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We show that the typical 3-3-1 models are only self-consistent if they contain interactions that

explicitly violate the lepton number. The 3-3-1 model with right-handed neutrinos can by itself work as

an economical 3-3-1 model as a natural recognition of the above criteria, while it also produces an inert

scalar triplet (�) responsible for dark matter. This is ensured by a Z2 symmetry (assigned so that only �

is odd while all other multiplets which perform the economical 3-3-1 model are even), which is not

broken by the vacuum. The minimal 3-3-1 model can provide dark matter by a similar realization. Taking

the former into account, we show that the dark matter candidate (H�) contained in � transforms as a

singlet in the effective limit under the standard model symmetry and is naturally heavy. The H� relic

density and direct detection cross section will have the correct values when the mass of H� is in TeV

range, as expected. The model predicts the H� mass mH�
¼ �5 � 2 TeV and the H�-nucleon scattering

cross section �H��N ¼ 1:56� 10�44 cm2, provided that the new neutral Higgs boson is much heavier

than the dark matter.

DOI: 10.1103/PhysRevD.88.095014 PACS numbers: 12.60.�i, 95.35.+d

I. INTRODUCTION

The standard model has been very successful in describ-
ing the world of fundamental particles and the interactions
among them [1]. Notably, the Higgs particle—a long-
standing hypothesized scalar that consequently provides
the masses for all other particles—has finally been discov-
ered by the recent CERN-LHC experiments, where the
new discovered resonance is standard model-like [2,3].
However, the standard model fails to explain a large por-
tion of the total mass-energy of the Universe—such as dark
matter (>20%) and dark energy (>70%)—which lies
beyond the standard model particle content [1].

The most well-motivated theories that by themselves
produce dark matter are supersymmetry [4], extradimen-
sions [5], or the little Higgs model [6]. In a recent article,
we added to this list by showing that dark matter can also
naturally arise from the 3-3-1-1 gauge theory by itself [7]
(a theory that originally provides the potential explanations
for the fermiongenerationnumber [8], theuncharacteristically
heavy top quark [9], strong CP [10], and the electric charge
quantization [11]). Indeed, this 3-3-1-1 gauge symmetry—
which includes B-L (baryon minus lepton number) as its
residual and noncommuting gauge charge—is the neces-
sary extension of 3-3-1 models [12–14] that respect the
conservation of lepton and baryon numbers, similar to the

case of the electric charge operator. In other words, this new
theory of strong, electroweak, and B-L interactions is a
direct consequence of a nonclosed algebra between B-L
and the 3-3-1 symmetry [7]. Consequently, the conserved

and unbroken W parity (similar to R parity in supersym-

metry) can arise as a residual symmetry of the broken
3-3-1-1 gauge symmetry or a more detailed B-L. (This
breaking possibly happens at a scale matching the 3-3-1
breaking scale of TeVorder that makes the model consistent

without the necessity of a large desert, as in grand unified

theories [15,16].) Among the existing 3-3-1 models, we
have found that most of the new particles of the 3-3-1

model with neutral fermions [14], the so-calledW particles,

transform nontrivially (that is, oddly) under the W parity,
which is responsible for dark matter [7].
By contrast, all the new particles in the 3-3-1 model with

right-handed neutrinos [12] as well as those of the minimal
3-3-1 model [13] are even under the W parity. Therefore,

theW parity transforms trivially, which is useless for these
models with regards to the problem of dark matter [7]. On

the other hand, it is well-known that the 3-3-1 model with

right-handed neutrinos might actually accommodate po-
tential candidates for dark matter [17]. However, all the

extra symmetries studied therein (which had existed before

the W parity)—such as the Z2, lepton charge, or even a
generic continuous symmetry—are subsequently violated

or broken if they are imposed for their stability, which

leads to the fast decay of dark matter, as was explicitly
shown in Ref. [7] (this will also be extensively analyzed
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below before concluding this work). Hence, it is necessary
to find a new mechanism, other than the useless W parity
and the mentioned extra symmetries, that is responsible
for the dark matter stability in the 3-3-1 model with
right-handed neutrinos. This mechanism should also be
applicable to the minimal 3-3-1 model for a realization
of dark matter (notice that this model has previously been
predicted containing no dark matter, by contrast).

To proceed further, we first suppose that the lepton
number in the 3-3-1 model with right-handed neutrinos is
an approximate symmetry, which avoids the gauged sym-
metry of the lepton number and the 3-3-1-1 extension [7].
This proposal realizes a theory that explicitly violates the
W parity or lepton-number symmetry in order to make it
(our 3-3-1 model) self-consistent. In particular, the 3-3-1
model with right-handed neutrinos often works with three
scalar triplets �, �, and �, where � and � transform
identically under the 3-3-1 gauge symmetry. However, �
and � have different lepton charges [18]. Since the lepton-
charge symmetry is already violated, these two scalars can
act as equivalent representations under any group that
operates on the model. We could therefore remove one of
them from the theory (such as �). The result is a new,
consistent model working with only two scalar triplets �, �
which explicitly recognizes the violation of W parity or
lepton-number symmetry. This theory has been extensively
studied over the last decade and named the economical
3-3-1 model [19]. However, the economical 3-3-1 model
does not contain any dark matter either, which is unlike the
conclusion of Ref. [20].

In this work, by contrast to the approach in Ref. [19], we
will retain � in the theory, and study how it is hidden
(instead of removing it). For this aim, we first assume that
� transforms oddly under a Z2 symmetry, whereas �, �, and
all other fields are even (notice that this Z2 differs from the
one mentioned above). We then prove that the vacuum can
be stabilized, conserving the Z2 symmetry. The lightest
particle residing in the ‘‘inert’’ scalar triplet � is thus
stabilized and is responsible for dark matter, while the
remaining scalars �, � develop the vacuum expectation
values (VEVs) for breaking the gauge symmetry and for
mass generation in the correct way, like the economical
3-3-1 model. This approach is completely distinguished
from the previous studies [7,17] because it is based on the
economical 3-3-1 model (with lepton-number violation
being responsible for neutrino masses) instead of the 3-3-1
model with right-handed neutrinos (with the lepton number
conserved, which is unrealistic). Also, its results—namely,
the dark matter candidate and phenomenology—are entirely
different from that of the inert doublet model [21], as well as
those in Refs. [7,17]. In the same way, the minimal 3-3-1
model can behave as a reduced 3-3-1 model [22] while
containing an inert scalar triplet responsible for dark matter.

The rest of this paper is organized as follows. In Sec. II
we propose the new model. We first give a discussion on

lepton number and its violation, and introduce the Z2

symmetry and the inert scalar triplet. We then consider
the gauge symmetry breaking and prove that the Z2 is
unbroken by the vacuum. The candidates for dark matter
which lie in the scalar sector are identified, and their
interactions are obtained. Section III is devoted to the
dark matter relic density and dark matter constraints due
to direct searches. In Sec. IV we point out why our work is
necessary and unique, and describe its implications for
other 3-3-1 models. Finally, we summarize our results
and make conclusions in Sec. V.

II. THE MODEL

A. Lepton-number violation, Z2 symmetry,
and the inert scalar triplet

The model under consideration is based on the SUð3ÞC �
SUð3ÞL � Uð1ÞX (3-3-1) gauge symmetry. The fermion
content is given by [12]

c aL�
�aL

eaL

ð�aRÞc

0
BB@

1
CCA�ð1;3;�1=3Þ; eaR�ð1;1;�1Þ; (1)

Q1L �
u1L

d1L

UL

0
BB@

1
CCA� ð3; 3; 1=3Þ;

Q�L �
d�L

�u�L

D�L

0
BB@

1
CCA� ð3; 3�; 0Þ;

(2)

uaR � ð3; 1; 2=3Þ; daR � ð3; 1;�1=3Þ; (3)

UR � ð3; 1; 2=3Þ; D�R � ð3; 1;�1=3Þ; (4)

where the quantum numbers defined in the parentheses
are given by the [SUð3ÞC, SUð3ÞL, Uð1ÞX] symmetries,
respectively. The family indices are set as a ¼ 1, 2, 3
and � ¼ 2, 3. The �aR are the right-handed neutrinos,
which are included to complete the lepton-triplet represen-
tations (and thus the model is named the 3-3-1 model with
right-handed neutrinos). Similarly, the exotic quarksU,D�

take part of the respective quark multiplets. The last two
families of quarks—which transform differently under
SUð3ÞL than the first family—and the leptons are arranged
in order to cancel the SUð3ÞL self-anomaly (i.e., the num-
ber of fermion triplets must be equal to the number of
antitriplets). It is easily checked that the theory is free from
all the other anomalies.
The electric charge operator, which is the only generator

conserved after the gauge symmetry breaking, is given by

Q ¼ T3 � 1ffiffiffi
3

p T8 þ X; (5)
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where Tiði ¼ 1; 2; . . . ; 8Þ is the charge of SUð3ÞL, while X
is that ofUð1ÞX [below, the SUð3ÞC charges will be denoted
by ti). Let us note that the exotic quarks U and D� have
electric charges like ordinary quarks, QðUÞ ¼ 2=3 and
QðD�Þ ¼ �1=3, respectively.

The baryon number (B) as a global symmetry Uð1ÞB
commutes with the gauge symmetry and is always con-
served by the general Lagrangian and vacuum [18].
However, the lepton number (L) of the lepton triplet
components is given by (þ1, þ1, �1), which does not
commute with the gauge symmetry, similar to the case of
the electric charge. In addition, the algebra of L and the
3-3-1 symmetry is nonclosed because in order for L to be
some generator of SUð3ÞL � Uð1ÞX, i.e., L ¼ xiTi þ yX
with fixed xi, y coefficients, we have TrðLÞ ¼ yTrðXÞ for
every multiplet, which is generally incorrect [7]. For ex-
ample, we have y ¼ �1 for eR, but y ¼ 0 for uR, which is a
contradiction. Therefore, if the lepton number L is con-
served, we can find in the resulting theory an extra Uð1ÞL
group factor so that its Lagrangian is invariant under this
group, and the combination obtained [18],

L ¼ 4ffiffiffi
3

p T8 þL; (6)

is a residual charge of SUð3ÞL � Uð1ÞL. TheL charges for
the fermion multiplets are given by

Lðc aLÞ¼1=3; LðQ1LÞ¼�2=3; LðQ�LÞ¼2=3;

LðeaRÞ¼1; LðuaRÞ¼LðdaRÞ¼0; LðURÞ¼�2;

LðD�RÞ¼2: (7)

In addition, the exotic quarks satisfy LðUÞ ¼ �LðDÞ ¼
�2, and hence are called leptoquarks.

Notice that the above definition (6) is only true if the
lepton number of the theory is conserved. Otherwise,
the Yukawa Lagrangian and the scalar potential will take
the most general forms, which have interactions that ex-
plicitly violate L [18]. Also, L is subsequently broken.
There is no Uð1ÞL at all. The relation (6) disappears, which
avoids the judgment of Ref. [7]. (There, the 3-3-1 model
that conserves L was extended to the 3-3-1-1 model with a
gauged B-L as a result of the gauged T8.) This is a new
observation of this work, which will be studied below (in
other words, the 3-3-1 model is only self-consistent due to
this lepton-number violation). Namely, the lepton number
will not be regarded as an exact symmetry of the theory;
however, we can consider it as an approximate symmetry
to keep the model self-consistent. Therefore, Eq. (6) is only
an approximate expression for calculating the lepton num-
ber of model particles (because the theory is obviously not
constrained to be invariant under the approximate symme-
try Uð1ÞL, as supposed). Thus it is noteworthy that this
charge should no longer be regarded as a gauge symmetry,
as in Ref. [7]. All the above ingredients can also be applied
to the minimal 3-3-1 model. One theory that does not

satisfy the criteria of Ref. [7] is the economical 3-3-1
model [19]. In the present work we are going to realize a
new 3-3-1 model of this kind.
As usual, the 3-3-1 model with right-handed neutrinos

requires three scalar triplets [12],

� ¼
�0
1

��
2

�0
3

0
BB@

1
CCA� ð1; 3;�1=3Þ; (8)

� ¼
�þ

1

�0
2

�þ
3

0
BB@

1
CCA� ð1; 3; 2=3Þ; (9)

� ¼
�0
1

��
2

�0
3

0
BB@

1
CCA� ð1; 3;�1=3Þ; (10)

to break the gauge symmetry and generate the masses.
Hereafter, we use the notation � instead of � mentioned
in the Introduction so that it is similar to that of the
economical 3-3-1 model. The L charges for the scalar
triplets are obtained by [18]

L ð�Þ¼4=3; Lð�Þ¼�2=3; Lð�Þ¼�2=3: (11)

The nonzero lepton numbers of the scalars are

Lð�0
1Þ ¼ Lð��

2 Þ ¼ �Lð�þ
3 Þ ¼ �Lð�0

3Þ ¼ 2: (12)

Because the lepton number is an approximate symmetry,
all the electrically neutral scalars, including the bileptons
�0
1 and �0

3, might develop VEVs, as shown in the next

subsection. The electroweak gauge symmetry is broken
in two stages. In the first stage, SUð3ÞL � Uð1ÞX is broken
down to that of the standard model, generating the masses
of new particles. This is achieved by the VEV of �0

3

(and possibly that of �0
3). In the second stage, the standard

model electroweak symmetry is broken down to Uð1ÞQ,
which is responsible for the masses of ordinary particles.
This stage is achieved by the VEV of �0

2 and/or �0
1 (and

possibly that of �0
1).

Let us remind the reader that � and � have the same
gauge quantum numbers. They differ only in theL charge,
as shown above. Since the Uð1ÞL symmetry is approxi-
mate, every interaction that violates it is allowed. These
scalars equivalently act on the model. This gives the eco-
nomical 3-3-1 model, which works with only two scalar
triplets�, � by excluding the � [19]. In this paper, we will
introduce another scenario in which we retain the � in the
theory but impose a Z2 symmetry so that the only � is odd,

� ! ��: (13)

All the other multiplets, including � and �, are even,
� ! �, � ! �, and so on.
Up to the gauge-fixing and ghost terms, the Lagrangian

is given by
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L ¼ X
Fermion multiplets

�F i	
D
Fþ X
Scalar multiplets

ðD
SÞy

� ðD
SÞ � 1

4
Gi
�G


�
i � 1

4
Ai
�A


�
i

� 1

4
B
�B


� þLY � V; (14)

with the covariant derivative D
 ¼ @
 þ igstiGi
 þ
igTiAi
 þ igXðX=

ffiffiffi
6

p ÞB
, and the field-strength tensors

Gi
� ¼ @
Gi� � @�Gi
 � gsfijkGj
Gk�, Ai
�¼@
Ai��
@�Ai
�gfijkGj
Ak�, and B
� ¼ @
B� � @�B
, which

correspond to the SUð3ÞC, SUð3ÞL, and Uð1ÞX groups,
respectively. The last two terms will be specified below.

The Yukawa Lagrangian is given by

LY ¼ heab
�c aL�ebR þ h�ab

�c c
aLc bL�þ hU �Q1L�UR

þ hD��
�Q�L�

�D�R þ hda �Q1L�daR þ hu�a �Q�L�
�uaR

þ �hua �Q1L�uaR þ �hd�a �Q�L�
�daR þ �hD� �Q1L�D�R

þ �hU� �Q�L�
�UR þ H:c: (15)

Due to the Z2 symmetry, the � does not interact with
fermions. The Yukawa Lagrangian is achieved in a similar
way as that of the economical 3-3-1 model [19]. The cou-
plings �h violate the lepton number, while the h’s do not. The
fermions get consistent masses at the one-loop level, or
alternatively via the five-dimensional effective interactions
[19]. Below, we will prove that h�i ¼ 0. Therefore, the
gauge bosons get masses from the vacuum values of �
and �, which is similar to the economical 3-3-1 model.

The scalar potential that is invariant under the gauge
symmetry, the Z2 symmetry and that is renormalizable is
given by

V ¼ 
2
1�

y�þ
2
2�

y�þ
2
3�

y�þ �1ð�y�Þ2
þ �2ð�y�Þ2 þ �3ð�y�Þ2 þ �4ð�y�Þð�y�Þ
þ �5ð�y�Þð�y�Þ þ �6ð�y�Þð�y�Þ
þ �7ð�y�Þð�y�Þ þ �8ð�y�Þð�y�Þ
þ �9ð�y�Þð�y�Þ þ 1

2
½�10ð�y�Þ2 þ H:c:�: (16)

Here, 
2
1;2;3 and �1;2;3;...;9 are real, whereas �10 can be

complex. However, the phase of �10 can be removed by
redefining the relative phases of � and �. Consequently,
this potential conserves CP symmetry. But the CP
symmetry can be broken spontaneously by the VEVs of
the scalars. It is also noted that the coupling �10 violates the
lepton number [18].
We point out the fact that if the minimization of the

above scalar potential conserves the Z2 symmetry, i.e.,
h�i ¼ 0, the Z2 is exact and unbroken. Consequently, the
� is only coupled in pairs when interacting with the
economical 3-3-1 model particles. This proposal already
realizes a 3-3-1 model with an ‘‘inert’’ scalar triplet (�).
The lightest particle contained in � is absolutely stabi-
lized, which can be responsible for dark matter. The inert
particles are naturally recognized by the original scalar
sector of the 3-3-1 model with right-handed neutrinos
[12]. By contrast, in the inert doublet model [21] one
similar to that in the standard model should be introduced
by hand. It is easily realized that � and � contain two
scalar doublets—the one in � is similar to the standard
model doublet, while that in � is the inert doublet.
However, we note that due to the gauge symmetry � is
not coupled to � via a coupling that is similar to �10,
which is unlike the inert doublet model. Hence, the dark
matter phenomenology in our theory is completely
unique, as shown below.

B. Gauge symmetry breaking and Z2

conservation

Since the lepton number is violated, all the neutral
scalars can develop VEVs. We assume that the scalar
potential is minimized at

h�i¼ ð0;v�;0Þ; h�i¼ ðu�;0;!�Þ; h�i¼ ðu�;0;!�Þ;
(17)

with its value given by

Vmin ¼ 
2
1v

�
�v� þ
2

2ðu��u� þ!�
�!�Þ þ
2

3ðu��u� þ!�
�!�Þ þ �1ðv�

�v�Þ2 þ �2ðu��u� þ!�
�!�Þ2

þ �3ðu��u� þ!�
�!�Þ2 þ �4ðv�

�v�Þðu��u� þ!�
�!�Þ þ �5ðv�

�v�Þðu��u� þ!�
�!�Þ

þ �6ðu��u� þ!�
�!�Þðu��u� þ!�

�!�Þ þ �9ðu��u� þ!�
�!�Þðu��u� þ!�

�!�Þ
þ 1

2
½�10ðu��u� þ!�

�!�Þ2 þ H:c:�: (18)

The conditions of potential minimization are therefore given by

@Vmin

@v�
�

¼ v�½
2
1 þ 2�1ðv�

�v�Þ þ �4ðu��u� þ!�
�!�Þ þ �5ðu��u� þ!�

�!�Þ� ¼ 0; (19)
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@Vmin

@u��
¼ u�½
2

2 þ 2�2ðu��u� þ!�
�!�Þ

þ�4ðv�
�v�Þ þ�6ðu��u� þ!�

�!�Þ�
þ u�½�9ðu��u� þ!�

�!�Þ þ��
10ðu��u� þ!�

�!�Þ�
¼ 0; (20)

@Vmin

@!�
�

¼!�½
2
2 þ 2�2ðu��u� þ!�

�!�Þ

þ�4ðv�
�v�Þ þ�6ðu��u� þ!�

�!�Þ�
þ!�½�9ðu��u� þ!�

�!�Þ þ��
10ðu��u� þ!�

�!�Þ�
¼ 0; (21)

@Vmin

@u��
¼ u�½
2

3 þ 2�3ðu��u� þ!�
�!�Þ

þ�5ðv�
�v�Þ þ�6ðu��u� þ!�

�!�Þ�
þ u�½�9ðu��u� þ!�

�!�Þ þ�10ðu��u� þ!�
�!�Þ�

¼ 0; (22)

@Vmin

@!�
�

¼!�½
2
3 þ 2�3ðu��u� þ!�

�!�Þ

þ�5ðv�
�v�Þ þ�6ðu��u� þ!�

�!�Þ�
þ!�½�9ðu��u� þ!�

�!�Þ þ�10ðu��u� þ!�
�!�Þ�

¼ 0: (23)

Let us denote

A ¼ 
2
2 þ 2�2ðu��u� þ!�

�!�Þ þ �4ðv�
�v�Þ

þ �6ðu��u� þ!�
�!�Þ;

A0 ¼ 
2
3 þ 2�3ðu��u� þ!�

�!�Þ þ �5ðv�
�v�Þ

þ �6ðu��u� þ!�
�!�Þ;

B ¼ �9ðu��u� þ!�
�!�Þ þ ��

10ðu��u� þ!�
�!�Þ:

Equations (20)–(23) are rewritten as

u� u�

!� !�

 !
A

B

 !
¼ 0; (24)

u� u�

!� !�

 !
B�

A0

 !
¼ 0: (25)

First of all, we suppose that the scalar potential
is bounded from below. The necessary conditions are
given by

�1 > 0; �2 > 0; �3 > 0; (26)

which can be obtained when �, �, or � separately tend
to infinity, respectively. To have a desired vacuum

structure, we assume 
2
1;2 < 0, 
2

3 > 0, �5>0, and �6>0.

The last three conditions are given so thatA0 > 0. (This will
rearrange the general vacuum of the 3-3-1 model
with right-handed neutrinos into the new one where its
Z2-even part is similar to the economical 3-3-1 model,
while its Z2-odd part conserves the Z2 symmetry.) Hence,
from Eq. (25) we have u�=u� ¼ !�=!� � t, and Eqs. (24)

and (25) are reduced to

Aþ tB ¼ 0; B� þ tA0 ¼ 0: (27)

The second equation is rewritten as

t½A0 þ �9ðju�j2 þ j!�j2Þ� þ t��10ðju�j2 þ j!�j2Þ ¼ 0;

(28)

which implies t ¼ 0, and thus u� ¼ !� ¼ 0 provided that

�6 þ �9 � �10 > 0 (to have such a unique solution). We
have also that B ¼ 0 and A ¼ 0, with the help of Eq. (27).
Combining this with Eq. (19), we have the solution for
potential minimization,

jv�j2 ¼ 2�2

2
1 � �4


2
2

�2
4 � 4�1�2

� 0; (29)

ju�j2 þ j!�j2 ¼ 2�1

2
2 � �4


2
1

�2
4 � 4�1�2

� 0; (30)

u� ¼ !� ¼ 0: (31)

We need extra conditions for the couplings,

�2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
< �4 <Minf2�1ð
2=
1Þ2; 2�2ð
1=
2Þ2g;

�7 > 0; (32)

These conditions have been designed to make sure that
the right-hand sides of Eqs. (29) and (30) as well as the
physical scalar masses given below are positive. They
are also needed in order for the scalar potential to be
bounded from below, when � and � simultaneously tend
to infinity.
It is easily realized that some of the relations given

above are similar to the economical 3-3-1 model [19].
Because h�i ¼ 0, the Z2 symmetry is conserved by the
vacuum as well. Therefore, this symmetry is exact and is
not spontaneously broken, similarly to R parity in super-
symmetry. Consequently, the so-called ‘‘inert’’ scalar trip-
let�—the only multiplet in the model that is charged under
Z2 (odd)—behaves like the superparticles in supersymme-
try, which is distinguished from the remaining sector of
Z2-even normal matter. The lightest inert particle (LIP)
contained in the� triplet, which cannot decay due to the Z2

symmetry, may provide dark matter candidates. On the
other hand, as already mentioned � does not couple to
fermions in the Yukawa sector, but it can couple to gauge
bosons and other scalars via the Z2-conserving interac-
tions. It does not give masses for the fermions or the gauge
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bosons since h�i ¼ 0. The identities and masses of the
physical fermions and gauge bosons are exactly the same
as in the economical 3-3-1 model [19]. However, the scalar
sector will be changed, which is presented below. The
interaction between the two sectors—Z2-even and -odd—
will also be obtained.

For convenience, we redefine u � u�, ! � !�, and

v � v�. Thus we have

h�i¼ ð0;v;0Þ; h�i¼ ðu;0;!Þ; h�i¼ð0;0;0Þ; (33)

where v, u, and ! satisfy the potential minimization
conditions (29) and (30), with the labels ‘‘�’’ and ‘‘�’’
removed. To be consistent with the standard model, we
assume u2 	 v2 	 !2, where v ¼ vweak ¼ 174 GeV,
u ¼ Oð1Þ GeV, and ! ¼ Oð1Þ TeV [19]. Also, the
conditions for the scalar potential parameters can be
summarized as follows:


2
1;2< 0<
2

3; �1;2;3;5;6;7> 0; �6þ�9��10> 0;

� 2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
<�4<Minf2�1ð
2=
1Þ2;2�2ð
1=
2Þ2g:

(34)

As mentioned, this ensures that (i) the potential is bounded
from below, (ii) the physical scalar masses are positive,
(iii) the Z2 symmetry is conserved by the vacuum, and
(iv) the nonzero VEVs v, u, and !, induce the gauge
symmetry breaking and mass generation in the correct
way, similarly to the economical 3-3-1 model [19].

C. Scalar identification, dark matter, and interactions

The mass terms of physical scalar fields are obtained
from the scalar potential by shifting the vacuum values of
the beginning scalars. They are given by

Vmass ¼ M2
3�

y�þ �8jvj2��
2 �

þ
2 þ �9ju��0

1 þ!��0
3j2 þ

1

2
½��

10ðu��0
1 þ!��0

3Þ2 þ H:c:� þ �1ðv��0
2 þ v�0�

2 Þ2

þ �2ðu��0
1 þ!��0

3 þ u�0�
1 þ!�0�

3 Þ2 þ �4ðv��0
2 þ v�0�

2 Þðu��0
1 þ!��0

3 þ u�0�
1 þ!�0�

3 Þ
þ �7ðv���

2 þ u��
1 þ!��

3 Þðv�þ
2 þ u��þ

1 þ!��þ
3 Þ; (35)

whereM2
3 � 
2

3 þ �5jvj2 þ �6ðjuj2 þ j!j2Þ, and the conditions of potential minimization as given above have been used.
Also, the notations for physical scalar fields are the same as those used before.

Inert scalar sector ð�Þ: h�� � ��
2 is the physical charged inert scalar field by itself with its mass given by

m2
h��

¼ M2
3 þ �8v

2: (36)

For the remaining inert fields let us define

�0
1 ¼

R1 þ iI1ffiffiffi
2

p ; �0
3 ¼

R3 þ iI3ffiffiffi
2

p : (37)

The mass Lagrangian for the neutral inert scalar fields is arranged as

1

2
ðR1I1R3I3ÞM2

R1

I1

R3

I3

0
BBBBB@

1
CCCCCA; (38)

in which the mass matrix M2 is given by

M2
3 þ �9juj2 þ Reð�10u

2Þ Imð�10u
2Þ Re½!ð�9u

� þ �10uÞ� Im½uð�10!� �9!
�Þ�

Imð�10u
2Þ M2

3 þ �9juj2 � Reð�10u
2Þ Im½uð�10!þ �9!

�Þ� Re½!ð�9u
� � �10uÞ�

Re½!ð�9u
� þ �10uÞ� Im½uð�10!þ �9!

�Þ� M2
3 þ �9j!j2 þ Reð�10!

2Þ Imð�10!
2Þ

Im½uð�10!� �9!
�Þ� Re½!ð�9u

� � �10uÞ� Imð�10!
2Þ M2

3 þ �9j!j2 � Reð�10!
2Þ

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:
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We recall that the scalar potential conserves CP, so we can
assume that �10 is real (otherwise its phase can be absorbed
by redefining the relative phases of � and �, as already
mentioned). In addition, the vacuum structure as obtained
does not support any spontaneous CP phase, i.e., the CP
symmetry is not spontaneously broken by the VEVs in this
case. Therefore, without loss of generality we can assume
that u, !, and v are all real. All the imaginary parts
contained in the mass matrix vanish. Consequently, R1

and R3 mix, but are separate from I1;3 and vice versa. We
have the physical fields

h� ¼ c�R1 � s�R3; H� ¼ s�R1 þ c�R3; (39)

a� ¼ c�I1 � s�I3; A� ¼ s�I1 þ c�I3; (40)

with masses

m2
h�

¼ M2
3; m2

a� ¼ M2
3; (41)

m2
H�

¼ M2
3 þ ð�9 þ �10Þðu2 þ!2Þ;

m2
A�

¼ M2
3 þ ð�9 � �10Þðu2 þ!2Þ:

(42)

Here, we have defined s� � sin ð�Þ, c� � cos ð�Þ, and so
forth, with

t� ¼ u

!
: (43)

We notice that � is the mixing angle of the charged gauge
bosons W-Y, which must be small [19]. In the effective
limit, we have h� ’ R1, a� ’ I1, H� ’ R3, and A� ’ I3.
The degeneracy of the a� and h� masses is due to the fact
that a coupling of � and � that is similar to �10 is sup-
pressed by the gauge symmetry, which is unlike the case of
the inert doublet model [21]. On the other hand, if the Z2

symmetry was spontaneously broken, i.e., h�i � 0 (which
is not the case in the present work), the CP would be
spontaneously broken too. In such a case, the degenerate
masses of a� and h� would be separated.

Normal scalar sector ð�;�Þ: This section is identical to
that of the economical 3-3-1 model, which can be adapted
from Ref. [19] as given below for convenience. There are
12 real scalar fields in total for this sector, in which eight of
them are Goldstone bosons eliminated by the correspond-
ing eight massive gauge bosons associated with the broken
gauge generators [SUð3ÞL � Uð1ÞX�=Uð1ÞQ. There remain

four physical scalar fields, one charged (and its Hermitian
conjugate) and two neutral, respectively obtained by

H� ¼ s�
�
2 þ cðs���

1 þ c��
�
3 Þ;

m2
H� ¼ �7ðu2 þ v2 þ!2Þ ’ �7!

2;

h ¼ c�S2 � s� ðs�S1 þ c�S3Þ;
(44)

m2
h ¼ 2�1v

2 þ 2�2ðu2 þ!2Þ
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�1v

2 � �2ðu2 þ!2Þ�2 þ �2
4v

2ðu2 þ!2Þ
q

’ 4�1�2 � �2
4

�2

v2; (45)

H ¼ s�S2 þ c� ðs�S1 þ c�S3Þ;
m2

H ¼ 2�1v
2 þ 2�2ðu2 þ!2Þ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�1v

2 � �2ðu2 þ!2Þ�2 þ �2
4v

2ðu2 þ!2Þ
q

’ 4�2!
2; (46)

where we have defined

�0
2 ¼

S2 þ iA2ffiffiffi
2

p ; �0
1 ¼

S1 þ iA1ffiffiffi
2

p ; �0
3 ¼

S3 þ iA3ffiffiffi
2

p ;

(47)

and

t ¼ mW

mX

¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ!2

p ’ v

!
;

t2� ¼ �4t
�2 � �1t

2


’ ð�4=�2Þt:
(48)

The mixing angles  and � must be small. The h is
the standard model-like Higgs boson. The H and H�
are the new Higgs bosons with masses at the ! scale.

The Goldstone bosons are GZ ¼ A2, GZ0 ¼ A3, G
0=0�
X ¼

ðG4 � iA1Þ=
ffiffiffi
2

p
, with G4 ¼ c�S1 � s�S3, G

�
W ¼ c��

�
1 �

s��
�
3 , and G�

Y ¼ c�
�
2 � sðs���

1 þ c��
�
3 Þ. In the

effective limit, we can summarize this as [19]

� ’
Gþ

W

vþ 1ffiffi
2

p ðhþ iGZÞ
Hþ

0
BB@

1
CCA;

� ’
uþGX

G�
Y

!þ 1ffiffi
2

p ðHþ iGZ0 Þ

0
BB@

1
CCA:

(49)

We recall the fact thatM2
3 � 
2

3 þ �5v
2 þ �6ðu2 þ!2Þ

is always at the scale of !2, independent of whether 
2
3 is

at the weak scale v2 or at the 3-3-1 scale !2. Therefore, all
the inert particles in this model are always heavy (�!).
This is different from the inert doublet model, where the
inert particles are naturally at the weak scale. Depending
on the relations of �9 and �10 and their signs, we can
determine which inert particle is the LIP. There are three
cases:
(1) H� is the LIP: �10 <Minf0;��9g
(2) A� is the LIP: �10 >Maxf0; �9g
(3) h� and a� are LIPs: ��9 < �10 < �9
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Because h� and a� are degenerate in mass, the third case

may be ruled out by the direct detection experiments due to
their scattering with nuclei via the Z exchange channel
[23], which is unlike the inert doublet model. The first and
second cases are realistic, which only exist in the 3-3-1
model. However, in the following we consider only the first
case with the dark matter H�. For the second case with A�,

the calculations can be done similarly.

To close this section, let us calculate the interactions
between the two sectors, inert and normal. As mentioned,
the inert scalars interact only with normal scalars and
gauge bosons, and not with fermions. The effect of mix-
ings, such as �, � , and , will be neglected in the present
work since they give very small contributions due to
the constraints u 	 v 	 !. The scalar interactions are
obtained as follows:

Vnormal-inert ¼
�
ð�5 þ �8Þ

� ffiffiffi
2

p
vhþ h2

2

�
þ �5H

þH� þ �6

� ffiffiffi
2

p
!H þH2

2

��
hþ�h��

þ
�
�5

� ffiffiffi
2

p
vhþ h2

2

�
þ �5H

þH� þ �6

� ffiffiffi
2

p
!H þH2

2

��
a2� þ h2�

2

þ
�
�5

� ffiffiffi
2

p
vhþ h2

2

�
þ ð�5 þ �8ÞHþH� þ ð�6 þ �9 þ �10Þ

� ffiffiffi
2

p
!H þH2

2

��
H2

�

2

þ
�
�5

� ffiffiffi
2

p
vhþ h2

2

�
þ ð�5 þ �8ÞHþH� þ ð�6 þ �9 � �10Þ

� ffiffiffi
2

p
!H þH2

2

��
A2
�

2

þ uð�9 þ �10Þffiffiffi
2

p Hh�H� þ uð�9 � �10Þffiffiffi
2

p Ha�A� þ
�
�8

2
ð ffiffiffi

2
p

vþ hÞHþh�� ðH� � iA�Þ þ H:c:

�
: (50)

The identity of the gauge bosons can be found in Ref. [19]. Hence, the interactions between the inert scalars and gauge
bosons can be derived from the Lagrangian (14). The triple interactions of two inert scalars and one gauge boson are

Ltriple
gauge-inert ¼

g

2

�
1

cW
Z
 þ c2W

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4s2W

q Z0

�
h�@

$

a�

� g
cWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� 4s2W

q Z0
H�@
$

A� þ i

g

2

�
�2sWA


 � c2W
cW

Z
 þ c2W

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4s2W

q Z0

�
h�� @

$

h

þ
�

þ gffiffiffi
2

p
�
iWþ
h�� @

$



h� � ia�ffiffiffi
2

p þ iX0

H� þ iA�ffiffiffi

2
p @

$



h� � ia�ffiffiffi
2

p þ iY�

H� þ iA�ffiffiffi

2
p @

$

h

þ
� þ H:c:

�
; (51)

where we have denoted A@
$

B ¼ Að@
BÞ � ð@
AÞB. The quartic interactions of two inert scalars and two gauge bosons

are given by

Lquartic
gauge�inert ¼

g2

2

�
1

2

�
1

cW
Z
 þ c2W

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4s2W

q Z0



�
2 þWþ


W
�
 þ X0�


 X0


�
h2� þ a2�

2

þ g2

2

�
1

2

�
�2sWA
 � c2W

cW
Z
 þ c2W

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4s2W

q Z0



�
2 þWþ


W
�
 þ Yþ


Y
�


�
hþ�h��

þ g2

2

�
2c2W

3� 4s2W
Z0

Z

0
 þ X0�

 X0
 þ Yþ


Y
�


�
H2

� þ A2
�

2

þ g2

2
ffiffiffi
2

p
��
2

�
�sWA
 þ s2W

cW
Z
 þ c2W

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4s2W

q Z0



�
Wþ
 þ ffiffiffi

2
p

X0

Y

þ


�
h� � ia�ffiffiffi

2
p h��

þ
��

1

cW
Z
 � 1

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4s2W

q Z0



�
X0
 þ ffiffiffi

2
p

Wþ

Y

�


�
h� � ia�ffiffiffi

2
p H� þ iA�ffiffiffi

2
p

þ
�
�
�
2sWA
 þ c2W

cW
Z
 þ 1

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4s2W

q Z0



�
Y�
 þ ffiffiffi

2
p

W�

X

0


�
hþ�

H� þ iA�ffiffiffi
2

p þ H:c:

�
: (52)
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We recall that in Eqs. (51) and (52) A
 is the photon field
and Z
 and W�


 are standard model-like, whereas Z0

 is a

new neutral gauge boson and X0;0�

 , Y�


 are new non-
Hermitian gauge bosons. From Eqs. (50)–(52), we explic-
itly see that the inert particles are only coupled in pairs in
the interactions, as predicted. Also, the Feynman rules due
to these interactions as used below are easily derived,
which should be understood. The ordinary Feynman rules
of the economical 3-3-1 model can be found in Ref. [19].

III. DARK MATTER CONSTRAINT

A. Relic density

We can discuss two cases: (i) H� is lighter than every

new particle of the economical 3-3-1 model, such as H,
H�, Z0, X, Y, U,D, and �R; (ii)H� is heavier than some or

all these new particles. Which case is relevant depends on
the parameter space (
3, !, �2;6;7;9;10, and hU;D) of the

model. In the first case, the contribution to the dark matter
relic density includes only the annihilation processes of
dark matter into the standard model particles. In the second
case, the dark matter can be annihilated into the new
particles of the economical 3-3-1 model, which may domi-
nate over the standard model productions. For our purpose,
in this work it is sufficient to consider only the first case.

Also, the coannihilation of H� with A�, h�, a�, or h��
will be neglected. We leave a study of the second case to
future work.
The dominant contributions to the relic density of

dark matter H� come from the diagrams given in

Fig. 1. The thermal average on the cross section times
the relative velocity between two incoming dark matter
particles is

h�vreli ¼ 1

64�m2
H�

�
1� 6

xF
� 1

2

m2
h

m2
H�

��
�5 � 3�5

m2
h

4m2
H�

�
1þ m2

h

4m2
H�

�
� 2�4

m2
H�

�
2
3

4m2
H�

�m2
H

�
2

þ 3

16�xFm
2
H�

�
1� 1

2

m2
h

m2
H�

��
�5 � 3�5

m2
h

4m2
H�

�
1þ m2

h

4m2
H�

�
� 2�4

m2
H�

�
2
3

4m2
H�

�m2
H

�

�
�
3�5

m2
h

4m2
H�

þ 8�4

ðm2
H�

�
2
3Þm2

H�

ð4m2
H�

�m2
HÞ2

�
þ �2

5

64�

�
m4

W

m6
H�

�
1� 18

xF
� 1

2

m2
W �m2

h

m2
H�

�
þ 2

m2
H�

�
1� 6

xF
� 3m2

W �m2
h

2m2
H�

��

þ �2
5

128�

�
m4

Z

m6
H�

�
1� 18

xF
� 1

2

m2
Z �m2

h

m2
H�

�
þ 2

m2
H�

�
1� 6

xF
� 3m2

Z �m2
h

2m2
H�

��
þ 3�2

5m
2
t

64�m4
H�

�
1� 12

xF
� 3m2

t

2m2
H�

þ m2
h

2m2
H�

�
:

(53)

Here, we have used the fact that the H� is nonrelativistic,
and the result is given as an expansion up to the squared
velocity of H� with hv2i ¼ 6=xF and xF ¼ mH�

=TF � 20
at the freeze-out temperature [24]. Also, we have utilized
the approximation m2

H�
� 
2

3 ¼ �5v
2 þ ð�6 þ �9 þ

�10Þðu2 þ !2Þ ’ ð�6 þ �9 þ �10Þ!2 due to u2, v2 	 !2.
Because H� is lighter than the new particles of the

economical 3-3-1 model (with the masses�!), it strongly
imposes 
2

3 	 !2, i.e., ð�6 þ �9 þ �10Þ!2 ’ m2
H�

�

2

3 ’ m2
H�
. Therefore, the parameter space in the first

case is given by appropriate conditions on the coupling
�6 þ �9 þ �10. For example, for H with mass m2

H ’
4�2!

2, the condition is �6 þ �9 þ �10 < 4�2. However,
it is noticed that the following discussions are unchanged

for any size of 
2
3 that satisfies the present case. Because

the dark matter H� is naturally heavy at the ! scale, the

ratios
m2

W

m2
H�

,
m2

Z

m2
H�

,
m2

h

m2
H�

, and
m2

t

m2
H�

are negligible and can be

terminated in the effective limit. Hence, the result (53) can
be approximated as

h�vreli ’ �2

ð150 GeVÞ2
�
�5 � 1:92TeV

mH�

�
2

� ð1:04þ 0:35a2 þ 2:39abÞ; (54)

where � ’ 1=128 is the fine structure constant, xF ¼ 20
has been used, and

FIG. 1. Dominant contributions to H� annihilation when it
is lighter than the new particles of the economical 3-3-1 model.
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a�1�2
�4

�5

m2
H�

4m2
H�

�m2
H

; b��4

�5

m4
H�

ð4m2
H�

�m2
HÞ2

: (55)

The dark matter density can be evaluated as �H�
h2 ’

0:1pb=h�vreli [24], which depends on only four parame-
ters, such as m2

H�
, m2

H, �5, and �4 because of Eq. (53), or

alternatively mH�
=�5, a, and b due to Eq. (54). Since

�2

ð150 GeVÞ2 ’ 1 pb, the WMAP data�H�
h2 ’ 0:11 [1] imply

mH�
’ �5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:04þ 0:35a2 þ 2:39ab

p
� 2 TeV: (56)

BecauseH andH� have masses at the! scale, a and b can

naturally be of the order of unity [their correct values
can be derived from Eq. (55), which depend on only the
scalar coupling ratios �4=�5 and ð�6 þ �9 þ �10Þ=�2].
Moreover, the �5 coupling is constrained by 0< �5 <
8� (the right inequality exists if we require the potential
to be perturbative), which is of the order of unity as well.
Consequently, the dark matter H� has the right relic den-

sity, with its mass naturally at the TeV scale due to
Eq. (56), mH�

¼ Oð1Þ TeV. To be concrete, let us give

an estimation as follows. Since, in the present case, the H�

considered is the lightest among the new particles includ-
ing H, we can suppose that m2

H is large enough in com-
parison to that of H� so that the squared-mass ratios in a

and b are negligible, and thus a ’ 1 and b ’ 0 (this also
applies when H does not couple to h, i.e., �4 ¼ 0).
Therefore, we have

mH�
’ �5 � 2 TeV; (57)

which is around 2 TeV if one takes �5 to be of the order of
unity.

The inert doublet model provides a LIP dark matter
candidate at either the weak or TeV scales. However, our
model implies only the LIP dark matter at the TeV scale,
behaving as a scalar singlet under the standard model
symmetry. The TeV mass of dark matter in our model is
a natural consequence of the 3-3-1 symmetry-breaking
scale (!). However, in the inert doublet model, since there
is only a scale v the large mass is only enhanced by the
large scalar coupling, which reaches the applicable limit of
perturbative theory. In this case, the normal sector and the
inert sector become strongly coupled, which contradicts
our case with the usual scalar couplings such as �5 � 1, as
explained above.

B. Direct searches

Direct dark matter searches measure the recoil energy
deposited by the dark matter scattering off the nuclei in a
large detector. This scattering is due to the interactions of
dark matter with quarks confined in nucleons. Since the
dark matter is very nonrelativistic, the process can be
described by the effective Lagrangian [25]

LS ¼ 2�qmH�
H�H� �qq: (58)

Note that for the real scalar field only spin-independent and
even interactions are possible. The effective interaction
above can be obtained by the t-channel exchange of h, as
depicted in Fig. 2. Therefore, we have

�q ¼
�5mq

2mH�
m2

h

: (59)

The H�-nucleon scattering amplitude can be given as a

summation over the quark-level interactions with the respec-
tive nucleon form factors. The H�-nucleon cross section is

�H��N ¼ 4m2
r

�
�2
N; (60)

where N ¼ p, n denotes a nucleon, and

mr ¼
mH�

mN

mH�
þmN

’ mN;

�N

mN

¼ X
u;d;s

fNTq
�q

mq

þ 2

27
fNTG

X
c;b;t

�q

mq

’ 0:35
�5

2mH�
m2

h

;

(61)

with fNTG ¼ 1�P
u;d;sf

N
Tq, and the fNTq values have been

taken from Ref. [26]. Let mN ¼ 1 GeV and mh ¼
125 GeV [2,3]. We have

�H��N ’
�
�5 � 2 TeV

mH�

�
2 � 1:56� 10�44 cm2: (62)

Since thevalue in parenthesis is of the order of unity (as given
above), the cross section is in good agreement with the
XENON100 experimental data [27]. If the mass of H is
much larger than H�, the model predicts

�H��N ¼ 1:56� 10�44 cm2 (63)

for the dark matter with a mass in the TeV range.

IV. THE NECESSITY OF THIS WORK
AND ITS IMPLICATION

We have given a discussion on the dark matter search
status in the 3-3-1 models in Ref. [7]. Here we will provide
a detailed analysis in order to show explicitly why this
work is needed. Its significance for solving the dark matter
problem in typical 3-3-1 models is also given.

FIG. 2. Dominant contributions to H�-quark scattering.
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A. Why this work is needed

As a result of the 3-3-1 gauge symmetry and its
particle content, the gauge interactions, minimal Yukawa
Lagrangian, and the minimal scalar potential of the theory
normally couple the new particles concerned in pairs when
interacting with the standard model particles, similarly to
superparticles in supersymmetry [7,17]. Therefore, the
extended sectors in 3-3-1 models—such as the scalar,
fermion, and gauge sectors—have usually been thought
as providing some candidates for dark matter. However,
the problem encountered is how to suppress the unwanted
interactions and vacuums [7,18], which lead to the fast
decay of dark matter. In the typical 3-3-1 models [12,13],
the new particles concerned are bileptons and the unwanted
interactions (other than the minimal interactions) are the
ones that violate the lepton number [18]. In the 3-3-1
model with right-handed neutrinos, the unwanted vacuums
are the ones where neutral scalar bileptons, such as �0

1 and
�0
3, develop nonzero VEVs.

The first three articles of Ref. [17] were the first works
that identified dark matter candidates in 3-3-1 models.
However, their stability mechanism was not given. The
first article of Ref. [17] discussed dark matter in the
minimal 3-3-1 model; however, it gave a incorrect identi-
fication of dark matter. In fact, the candidate obtained
therein (which is similar to the imaginary part of �0

3 in
this paper) is the Goldstone boson of the Z0 gauge boson,
which is an unphysical particle. Even if the corresponding
Higgs scalar mentioned therein (which is similar to the real
part of �0

3) was interpreted as dark matter, it will decay into
the standard model particles via the tree-level coupling of
the candidate to the standard model Higgs bosons
�!Reð�0

3Þhh (since it has a VEV !). As a matter of
fact, the minimal 3-3-1 model in its current form may
contain no dark matter.

The second and third articles of Ref. [17] gave a
discussion of dark matter in the 3-3-1 model with right-
handed neutrinos. The candidates identified were the real
and/or imaginary parts of �3, as in this paper. However, the
mechanism that provides dark matter stability was not
provided. Hence, there is no reason why �0

3 (or even �0
1)

cannot develop a VEV and have its lepton-number-
violating interactions turned on, which leads to the tree-
level couplings of dark matter with the standard model
particles. For example, when �0

3 develops a VEV, its real
part will decay into two standard model Higgs bosons.
Moreover, both the real and imaginary parts will decay
into light quarks due to the mixing of ordinary and exotic
quarks. The presence of lepton-number-violating Yukawa
interactions will lead to the decay of the candidate into light
quarks for the same reason as in the previous example.
However, the lepton-number-violating scalar potential
would lead to the tree-level coupling of the candidate to
the two standard model Higgs bosons. In addition, the
neutral scalar bileptons including the candidate might
develop VEVs due to these violating scalar interactions.

To solve the above problems, the fourth article of
Ref. [17] was the first one to introduce an extra symmetry
for dark matter stability in 3-3-1 models. It studied the
3-3-1 model with right-handed neutrinos and regarded the
lepton number symmetry as a mechanism for dark matter
stability. It was intriguing that this symmetry would sup-
press all the unwanted interactions and vacuums, which
violate or break the lepton number. There, the lightest
bilepton particle (possibly �0

3, as assumed in the fourth

article of Ref. [17]) was predicted to be responsible for the
stabilization of dark matter. However, the problem was to
generate the mass for neutrinos. As Ref. [28] cited therein,
the neutrinos would get masses from five-dimensional
effective interactions which explicitly violate the lepton
number (it was in contradiction to the postulate). In fact,
these interactions will lead to the fast decay of dark matter
into light neutrinos because there are mixings between
right-handed and left-handed neutrinos.
To overcome the above difficulty, the fifth article of

Ref. [17] introduced another lepton sector (the model
was changed and called the 3-3-1 model with left-handed
neutrinos) so that the bilepton character of the new parti-
cles is lost. The lepton number symmetry takes no role in
stabilizing dark matter. Instead, a Z2 symmetry or Uð1ÞG
were included. The Z2 must be broken by the Higgs
vacuum. Therefore, there is no reason why the dark matter
�0
3 that carries no lepton number cannot develop a VEV

and decay then. On the other hand, the Uð1ÞG must be
broken due to its nontrivial dynamics, as was shown in
Ref. [7]. It cannot prevent the dark matter from decaying.
A suggestion in Ref. [7] was thatG parity, ð�1ÞG, may be a
mechanism for dark matter stability. In Ref. [7], we gave a
mechanism for dark matter stability based onW parity that
was similar to R parity in supersymmetry. However, the
dark matter model works only with the fermion content of
the 3-3-1 model with neutral fermions.
To conclude, the problems with dark matter identifica-

tion and stability in the typical 3-3-1 models, the 3-3-1
model with right-handed neutrinos, and the minimal 3-3-1
model remain unsolved, which has drawn our attention.
Via our work given above, we see that the typical 3-3-1

models are only self-consistent if they contain interactions
that explicitly violate the lepton number. If one scalar
triplet of the 3-3-1 model with right-handed neutrinos is
inert (Z2-odd), the other two scalar triplets will result in
an economical 3-3-1 model that is self-consistent. This
model provides consistent masses for neutrinos [19].
[The neutrinos can get masses via two ways, similar to
the economical 3-3-1 model: through radiative corrections
(as given in the sixth article of Ref. [19]), or alternatively
through effective interactions (as given in the sixth and
eighth articles of Ref. [19]). In all these ways, the neutrino
masses are generated due to the contributions of only �
and � (Z2-even scalars), while � does not contribute due
to h�i ¼ 0 under the Z2 symmetry. The generation of
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neutrino masses is also accompanied by the interaction of
inert scalars (�) with leptons (c ). But, since the theory
conserves the Z2 symmetry, the inert scalars (�) which
are odd under Z2 are only coupled in pairs in such inter-
actions. For example, an effective interaction can be in-
cluded as �c c

Lc Lð��Þ� and its Hermitian conjugate, which
leads to the interactions c ic j�

�
i �

�
j , where i, j are SUð3ÞL

indices. Since all the components �i are odd under Z2, this
may lead to the decay of an inert scalar (�i) with a larger
mass into another inert scalar (�j) with a smaller mass

(associated with two leptons c ic j). In other words, the

transitions or decays (�i $ �j) happen only in the dark

sector of inert particles. The LIP (H�) cannot decay into

other inert particles (which have larger masses) due to the
fact that it is kinematically suppressed and that it cannot
decay into the normal particles of the economical 3-3-1
model due to the Z2 symmetry: it is absolutely stabilized.
We recall that in the model of the fourth article of Ref. [17]
such similar interactions did happen, by contrast, between
the �3 of the assumed dark sector (the bilepton particles)
and the usual particles �1;2 (which carry no lepton number

and couple to the standard model particles; even �1 devel-
ops the VEV) of the normal matter sector, which subse-
quently lead to the fast decay of �3: the candidate is
unstable.] The dark matter thus resides in the inert part
of the model, as shown above. Although our candidates
H� and A� are similar to those (�0

3) studied in previously

in the literature [7,17], its phenomenology is completely
distinguished. This is due to the following.

(1) The masses of H� and A� are separated due to the

lepton-number-violating coupling �10. They are two
distinct particles. In the previous studies their
masses were degenerate [7,17]. In fact, they are
different components of a complex field �0

3.

(2) H� and A� do not couple to fermions. However,

those in Refs. [7,17] did.
(3) H� and A� work in the economical 3-3-1 model

with lepton-number violations and the neutrino
masses are naturally generated [19]. Those in
Refs. [7,17] worked in different 3-3-1 models. In
addition, for the 3-3-1 model with right-handed
neutrinos we cannot simultaneously understand the
physics of the assumed dark matter �0

3 and the

neutrino masses. The model is in fact unrealistic,
as indicated above.

Finally, we can have other cases of inert scalar triplets, as
given below. In these cases, the dark matter candidates
completely differ from �0

3.

B. Implication of this work

For the 3-3-1 model with right-handed neutrinos, we
can introduce another scalar sector which can
provide dark matter. That is, � and � are the same as in
the model proposed above, but the inert triplet is changed

to � ¼ ð�þ
1 ; �

0
2; �

þ
3 Þ � ð1; 3; 2=3Þ, which is a replication

of �. In this case, we can have a doublet dark matter
particle similar to that in the inert doublet model.
For the minimal 3-3-1 model, the scalar sector is

�¼ð�þ
1 ;�

0
2;�

þþ
3 Þ�ð1;3;1Þ, � ¼ ð�0

1; �
�
2 ; �

þ
3 Þ � ð1; 3; 0Þ,

and � ¼ ð��
1 ; �

��
2 ; �0

3Þ � ð1; 3;�1Þ. The reduced 3-3-1

model works with only � and � by removing �, whereas
either model works with � and � by removing � [22].
Therefore, we have the following cases for dark matter in
the minimal 3-3-1 model.
(1) � is an inert scalar triplet. We may have a doublet

dark matter particle, similarly to the inert doublet
model.

(2) � is an inert scalar triplet. A doublet dark matter
particle may result, similarly to the previous case.

(3) Removing � (�), we introduce instead the inert
scalar triplet as a replication of � (�).

(4) Removing� or �, we include instead the inert triplet
as a replication of �. These cases will yield a singlet
dark matter particle.

All the cases above are worth exploring [29]. Therefore,
as an example, in the present work we have presented only
one case of the 3-3-1 model with right-handed neutrinos, as
given in Secs. II and III.
To summarize, the mechanism given in this work

responsible for dark matter stability is a solution to the
dark matter problem of the typical 3-3-1 models, the 3-3-1
model with right-handed neutrinos, and the minimal 3-3-1
model. The dark matter candidates obtained and their
phenomenologies are rich and unlike those in the previous
studies [7,17]. The resulting 3-3-1 models with this mecha-
nism are self-consistent and the neutrinos get desirable
masses.

V. CONCLUSION

As is the nature of typical 3-3-1 models, the lepton
number appears to be a residual charge that is not com-
muted with the gauge symmetry. If the lepton number is
conserved, it will behave as a local charge, and the 3-3-1
gauge symmetry should be extended. One way to keep the
3-3-1 models self-consistent (which avoids an extension)
is to have the lepton number belong to an approximate
symmetry, and the 3-3-1 models must contain interactions
that explicitly violate the lepton number. Looking into
the other variants of the 3-3-1 models, we observe that
the economical 3-3-1 model is a natural realization of the
above criteria, while the reduced 3-3-1 model [22] at the
renormalizable level is not. However, the reduced 3-3-1
model will be viable when the effective interactions
responsible for fermion masses are included.
We have proved that the 3-3-1 model with right-handed

neutrinos can by itself contain an inert scalar triplet (�)
responsible for dark matter, while its remaining part with
other multiplets works as in the economical 3-3-1 model.
Formerly, the � triplet was neglected when one considered
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the economical 3-3-1 model [19]. The stability of the dark
matter candidate (H�) as contained in � is ensured by a Z2

symmetry (assigned so that only � is odd; all other
multiplets are even), which (as has been shown) is not
broken by the vacuum. In contradiction to the inert doublet
model, our dark matter candidate behaves as a singlet
under the standard model symmetry and this particle is
naturally heavy at the! scale of 3-3-1 symmetry breaking.
The interaction between the inert particles and the eco-
nomical 3-3-1 model’s particles has also been given at the
effective limit.

We have calculated the relic density of dark matter for
the case that this particle is the lightest among the new
particles. The relic density will get the correct value in
comparison to WMAP data provided that our dark matter
candidate is in the TeV range, as is expected for the new
physics of 3-3-1 models. In such a range of dark matter
masses, the dark matter-nucleon scattering cross section
also gets safe values in the bound of the strongest experi-
mental data such as that of XENON100. If the new neutral
scalar mass (H) is larger than the dark matter mass, i.e.,
m2

H�
=m2

H is negligible, our model predicts the dark matter

mass mH�
¼ �5 � 2 TeV and the nucleon scattering cross

section �H��N ¼ 1:56� 10�44 cm2, which remarkably

coincide with the current bound of direct detection experi-
ments such as XENON100 in the TeV range.

If the dark matter is heavier than some new particles of
the economical 3-3-1 model, it will also annihilate into
these new particles for the thermal process, which can
dominate. Also, the coannihilation phenomenology of
dark matter with other inert particles is interesting. In
addition, the inert scalar triplet can be a replication of �
instead of the current one, which results in a doublet dark
matter particle. All of these results call for further studies.
It is well-known that the minimal 3-3-1 model in its current
form does not contain any dark matter candidate. By our
proposal, the model can similarly be modified to work as a
reduced 3-3-1 model [22] while containing an inert scalar
triplet responsible for dark matter. The dark matter candi-
date in such a model is either a scalar doublet under the
standard model symmetry (similarly to the inert doublet
model) or a scalar singlet (similarly to our model given in
the text). However, its phenomenology is very unique [29].
Finally, our work is a solution to the long-standing

problem of dark matter in the typical 3-3-1 models, the
3-3-1 model with right-handed neutrinos, and the minimal
3-3-1 model.
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