ
)

Wµ3Bµ

− 4
√
6

9
tg2 [(2λs + 2Λs)vs + (λσ + Λσ)vσ]Wµ4Bµ

+
2
√
2

9
tg2
(

2v2s + v2σ + 4Λ2
s + 2Λ2

σ − 2λ2s − λ2σ
)

Wµ8Bµ . (98)

We can separate LGB
mass in (98) into

LGB
mass = LW5

mass + LCGB
mix + LNGB

mix , (99)

where LW5

mass is the Lagrangian of the imaginary part W5. This boson is decoupled

with mass given by

M2
W5

=
g2

2

(

ω2 + u2 + u′ 2 + 16v2s + 8v2σ + 4λ2s

+ 2λ2σ + 4Λ2
s + 2Λ2

σ − 8Λsλs − 4Λσλσ
)

. (100)

In the limit λs, λσ, vs, vσ → 0, M2
W5

reduces to

M2
W5

=
g2

2

(

ω2 + u2 + u′ 2 + 4Λ2
s + 2Λ2

σ

)

. (101)
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LCGB
mix is the Lagrangian part of the charged gauge bosons W and Y ,

LCGB
mix =

g2

4

(

v2 + v′ 2 + ω2 + u2 + u′ 2 + v2ρ
)(

W 2
µ1 +W 2

µ2 +W 2
µ6 +W 2

µ7

)

+
g2

6

[

2(2Λsvs + Λσvσ)(3Wµ1Wµ6 − 3Wµ2Wµ7)

+ 3
(

2v2s + v2σ + 2λ2s + λ2σ
)

W 2
µ1 + 3

(

2v2s + v2σ + 2λ2s + λ2σ
)

W 2
µ2

+ 3
(

2v2s + v2σ + 2Λ2
s + Λ2

σ

)

W 2
µ6 + 3

(

2v2s + v2σ + 2Λ2
s + Λ2

σ

)

W 2
µ7

+ 6(2λsvs + λσvσ)Wµ1Wµ6 − 6(2λsvs + λσvσ)Wµ2Wµ7

]

. (102)

We can rewrite LCGB
mix in matrix form

LCGB
mix =

g2

4

(

W ′−
µ Y ′−

µ

)

M2
WY

(

W ′+µ Y ′+µ
)T
,

where

M2
WY =

(

m2
11 m2

12

m2
21 m2

22

)

, (103)

with

m2
11 = 2(v2 + v′ 2 + u2 + u′ 2 + v2ρ + 4v2s + 2v2σ + 4λ2s + 2λ2σ) ,

m2
12 = m2

21 = 4(2Λsvs + 2λsvs + Λσvσ + λσvσ) ,

m2
22 = 2(v2 + v′ 2 + ω2 + v2ρ + 4v2s + 2v2σ + 4Λ2

s + 2Λ2
σ) .

(104)

The matrixM2
WY in (103) with the elements in (104) can be diagonalized as follows

UT
2 M

2
WY U2 = diag

(

M2
W ,M2

Y

)

,

where

M2
W =

g2

4

{

2v2 + 2v′ 2 + u2 + u′ 2 + ω2 + 2v2ρ + 4λ2s

+ 4Λ2
s + 8v2s + 2λ2σ + 2Λ2

σ + 4v2σ −
√
Γ
}

,

M2
Y =

g2

4

{

2v2 + 2v′ 2 + u2 + u′ 2 + ω2 + 2v2ρ + 4λ2s

+ 4Λ2
s + 8v2s + 2λ2σ + 2Λ2

σ + 4v2σ +
√
Γ
}

,

(105)

with

Γ = 16λ4s + 16Λ4
s + (2λ2σ − 2Λ2

σ − ω2 + u2 + u′ 2)2

− 8λ2s(4Λ
2
s − 2λ2σ + 2Λ2

σ + ω2 − u2 − u′ 2 − 8v2s)

− 8Λ2
s(2λ

2
σ − 2Λ2

σ − ω2 + u2 + u′ 2 − 8v2s) + 64Λs(λσ + Λσ)vsvσ

+ 16(λσ + Λσ)
2v2σ + 64λsvs(2Λsvs + λσvσ + Λσvσ) . (106)
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With corresponding eigenstates, the charged gauge boson mixing matrix takes the

form:

U2 =

(

cos θ − sin θ

sin θ cos θ

)

,

where, the mixing angle θ is given by

tan θ =
8(λs + Λs)vs + 4(λσ + Λσ)vσ

4λ2s − 4Λ2
s + 2λ2σ − 2Λ2

σ − ω2 + u2 + u′ 2 −
√
Γ
. (107)

The physical charged gauge bosons is defined

W−
µ = cos θW ′−

µ + sin θY ′−
µ ,

Y −
µ = − sin θW ′−

µ + cos θY ′−
µ .

In our model, the following limit is often taken into account:

λ2s, λ
2
σ, v

2
s , v

2
σ ≪ u2 , u′ 2, v2, v′ 2 ≪ ω2 ∼ Λ2

s ∼ Λ2
σ . (108)

With the help of (108), the Γ in (106) becomes

√
Γ ≃ (4Λ2

s + 2Λ2
σ + ω2 − u2 − u′ 2) +

32ΛsΛσvsvσ + 8Λ2
σv

2
σ

4Λ2
s + 2Λ2

σ + ω2 − u2 − u′ 2
. (109)

It is then

M2
W ≃ g2

2

(

u2 + u′ 2 + v2 + v′ 2 + v2ρ
)

− g2

2
∆M2

w
, (110)

with

∆M2
w
=

16ΛsΛσvsvσ + 4Λ2
σv

2
σ

4Λ2
s + 2Λ2

σ + ω2 − u2 − u′ 2
. (111)

Notice that in the limit λs, λσ, vs, vσ → 0 then Γ ≃ 4Λ2
s + 2Λ2

σ + ω2 − u2 − u′ 2,

the mixing angle θ tends to zero, and M2
W , M2

Y in (105) reduces to

M2
W =

g2

2
(u2 + u′ 2 + v2 + v′ 2 + v2ρ) ,

M2
Y =

g2

2

(

4Λ2
s + 2Λ2

σ + ω2 + v2 + v′ 2 + v2ρ
)

,

(112)

and one can evaluate

tan θ ≃ − 8Λsvs + 4Λσvσ
8Λ2

s + 4Λ2
σ + 2ω2

∼ vs
Λs

∼ vσ
Λσ

. (113)

In addition, from (112), it follows that M2
W is much smaller than M2

Y .

LNGB
mix is the Lagrangian part of the neutral gauge bosons W3, W8, B, W4. The

mass Lagrangian in this case has the form

LNGB
mix =

(v2 + v′ 2 + v2ρ)

324

(

−9gWµ3 + 3
√
3gWµ8 + 2

√
6gXBµ

)2

+
ω2

108

(

27g2W 2
µ4 + 36g2W 2

µ8 + 12
√
2ggXWµ8Bµ + 2g2XB

2
µ

)

1350159-34



December 30, 2013 13:48 WSPC/139-IJMPA S0217751X13501595

The D4 Flavor Symmetry in 3-3-1 Model with Neutral Leptons

+
(u2 + u′ 2)

324

[

81g2W 2
µ4 +

(

−9gWµ3 − 3
√
3gWµ8 +

√
6gXBµ

)2
]

+
g2

6

[

2(2Λsvs + Λσvσ)
(

3Wµ3Wµ4 − 5
√
3Wµ4Wµ8

)

+ 3
(

2v2s + v2σ + 4λ2s + 2λ2σ
)

W 2
µ3

+ 3
(

8v2s + 4v2σ + 2λ2s + λ2σ + 2Λ2
s + Λ2

σ + 4Λsλs + 2Λσλσ
)

W 2
µ4

+ 2
√
3
(

−2v2s − v2σ + 4λ2s + 2λ2σ
)

Wµ3Wµ8

+
(

2v2s + v2σ + 4λ2s + 2λ2σ + 16Λ2
s + 8Λ2

σ

)

W 2
µ8

+ 18(2λsvs + λσvσ)Wµ3Wµ4 + 2
√
3(2λsvs + λσvσ)Wµ4Wµ8

]

+
2t2g2

27

(

2λ2s + λ2σ + 2Λ2
s + Λ2

σ + 4v2s + 2v2σ
)

B2
µ

− 2

3

√

2

3
tg2
(

2λ2s + λ2σ + 2v2s + v2σ
)

Wµ3Bµ

− 4

3

√

2

3
tg2[(2λs + 2Λs)vs + (λσ + Λσ)vσ]Wµ4Bµ

+
2
√
2

9
tg2
(

2v2s + v2σ + 4Λ2
s + 2Λ2

σ − 2λ2s − λ2σ
)

Wµ8Bµ . (114)

In the basis of (Wµ3,Wµ8, Bµ,Wµ4), the LNGB
mix in (114) can be rewritten:

LNGB
mix ≡ 1

2
V TM2V , (115)

V T =
(

Wµ3,Wµ8, Bµ,Wµ4

)

,

M2 =
g2

4















M2
11 M2

12 M2
13 M2

14

M2
12 M2

22 M2
23 M2

24

M2
13 M2

23 M2
33 M2

34

M2
14 M2

24 M2
34 M2

44















,
(116)

where

M2
11 = 2

(

v2 + v′ 2 + u2 + u′ 2 + v2ρ + 4v2s + 2v2σ + 8λ2s + 4λ2σ
)

,

M2
12 = −2

√
3

3

(

v2 + v′ 2 − u2 − u′ 2 + v2ρ + 4v2s + 2v2σ − 8λ2s − 4λ2σ
)

,

M2
13 = −2

3

√

2

3
t
(

2v2 + 2v′ 2 + u2 + u′ 2 + 2v2ρ + 8λ2s + 4λ2σ + 8v2s + 4v2σ
)

,

M2
14 = 8(3λsvs + Λsvs) + 4(3λσvσ + Λσvσ) ,
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M2
22 =

2

3

(

v2 + v′ 2 + 4ω2 + u2 + u′ 2 + v2ρ + 4v2s

+ 2v2σ + 8λ2s + 4λ2σ + 32Λ2
s + 16Λ2

σ

)

,

M2
23 =

2
√
2t

9

(

2v2 + 2v′ 2 + 2ω2 − u2 − u′ 2

+ 2v2ρ + 8v2s + 4v2σ + 16Λ2
s + 8Λ2

σ − 8λ2s − 4λ2σ
)

,

M2
24 =

8√
3

(

λsvs − 5Λsvs
)

+
4√
3

(

λσvσ − 5Λσvσ
)

,

M2
33 =

4t2

27

(

4v2 + 4v′ 2 + ω2 + u2 + u′ 2 + 4v2ρ

+ 8λ2s + 4λ2σ + 8Λ2
s + 4Λ2

σ + 16v2s + 8v2σ
)

,

M2
34 = −32

3

√

2

3
t
(

λsvs + Λsvs
)

− 16

3

√

2

3
t
(

λσvσ + Λσvσ
)

,

M2
44 = 2

(

ω2 + u2 + u′ 2 + 16v2s + 8v2σ + 4λ2s + 2λ2σ + 4Λ2
s

+ 2Λ2
σ + 8Λsλs + 4Λσλσ

)

. (117)

The matrix M2 in (116) with the elements in (117) has one exact eigenvalue,

which is identified with the photon mass,

M2
γ = 0 . (118)

The corresponding eigenvector of M2
γ is

Aµ =



























√
3t√

4t2 + 18

− t√
4t2 + 18

3
√
2√

4t2 + 18

0



























. (119)

Note that in the limit λs, λσ , vs, vσ → 0, M2
14 =M2

24 =M2
34 = 0 and W4 does not

mix with W3µ, W8µ, Bµ. In the general case λs, λσ, vs, vσ 6= 0, the mass matrix in

(116) contains one exact eigenvalues as in (118) with the corresponding eigenstate

being given in (119).

The diagonalization of the mass matrix M2 in (116) is done via two steps.

In the first step, the basic (Wµ3,Wµ8, B
′
µ,W4µ) is transformed into the basic
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(Aµ, Zµ, Z
′
µ,W4µ) by the matrix:

UNGB =

























sW −cW 0 0

−cW tW√
3

−sW tW√
3

√

1− t2W
3

0

cW

√

1− t2W
3

sW

√

1− t2W
3

tW√
3

0

0 0 0 1

























, (120)

where sW = sin θW , cW = cos θW , tW = tan θW , and we have used the continuation

of the gauge coupling constant g of the SU(3)L at the spontaneous symmetry

breaking point,150,158

t =
3
√
2sW

√

3− 4s2W
. (121)

The corresponding eigenstates are rewritten as follows

Aµ = sWW3µ + cW

(

− tW√
3
W8µ +

√

1− t2W
3
Bµ

)

,

Zµ = −cWW3µ + sW

(

− tW√
3
W8µ +

√

1− t2W
3
Bµ

)

,

Z ′
µ =

√

1− t2W
3
W8µ +

tW√
3
Bµ .

(122)

In this basis, the mass matrix M2 becomes

M ′ 2 = U+
NGBM

2UNGB =
g2

4















0 0 0 0

0 M ′ 2
22 M ′ 2

23 M ′ 2
24

0 M ′ 2
23 M ′ 2

33 M ′ 2
34

0 M ′ 2
24 M ′ 2

34 M ′ 2
44















, (123)

where

M ′ 2
22 =

4(2t2 + 9)

t2 + 18

(

8λ2s + 4λ2σ + u2 + u′ 2 + v2 + v′ 2 + v2ρ + 4v2s + 2v2σ
)

,

M ′ 2
23 =

4

3
√
3

√
2t2 + 9

(t2 + 18)

[

(t2 − 9)(8λ2s + 4λ2σ + u2 + u′ 2)

+ (2t2 + 9)
(

v2 + v′ 2 + v2ρ + 4v2s + 2v2σ
)]

,

M ′ 2
24 = −4

√
2

√

2t2 + 9

t2 + 18
[2(Λs + 3λs)vs + (Λσ + 3λσ)vσ] ,
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M ′ 2
33 =

4

27(t2 + 18)

{

8λ2s(t
2 − 9)2 + 8Λ2

s(t
2 + 18)2

+ 81
(

4λ2σ + 16Λ2
σ + 4ω2 + u2 + u′ 2 + v2 + v′ 2 + v2ρ + 4v22 + 2v2σ

)

+ 4λ2σ(t
2 − 18)t2 + t2

(

144Λ2
σ + 36ω2 − 18u2

− 18u′ 2 + 36v2 + 36v′ 2 + 36v2ρ + 72v2s + 36v2σ
)

+ t4
(

4Λ2
σ + ω2 + u2 + u′ 2 + 4v2 + 4v′ 2 + 4v2ρ + 16v2s + 8v2σ

)

}

,

M ′ 2
34 = −4

√
2

3
√
3

1√
t2 + 18

[

(2λsvs + λσvσ)(4t
2 − 9) + (2Λsvs + Λσvσ)(4t

2 + 45)
]

,

M ′ 2
44 = 2

(

4λ2s + 8λsΛs + 4Λ2
s + 2λ2σ + 4λσΛσ

+ 2Λ2
σ + ω2 + u2 + u′ 2 + 16v2s + 8v2σ

)

. (124)

In the approximation λ2s ∼ λ2σ, v
2
s , v

2
σ ≪ Λ2

s ∼ Λ2
σ ∼ ω2, we have

M ′ 2
22 =

2

c2W

(

u2 + u′ 2 + v2 + v′ 2 + v2ρ
)

,

M ′ 2
23 =

2[(1− 2c2W )(u2 + u′ 2) + v2 + v′ 2 + v2ρ]
√
α0

c2W
,

M ′ 2
24 = − 4

cW
(2Λsvs + Λσvσ) ,

M ′ 2
33 = 32(Λ2

σ + 2Λ2
s)c

2
Wα0 + 8ω2c2Wα0

+
2

c2W
(v2 + v′ 2 + v2ρ)α0 +

2

c2W
(2c2W − 1)2(u2 + u′ 2)α0 ,

M ′ 2
34 = −8x0

√
α

cW
(Λsvs + 4Λσvσ) ,

M ′ 2
44 = 2(ω2 + u2 + u′ 2 + 4Λ2

s + 2Λ2
σ + 8λsΛs + 4λσΛσ) .

(125)

with

x0 = 4c2W + 1 , α0 = (4c2W − 1)−1 . (126)

It is noteworthy that in the limit vs = 0 and vσ = 0, the elements M ′ 2
24 and

M ′ 2
34 vanish. In this case the mixing between there is no mixing between W4 and

Zµ, Z
′
µ.

In the second step, three remain bosons gain masses via seesaw mechanism

M2
Z =

g2

4

[

M ′ 2
22 −

(

Moff
)T (

M ′ 2
2×2

)−1
Moff

]

, (127)
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where

Moff =





M ′ 2
23

M ′ 2
24



 , M ′ 2
2×2 =





M ′ 2
33 M ′ 2

34

M ′ 2
34 M ′ 2

44



 . (128)

Combining (127) and (128) yields:

M2
Z =

g2
(

u2 + u′ 2 + v2 + v′ 2 + v2ρ
)

2c2W
− g2

2c2W
∆M2

z
,

where

∆M2
z
=

4∆2
1

x2
+
x1(x1x2 − 16∆1∆2x0)

x2(4c4Wx3 + x4)
, (129)

with

x1 = (1− 2c2W )(u2 + u′ 2) + v2 + v′ 2 + v2ρ ,

x2 = 4Λs(2λs + Λs) + 2Λσ(2λσ + Λσ) + ω2 + u2 + u′ 2 ,

x3 = 8Λ2
s + 4Λ2

σ + ω2 + u2 + u′ 2 ,

x4 = (1− 4c2)(u2 + u′ 2) + v2 + v′ 2 + v2ρ ,

∆1 = 2Λsvs + Λσvσ , ∆2 = Λsvs + 4Λσvσ .

(130)

The ρ parameter in our model is given by

ρ =
M2

W

M2
Z cos2 θW

= 1 +
δwz

M2
z

≡ 1 + δtree , (131)

where

δwz =
g2

2c2W

(

∆M2
z
−∆M2

w

)

. (132)

From the mass of W boson evaluated in (112) we can identify

2
(

u2 + u′ 2 + v2 + v′ 2 + 2v2ρ
)

= v2weak ≃ (246 GeV)2

and then obtain

u ∼ u′ ∼ v′ ∼ v ∼ 100 GeV , (133)

provided that vρ ∼ 0.

In addition, let us assume the relations (108) and put

λs =
v2s
Λs

=
v2σ
Λσ

= λσ , ω = Λs ≡ Λσ

then

∆M2
z
−∆M2

w
≃ (2.28571Λ2

s − 45590.8)v2s + 2.77644× 106

Λ2
s

. (134)
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Fig. 12. The coupling g as a function of δtree with δtree ∈ (0, 0.0007) and vs = 10 GeV.

From (131)–(134) we have:

δtree =
g2

2c2W

(2.28571Λ2
s − 45590.8)v2s + 2.77644× 106

M2
zΛ

2
s

. (135)

The experimental value of the ρ parameter andMW are respectively given in Ref. 1,

ρ = 1.0004+0.0003
−0.0004

(

δtree = 0.0004+0.0003
−0.0004

)

,

s2W = 0.23116± 0.00012 , MW = 80.358± 0.015 GeV .
(136)

It means

0 ≤ δtree ≤ 0.0007 . (137)

The expression (135) gives the relations between g and δtree as follows

g = ± 79.9648
√
δtreev

2
s

√

1.14286v6s − 22795.4v2s − 45590.8× 106
.

In Fig. 12, we have plotted g as a function of δtree ∈ (0, 0.0007) from which it

provides that vs = 10 GeV satisfying the condition (108). From Fig. 12, we can

find out |g| ∈ (0, 0.42).

Diagonalizing the mass matrix M ′ 2
2×2, we get two new physical gauge bosons

Z ′′
µ = cosφZ ′

µ + sinφWµ4 ,

W ′
µ4 = − sinφZ ′

µ + cosφWµ4 .
(138)

The mixing angle φ is given by

tanφ =
8
√
α0cW (Λsvs + 4Λσvσ)x0

−4c4Wα0x3 + c2Wx2 − α0x4 +
√
F
, (139)
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where

F =
(

4c4Wα0x3 + c2Wx2 + α0x4
)2

− 4α0c
2
W

[

(u2 + u′ 2)x5 − 4c2W (u2 + u′ 2)x2 + 4c4Wx3x2

+
(

v2 + v′ 2 + v2ρ
)

x5 + 8λsΛs

(

u2 + u′ 2 + v2 + v′ 2 + v2ρ
)

− 16(Λsvs + 4Λσvσ)
2x20
]

, (140)

and

x5 = 4Λ2
s + 4Λσλσ + 2Λ2

σ + ω2 + u2 + u′ 2 .

With the help of (108), we have

F ≃ c2W
{

8Λsλs + 2Λσ(2λσ + Λσ) + ω2 − 4
[

(8α0c
2
W − 1)Λ2

s + α0c
2
W (4Λ2

σ + ω2)
]}

and one can evaluate

tanφ ≃ 4
√
α0(Λsvs + 4Λσvσ)x0

cW
[

(4− 32α0c2W )Λ2
s + (2− 16α0c2W )Λ2

σ + (1− 4α0c2W )ω2
]

∼ vs
Λs

∼ vσ
Λσ

. (141)

The physical mass eigenvalues are defined by

M2
Z′′

µ
,W ′

µ4

=
g2

4c2W

{

4α0c
4
Wx3 + c2Wx2 + ax4 ±

√
F
}

. (142)

In the limit λs, λσ, vs, vσ → 0 the mixing angle φ tends to zero, and M2
Z′′

µ
,W ′

µ4

in

(142) reduces to

M2
Z′′

µ

=
g2

2c2W

(

x4 + 4c2Wx3
)

,

M2
W ′

µ4

=
g2

2

(

u2 + u′ 2 + ω2 + 4Λ2
s + 2Λ2

σ

)

.

(143)

Thus, theW ′
µ4 andW5 components have the same mass. With this result, we should

identify the combination of W ′
µ4 and W5

√
2X0

µ =W ′
µ4 − iW5 , (144)

as physical neutral non-Hermitian gauge boson. The superscript “0” denotes neu-

trality of gauge boson X . Notice that, the identification in (144) only can be accept-

able with the limit λs,σ, vs,σ → 0. In general it is not true because of the difference

in masses of W ′
µ4 and Wµ5 as in (100) and (142).

The expressions (113) and (141) show that, with the limit (108), the mixings

between the charged gauge bosons W − Y and the neutral ones Z ′ −W4 are in the
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same order since they are proportional to vs/Λs (or vσ/Λσ). In addition, from (112)

M2
Z′′

µ

≃ 2g2(8Λ2
s + 4Λ2

σ + ω2) is little bigger than M2
W ′

µ4

≃ g2

2

(

ω2 + 4Λ2
s + 2Λ2

σ

)

,

(or M2
X0

µ

), and
∣

∣M2
Y −M2

X0
µ

∣

∣ = g2

2 (v2 + v′ 2 + v2ρ + u2 + u′ 2) is little smaller than

M2
W = g2

2 (u2+u′ 2+ v2+ v′ 2+ v2ρ). In that limit, the masses of X0
µ and Y is nearly

degenerate.

8. Conclusions

In this paper, we have constructed the D4 model based on SU(3)C ⊗ SU(3)L ⊗
U(1)X gauge symmetry responsible for fermion masses and mixing. Neutrinos get

masses from antisextets which is in a singlet and a doublet under D4. We argue

how flavor mixing patterns and mass splitting are obtained with a perturbed D4

symmetry. We have pointed out that this model is more simpler than those of

S3 and S4 (Refs. 145 and 144) since the same number of Higgs multiplets are

needed in order to allow the fermions to gain masses but with the simple scalar

Higgs potential. The CKM matrix is the identity matrix at the tree-level, but it

can be different from it by adding the soft violating terms. The realistic neutrino

mixing, by old data with θ13 = 0, can be obtained only if the direction for breaking

D4 → Z2. For the case with the nonvanishing θ13, it is necessary to introduce one

more Higgs triplet ρ which is in 1′′′ of the D4 group responsible for breaking the

Z2 → {identity}. As a result, the value of θ13 is a small perturbation by
vρ
Λ .
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Appendix A. D4 Group and Clebsch Gordan Coefficients

D4 is the symmetry group of a square.159 It has eight elements divided into five

conjugacy classes, with 1, 1 ′, 1 ′′, 1 ′′′ and 2 as its five irreducible representations.

Any element of D4 can be formed by multiplication of the generators a (the π/2

rotation) and b (the reflection) obeying the relations a4 = e, b2 = e and bab = a−1.

D4 has the following five conjugacy classes,

C1 : {a1 ≡ e} ,

C2 : {a2 ≡ a2} ,

C3 : {a3 ≡ a, a4 ≡ a3} ,

C4 : {a5 ≡ b, a6 ≡ a2b} ,

C5 : {a7 ≡ ab, a8 ≡ a3b} .

(A.1)
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The character table of D4 is given as follows:

Class n h χ1 χ1′ χ1′′ χ1′′′ χ2

C1 1 1 1 1 1 1 2

C2 1 2 1 1 1 1 −2

C3 2 4 1 −1 −1 1 0

C4 2 2 1 1 −1 −1 0

C5 2 2 1 −1 1 −1 0

where n is the order of class and h the order of elements within each class.

We have worked in real basis, in which the two-dimensional representation 2

of D4 is real, 2∗(1∗, 2∗) = 2(1∗, 2∗). One possible choice of generators is given as

follows

1 : a = 1 , b = 1 ,

1 ′ : a = 1 , b = −1 ,

1 ′′ : a = −1 , b = 1 ,

1 ′′′ : a = −1 , b = −1 ,

2 : a =

(

0 1

−1 0

)

, b =

(

1 0

0 −1

)

.

(A.2)

Using them we calculate the Clebsch–Gordan coefficients for all the tensor products

as given below.

First, let us put 2(1, 2) which means some 2 doublet such as x = (x1, x2) ∼ 2 or

y = (y1, y2) ∼ 2 and so on, and similarly for the other representations. Moreover,

the numbered multiplets such as (. . . , ij, . . .) mean (. . . , xiyj , . . .) where xi and yj
are the multiplet components of different representations x and y, respectively. In

the following the components of representations on left-hand side will be omitted

and should be understood, but they always exist in order in the components of

decompositions on right-hand side:

1(1)⊗ 1(1) = 1(11) , 1 ′(1)⊗ 1 ′(1) = 1(11) ,

1 ′′(1)⊗ 1 ′′(1) = 1(11) , 1 ′′′(1)⊗ 1 ′′′(1) = 1(11) ,
(A.3)

1(1)⊗ 1 ′(1) = 1 ′(11) , 1(1)⊗ 1 ′′(1) = 1 ′′(11) ,

1(1)⊗ 1 ′′′(1) = 1 ′′′(11) , 1 ′(1)⊗ 1 ′′(1) = 1 ′′′(11) ,

1 ′′(1)⊗ 1 ′′′(1) = 1 ′(11) , 1 ′′′(1)⊗ 1 ′(1) = 1 ′′(11) ,

(A.4)

1(1)⊗ 2(1, 2) = 2(11, 12), 1′ (1)⊗ 2(1, 2) = 2(11,−12) ,

1 ′′(1)⊗ 2(1, 2) = 2(12, 11) , 1 ′′′(1)⊗ 2(1, 2) = 2(−12, 11) ,
(A.5)

2(1, 2)⊗ 2(1, 2) = 1(11 + 22)⊕ 1 ′(11− 22)⊕ 1 ′′(12 + 21)⊕ 1 ′′′(12− 21) . (A.6)

1350159-43



December 30, 2013 13:48 WSPC/139-IJMPA S0217751X13501595

V. V. Vien & H. N. Long

In the text we usually use the following notations, for example, (xy)1 ≡ (x1y1 +

x2y2) which is the Clebsch–Gordan coefficients of 1 in the decomposition of 2 ⊗ 2,

where as mentioned x = (x1, x2) ∼ 2 and y = (y1, y2) ∼ 2.

The rules to conjugate the representations 1 , 1 ′, 1 ′′, 1 ′′′ and 2 are given by

2∗(1∗, 2∗) = 2(1∗, 2∗) , (A.7)

1∗(1∗) = 1(1∗) , 1 ′∗(1∗) = 1 ′(1∗) ,

1 ′′∗(1∗) = 1 ′′(1∗) , 1 ′′′∗(1∗) = 1 ′′′(1∗) ,
(A.8)

where, for example, 2∗(1∗, 2∗) denotes some 2∗ multiplet of the form (x∗1, x
∗
2) ∼ 2∗.

Appendix B. The Numbers

In the following we will explicitly point out the lepton number (L) and lepton parity

(Pl) of the model particles (notice that the family indices are suppressed):

Particles L Pl

NR, u, d, φ+
1 , φ′+

1 , φ0
2, φ

′0
2 , η01 , η

′0
1 , η−2 , η′−2 χ0

3, σ
0
33, s

0
33 0 1

νL, l, U , D∗, φ+
3 , φ′+

3 , η03 , η
′0
3 , χ0∗

1 , χ+
2 , σ0

13, σ
+
23, s

0
13, s

+
23 −1 −1

σ0
11, σ

+
12, σ

++
22 , s011, s

+
12, s

++
22 −2 1
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