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The electroweak phase transition is considered in the framework of the reduced minimal 3-3-1 model.

The structure of the phase transition in this model is divided into two parts. The first part is the phase

transition SUð3Þ ! SUð2Þ at the TeV scale, and the second is SUð2Þ ! Uð1Þ, which is like the standard

model electroweak phase transition. When the mass of the neutral Higgs boson (h1) is taken to be equal to

the LHC value, mh1 ¼ 125 GeV, these phase transitions are first-order transitions; the mass of Z2 is

about 4.8 TeV, and we find the region of parameter space with the first-order phase transition at the

v�0
¼ 246 GeV scale, leading to an effective potential where the mass of the charged Higgs boson is in

the range 3:258 TeV<mhþþ < 19:549 TeV. Therefore, with this approach new bosons are the triggers of

the first-order electroweak phase transition, which provides significant implications for the viability of

electroweak baryogenesis scenarios.
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I. INTRODUCTION

An electroweak phase transition (EWPT) is a type of
symmetry-breaking phase transition that plays an impor-
tant role at the early stage of an expanding universe.
Particularly, the EWPT is necessary to explain the baryon
asymmetry of our Universe. As proposed by Sakharov
[1], there are three necessary conditions that a baryon-
generating interaction in a theoretical model must satisfy
to produce an excess of baryons over antibaryons: baryon-
number violation, C and CP violations, and a deviation
from thermal equilibrium [1].

If baryon number (B) is conserved and is equal to zero, it
will be equal to zero forever. In contrast, B will vanish in a
state of thermal equilibrium. Therefore we need the third
condition regarding the deviation from thermal equilib-
rium. The second condition is appropriate for ensuring a
different decay rate for particles and antiparticles [1].

The baryon number and C and CP violations can be seen
via the sphaleron rate and the Cabibbo-Kobayashi-Maskawa
(CKM) matrix in various models [2]. The sphaleron rate
tells us about the baryon-number violation, and the nonzero
phases of the CKM matrix tell us about CP violation.

It is well known that in order to ensure that the third
condition is satisfied, deviations from thermal equilibrium
should be large enough, and therefore the EWPT should be
a first-order phase transition. The EWPT is the transition
from a symmetric phase to an asymmetric one that is
needed to generate masses for particles. Therefore, the
EWPT is related to the mass of the Higgs boson [1].

In the basic model of particles, the first and second
conditions can be satisfied, but any conditions regarding
thermal imbalance are difficult to satisfy. So at present an
analysis of the third condition is the only approach that can
explain the baryon asymmetry.
Why must the EWPT be a first-order phase transition?

The effective potential is a function of temperature and
vacuum expectation values (VEVs). For very large tempera-
tures it only has one minimum at zero, and the symmetry is
restored. As the temperature goes to T0, a nonzero second
minimum appears; this is the sign of symmetry breaking.
When the temperature reaches the critical temperature
(Tc < T0), the values of the effective potential at the two
minimums are equal, and the symmetry breaking is turned
on. And at the critical temperature, if the two minimums are
separated by a potential barrier, the phase transition will
occur with bubble nucleations. Inside the bubbles, the scalar
field stores a nonzero expectation value. If the bubble
nucleation rate exceeds the universe’s expansion rate, the
bubbles collide and eventually fill all space [1]. Such a
transition is called a first-order phase transition. It is very
violent and one can expect large deviations from thermal
equilibrium [1]. The other possible scenario takes place if
the twominimums are never separated by a potential barrier.
In this case, the phase transition is a smooth transition,
rather than a violent or second-order phase transition.
To study the EWPT, ones consider the high-temperature

effective potential as follows:

Veff ¼ DðT2 � T02
0Þv2 � ETv3 þ �T

4
v4;

where v is the VEV of the Higgs. In order to have a first-
order phase transition, the strength of the phase transition
should be larger than unity, i.e., vc

Tc
� 1.
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The EWPT has been investigated in the standard model
(SM) [1,2] and in various extended models [3–10]. Also,
very interesting research has shown that dark matter may
trigger the electroweak phase transition [11]. For the SM,
the strength of the EWPT is larger than unity at the
electroweak scale, but it appears to be too weak for the
experimentally allowed mass of the SM scalar Higgs boson
[1,2]; therefore, it seems that electroweak baryogenesis
requires new physics beyond the SM at the weak scale [3].

Before the neutral Higgs was found, the study of phase
transitions in most models focused on two basic issues:
determining the order of the phase transition, and the mass
of the neutral Higgs. For the SM, a first-order phase
transition problem has one variable, which is the mass of
the neutral Higgs boson. However, for the extended mod-
els, this problem has at least two variables: the first one is
the Higgs mass, and the others include the masses of heavy
particles. Recently, the neutral Higgs was discovered at
the LHC [12], so the electroweak phase transition problem
has been reduced by one variable. This provides hope for
the ability of the extended models to examine the EWPT.
The remarkable successes of previous surveys include the
following:

(i) In the SM, the sources of CP violation are smaller
than the baryon asymmetry of the Universe and there
is no first-order phase transition due to the large mass
of the neutral Higgs, i.e., the SM does not have
enough triggers for the first-order phase transition
to be turned on [1].

(ii) The extended models—such as the two-Higgs-
doublet model or minimal supersymmetric standard
model—can explain the baryon asymmetry because
the sources of CP violation in these models are
stronger than in the SM and they have a first-order
phase transition, with the mass of the neutral Higgs
being about 120 GeV. Triggers for the first-order
phase transition in these models are heavy bosons or
dark matter candidates [7–9,11].

Among the extended models, those based on the
SUð3ÞC � SUð3ÞL � Uð1ÞX gauge group (called 3-3-1 for
short) [13,14] have some intriguing features, such as the
ability to account for the generation problem [13,14], the
quantization of the electric charge [15], etc. Given these
features, we hope that the 3-3-1 models can also answer the
problem of the baryon asymmetry in our Universe.

The current 3-3-1 models have many different forms, but
they are all based on the above-mentioned gauge group.
The greatest disadvantage of the 3-3-1 models is the com-
plication in the Higgs sector, namely, that these models need
at least three Higgs triplets to generate masses for fermions.
Recently there have been attempts to solve this problem, and
some models with the simplest Higgs sector [with only two
SUð3ÞL Higgs triplets] have been constructed.

With such a group structure, the 3-3-1 models must have
at least two Higgs triplets [16,17]. Therefore, the number

of bosons in the 3-3-1 models will be much greater than
that in the SM, and the symmetry breaking structure will
different.
In the present paper, we consider the EWPT in the

reduced minimal 3-3-1 (RM331) model [17] because of
its simplicity. This model consists of the minimal leptonic
content (i.e., only the SM leptons) and bileptons: the singly
and a doubly charged gauge bosons V� and U��, the
heavy neutral boson Z2, and exotic quarks. This model
also has two Higgs triplets. Therefore, the physical scalar
spectrum of the RM331 model is composed of a doubly
charged scalar hþþ and two neutral scalars h1 and h2 [17].
These new particles and exotic quarks can be triggers for
the first-order phase transition.
The plan of the paper is as follows. In Sec. II we give a

review of the RM331 model with regards to the boson,
lepton and Higgs sectors. In Sec. III we find the effective
potential in the RM331 model, which has a contribution
from heavy bosons and a contribution similar to that in the
SM. In Sec. IV we calculate in detail the structure of the
phase transition in the RM331 model, find the first-order
phase transition, and show the constraints on the mass
of the charged Higgs boson. Finally, we summarize and
describe outlooks in Sec. V.

II. A REVIEW OF THE RM331 MODEL

The fermion content of the RM331 model is the same as
that of the minimal 3-3-1 model [13]. The difference is
only in the Higgs sector.

A. Higgs potential

The Higgs potential in the RM331 model [17] is given
by

Vð�; �Þ ¼ �2
1�

y�þ�2
2�

y�þ �1ð�y�Þ2 þ �2ð�y�Þ2
þ �3ð�y�Þð�y�Þ þ �4ð�y�Þð�y�Þ: (1)

The scalar sector contains only two Higgs scalar
triplets [17],

� ¼
�þ

�0

�þþ

0
BB@

1
CCA� ð3; 1Þ; � ¼

��

���

�0

0
BB@

1
CCA� ð3;�1Þ: (2)

The expansion of �0 and �0 around their VEVs is
usually

�0; �0 ! 1ffiffiffi
2

p ðv�;� þ R�;� þ iI�;�Þ: (3)

This potential immediately gives us two charged
Goldstone bosons �� and ��, which are eaten by the
gauge bosons W� and V�.
We return now to the content of the Higgs sector. The

physical scalar spectrum of the RM331 model is composed
of a doubly charged scalar hþþ and two neutral scalars h1
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and h2. Since the lightest neutral field h1 is basically an
SUð2ÞL component, we identify it as the SM Higgs boson.
In the effective limit v� � v�, the Higgs content can be

summarized as follows:

� ¼
GWþ

v�ffiffi
2

p þ 1ffiffi
2

p ðh1 þ iGZÞ
hþþ

0
BB@

1
CCA;

� ¼
GV�

GU��
v�ffiffi
2

p þ 1ffiffi
2

p ðh2 þ iGZ0 Þ

0
BB@

1
CCA;

(4)

where the Higgs masses are given by

M2
h1

¼
�
�1 � �2

3

4�2

�
v2
�; M2

h2
¼ �2v

2
� þ �2

3

4�2

v2
�; (5)

M2
h�� ¼ �4

2
ðv2

� þ v2
�Þ: (6)

B. Gauge-boson sector

The masses of the gauge bosons appear in the
Lagrangian part

L ¼ ðD��ÞyðD��Þ þ ðD��ÞyðD��Þ; (7)

where

D� ¼ @� � igAa
�

�a

2
� igXX

�9

2
B�; (8)

with �9 ¼
ffiffi
2
3

q
diagð1; 1; 1Þ, so that Trð�9�9Þ ¼ 2. The

couplings of SUð3ÞL and Uð1ÞX satisfy the relation

g2X
g2

¼ 6s2W
1� 4s2W

;

where cW ¼ cos �W , sW ¼ sin�W , and tW ¼ tan�W ,
where �W is the Weinberg angle.

Substituting the expansion in Eq. (3) into Eq. (7) leads to
the following result:

W� ¼ A1 � iA2ffiffiffi
2

p ! m2
W� ¼ g2v2

�

4
;

V� ¼ A4 � iA5ffiffiffi
2

p ! m2
V� ¼ g2v2

�

4
;

U�� ¼ A6 � iA7ffiffiffi
2

p ! m2
U�� ¼ g2ðv2

� þ v2
�Þ

4
:

(9)

From Eq. (9), it follows that v� ¼ 246 GeV, and we

obtain the relation

m2
U �m2

V ¼ m2
W:

In the neutral gauge-boson sector, with the basis
ðA3

�; A
8
�; B�Þ, the mass matrix is given by

M2 ¼ g2

4

v2
� � v2

�ffiffi
3

p �2�v2
�

� v2
�ffiffi
3

p 1
3 ðv2

� þ 4v2
�Þ 2ffiffi

3
p ðv2

� þ 2v2
�Þ

�2�v2
�

2ffiffi
3

p ðv2
� þ 2v2

�Þ 4�2ðv2
� þ v2

�Þ;

0
BBB@

1
CCCA;

where � ¼ gX
g . We can easily identify the photon field A�

as well as the massive neutral Z and Z0 bosons [18],

A� ¼ sWA
3
� þ cW

� ffiffiffi
3

p
tWA

8
� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3t2W

q
B�

�
;

Z� ¼ cWA
3
� � sW

� ffiffiffi
3

p
tWA

8
� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3t2W

q
B�

�
;

and

Z0
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3t2W

q
A8
� þ ffiffiffi

3
p

tWB�;

where the mass-squared matrix for fZ; Z0g is given by

m2
Z m2

ZZ0
m2

ZZ0 m2
Z0

 !
;

with

m2
Z ¼ 1

4

g2

cos 2�W
v2
�;

m2
Z0 ¼ 1

3
g2
�

cos 2�W
1� 4sin 2�W

v2
� þ 1� 4sin 2�W

4cos 2�W
v2
�

�
;

m2
ZZ0 ¼ 1

4
ffiffiffi
3

p g2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sin 2�W

p
cos 2�W

v2
�:

Diagonalizing the mass matrix gives the mass eigenstates
Z1 and Z2, which can be taken as mixtures,

Z1 ¼ Z cos�� Z0 sin�; Z2 ¼ Z sin�þ Z0 cos�:

The mixing angle � is given by

tan 2� ¼ m2
Z �m2

Z1

m2
Z2

�m2
Z

;

where mZ1
and mZ2

are the physical mass eigenvalues,

m2
Z1

¼ 1

2
fm2

Z0 þm2
Z � ½ðm2

Z0 �m2
ZÞ2 � 4ðm2

ZZ0 Þ2�1=2g;

m2
Z2

¼ 1

2
fm2

Z0 þm2
Z þ ½ðm2

Z0 �m2
ZÞ2 � 4ðm2

ZZ0 Þ2�1=2g:

When diagonalized, the mass of Z1 is approximately
proportional to v� (because v� � v�), so Z1 is like the

neutral gauge boson Z in the SM. The mass of the
new heavy boson Z2 depends on v� and v�; in addition,

mW ¼ 80:39 GeV and v�0
¼ 246 GeV [19]. Choosing

v�0
¼ 4 TeV [17,20], we obtain mV ¼ 1307:15 GeV and

mU ¼ 1309:62 GeV. If we choose s2W ¼ 0:23116 [19], we
derive mZ1

	 mZ ¼ 91:68 GeV and mZ2
¼ 4:821 TeV.

Hence we can approximate mZ2
	 1:2v�.
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C. Fermion sector

The fermion sector in the model under consideration is
the same as in the minimal 3-3-1 model [13]. The Yukawa
couplings give the exotic quark masses [17],

Lexot
Yuk ¼ �T

11
�Q1L�TR þ �D

ij
�QiL�


DjR þ H:c:

¼ �T
11ð �u1L�� þ �d1L�

�� þ �TL�
0ÞTR þ �D

ijð �diL�þ

� �uiL�
þþ þ �DiL�

0
ÞDjR þ H:c: (10)

When the � field develops its VEV, these couplings lead to
the mass matrix in the basis ðT;D2; D3Þ,

MJ ¼
v�ffiffiffi
2

p
�T
11 0 0
0 �D

22 �D
23

0 �D
32 �D

33

0
B@

1
CA:

So the exotic quarks have masses around a few TeV
because their masses are proportional to v�. Therefore

we see that the masses of the exotic quarks are approxi-
mately equal to mZ2

, but they are only involved in the

transition phase SUð3Þ ! SUð2Þ.
The Yukawa couplings give the masses of the usual

quarks through the triplet �. Therefore—as in the SM—
the usual quarks are only involved in the transition phase
SUð2Þ ! Uð1Þ.

However, the charged lepton masses arise from the
effective dimension-five operator through the couplings
of both � and � with the following Lagrangian [17]:

Ll
Yuk ¼

�l

�
ðfcL�
Þð�yfLÞ þ H:c: (11)

From the Lagrangian (11), we obtain ml ¼ v�

� �lv�,

and the coupling constant v�=� 	 1, so that ml 	 �lv�.

Finally, the masses of the charged leptons depend only
on v�. Therefore, they are only involved in the transition

phase SUð2Þ ! Uð1Þ. Taking into account me ¼ 0:5 MeV,
m� ¼ 105 MeV, and m� ¼ 1:77 GeV, ones get ke ¼ 2�
10�5, k� ¼ 4:3� 10�3, and k� ¼ 7:2� 10�2.

III. EFFECTIVE POTENTIAL IN RM331

From the Higgs potential we obtain V0 in a form that is
dependent on the VEVs as follows:

V0ðv�; v�Þ ¼ �2
1v

2
� þ�2

2v
2
� þ �1v

4
� þ �2v

4
� þ �3v

2
�v

2
�:

Here V0 has a quartic form like in the SM, but it depends
on two variables, v� and v�, and has a mixing between

v� and v�. However, by developing the potential (1)

we obtain two minimum equations. Therefore, we can
transform the mixing between v� and v� to a form that

depends only on v� or v�. Hence, we can write

V0ðv�; v�Þ ¼ V0ðv�Þ þ V0ðv�Þ.
In order to derive an effective potential, we use the

Higgs Lagrangian and the principle of least action to
arrive at the equation of motion for fields. Expanding the

Higgs fields around the VEVs and averaging over space
for all fields, we obtain the one-loop effective potential
(for details, see Ref. [1]).
The full Higgs Lagrangian in the RM331 model is given

by

L ¼ ðD��ÞyðD��Þ þ ðD��ÞyðD��Þ þ Vð�; �Þ;
where

Vð�; �Þ ¼ �2
1�

y�þ�2
2�

y�þ �1ð�y�Þ2 þ �2ð�y�Þ2
þ �3ð�y�Þð�y�Þ þ �4ð�y�Þð�y�Þ:

Expanding � and � around v� and v� (which are

considered as variables) [21], we obtain

L ¼ 1

2
@�v�@�v� þ 1

2
@�v�@�v� þ V0ðv�; v�Þ

þ X
boson

m2
bosonðv�; v�ÞW�W�;

where W runs over all gauge fields and Higgs bosons.
Through the boson-mass formulations (as in the above
sections) we can split the masses of particles into two parts
as follows:

m2
bosonðv�; v�Þ ¼ m2

bosonðv�Þ þm2
bosonðv�Þ:

The effective potential is the function that depends on
the VEVs and temperature. The masses of the particles
depend on the VEVof the Higgs bosons. Therefore, when
we consider the effective potential, we must consider
contributions from fermions and bosons. However, for
fermions, we have retained here only the top quark and
exotic quarks, which dominate over the contributions from
the other fermions [1]. And in the RM331 model there are
two VEVs, so we have two motion equations according to
v� and v�,

@�v�@�v� þ @V0ðv�Þ
@v�

þX@m2
bosonsðv�Þ
@v�

W�W�

þX@mexotic-quarksðv�Þ
@v�

Q �Q ¼ 0; (12)

@�v�@�v� þ
@V0ðv�Þ
@v�

þX@m2
bosonsðv�Þ
@v�

W�W�

þ @mtop-quarkðv�Þ
@v�

t�t ¼ 0: (13)

The RM331 modle has the following gauge bosons:
two massive bosons like the SM bosons Z1 and W�,
the new heavy neutral boson Z2, the singly and doubly
charged gauge bosons U�� and V�, two doubly charged
Higgses hþþ and h��, one heavy neutral Higgs h2, and
one SM-like Higgs h1. The masses of the gauge bosons
and the Higgses in the RM331 model are presented in
Table I
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Using Eqs. (12) and (13) and averaging over space by using Bose-Einstein and Fermi-Dirac distributions for bosons and
fermions, respectively, we obtain the following effective potentials:

Veffðv�Þ ¼ V0ðv�Þ þ 3

64	2

�
m4

Z2
ðv�Þ ln

m2
Z2
ðv�Þ
Q2

� 12m4
Qðv�Þ ln

m2
Qðv�Þ
Q2

�

þ 1

64	2

�
m4

h2
ðv�Þ ln

m2
h2
ðv�Þ
Q2

þ 2m4
hþþðv�Þ ln

m2
hþþðv�Þ
Q2

�

þ 3

64	2

�
2m4

Uðv�Þ ln
m2

Uðv�Þ
Q2

þ 2m4
Vðv�Þ ln

m2
Vðv�Þ
Q2

�

þ T4

4	2

�
F�

�
mh2ðv�Þ

T

�
þ 2F�

�
mhþþðv�Þ

T

�
þ 12Fþ

�
mQðv�Þ

T

��

þ 3T4

4	2

�
F�

�
mZ2

ðv�Þ
T

�
þ 2F�

�
mUðv�Þ

T

�
þ 2F�

�
mVðv�Þ

T

��
;

and

Veffðv�Þ ¼ V0ðv�Þ þ 3

64	2

�
m4

Z1
ðv�Þ ln

m2
Z1
ðv�Þ
Q2

þm4
Z2
ðv�Þ ln

m2
Z2
ðv�Þ
Q2

þ 2m4
Wðv�Þ ln

m2
Wðv�Þ
Q2

þ 2m4
Uðv�Þ ln

m2
Uðv�Þ
Q2

� 4m4
t ðv�Þ ln

m2
t ðv�Þ
Q2

�
þ 1

64	2

�
m4

h1
ðv�Þ ln

m2
h1
ðv�Þ
Q2

þm4
h2
ðv�Þ ln

m2
h2
ðv�Þ
Q2

þ 2m4
hþþ ln

m2
hþþðv�Þ
Q2

�
þ T4

4	2

�
�
F�

�
mh1ðv�Þ

T

�
� F�

�
mh2ðv�Þ

T

�
þ 2F�

�
mhþþðv�Þ

T

��
þ 3T4

4	2

�
4Fþ

�
mtðv�Þ

T

�
þ F�

�
mZ1

ðv�Þ
T

�

þ F�
�
mZ2

ðv�Þ
T

�
þ 2F�

�
mWðv�Þ

T

�
þ 2F�

�
mUðv�Þ

T

��
;

where

F�
�
m�

T

�
¼
Z m�

T

0

Jð1Þ� ð
; 0Þd
;

Jð1Þ� ð
; 0Þ ¼ 2
Z 1




ðx2 � 
2Þ1=2
ex � 1

dx:

The total effective potential in the RM331 model can be
rewritten as follows:

VRM331
eff ¼ Veffðv�Þ þ Veffðv�Þ:

IV. ELECTROWEAK PHASE TRANSITION

The symmetry breaking in the RM331 model can take
place sequentially due to the fact that the two scales of
symmetry breaking are very different, v�0

� v�0
(v�0

�
4–5 TeV [17,20], v�0

¼ 246 GeV), and that the Universe

is accelerating. The symmetry breaking SUð3Þ ! SUð2Þ
takes place before the symmetry breaking SUð2Þ ! Uð1Þ.
The symmetry breaking SUð3Þ ! SUð2Þ through �0

generates the masses of the heavy gauge bosons—such
as U��, V�, Z2—and the exotic quarks. Therefore, the
phase transition SUð3Þ ! SUð2Þ only depends on v�.

TABLE I. Mass formulations of bosons in the RM331 model.

Bosons m2ðv�; v�Þ m2ðv�Þ m2ðv�Þ
m2

W�
g2v2

�

4 0 80:392 ðGeVÞ2
m2

V�
g2v2

�

4 1307:152 ðGeVÞ2 0

m2
U��

g2ðv2
�þv2

�Þ
4 1307:152 ðGeVÞ2 80:392 ðGeVÞ2

m2
Z1

�m2
Z

1
4

g2

cos 2�W
v2
� 0 91:6822 ðGeVÞ2

m2
Z2

�m2
Z0

1
3 g

2½ cos 2�W
1�4sin 2�W

v2
� þ 1�4sin 2�W

4cos 2�W
v2
�� 4:82 ðTeVÞ2 14:532 ðGeVÞ2

m2
h1

ð�1 � �2
3

4�2
Þv2

� 0 1252 ðGeVÞ2
m2

h��
�4

2 ðv2
� þ v2

�Þ �4

2 v
2
�

�4

2 v
2
�

m2
h2

�2v
2
� þ �2

3

4�2
v2
� �2v

2
�

�2
3

4�2
v2
�
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When our Universe has been expanding and cooling due to
the v�0

scale, the symmetry breaking or phase transition

SUð2Þ ! Uð1Þ is turned on through �0, which generates
the masses of the SM particles and the last part of the mass
ofU��. Therefore the phase transition SUð2Þ ! Uð1Þ only
depends on v�. The current baryon asymmetry of the

Universe must have had its origins in the initial conditions
of the Universe: if the early Universe does not possess the
baryon asymmetry then the current Universe will not pos-
sess it as well [1]. In other words, this asymmetry exists
throughout all periods of the Universe to date. In order
to describe baryogenesis, models must satisfy three
conditions given by Sakharov. In particular, the third
condition—spontaneous symmetry breaking—must be
associated with a first-order phase transition. In the
RM331 model, the spontaneous symmetry breaking takes
place in two different energy scales, i.e., the electroweak
phase transition is a combination of two different phase
transitions. Therefore, if the RM331 model is able to
describe this phenomenon, both phase transitions must be
first-order phase transitions. In contrast, if one of the phase
transitions is not a first-order phase transition, the RM331
model will not fully describe this asymmetry, since this

model does not ensure the continuity of baryogenesis in the
Universe.
Through the boson-mass formulations in the above

sections, we saw that the boson V� is only involved in
the first phase transition, SUð3Þ ! SUð2Þ. The gauge bo-
sons Z1,W

�, and h1 are only involved in the second phase
transition, SUð2Þ ! Uð1Þ. However,U��, Z2, and h

�� are
involved in both phase transitions.
With this structure for the phase transition, we see that

the mass of U�� is generated by both phase transitions.
When the universe is at the v�0

scale, the symmetry break-

ing SUð3Þ ! SUð2Þ generates masses for the exotic quarks
and a part of U��, i.e., it is eaten by one of the Goldstone
bosons ��� of the triplet �. When the universe cools to the
v�0

scale, the symmetry breaking SUð2Þ ! Uð1Þ is turned
on, which generates masses for the SM particles and the
last part of U��, i.e., U�� is eaten by the other Goldstone
boson ��� of the triplet �.

A. Phase transition SUð3Þ ! SUð2Þ
This phase transition involves exotic quarks and heavy

bosons, without the involvement of the SM particles: the
effective potential of the EWPT SUð3Þ ! SUð2Þ is

Veffðv�Þ ¼ V0ðv�Þ þ 3

64	2

�
m4

Z2
ðv�Þ ln

m2
Z2
ðv�Þ
Q2

� 12m4
Qðv�Þ ln

m2
Qðv�Þ
Q2

�

þ 1

64	2

�
m4

h2
ðv�Þ ln

m2
h2
ðv�Þ
Q2

þ 2m4
hþþðv�Þ ln

m2
hþþðv�Þ
Q2

�

þ 3

64	2

�
2m4

Uðv�Þ ln
m2

Uðv�Þ
Q2

þ 2m4
Vðv�Þ ln

m2
Vðv�Þ
Q2

�

þ T4

4	2

�
F�

�
mh2ðv�Þ

T

�
þ 2F�

�
mhþþðv�Þ

T

�
þ 12Fþ

�
mQðv�Þ

T

��

þ 3T4

4	2

�
F�

�
mZ2

ðv�Þ
T

�
þ 2F�

�
mUðv�Þ

T

�
þ 2F�

�
mVðv�Þ

T

��
:

The symmetry breaking scale is v�0
, which is chosen to be 4 TeV [17,20], and the masses of the three exotic quarks are

mQ. Therefore, the effective potential can be rewritten as

Veff
SUð3Þ!SUð2Þ ¼ D0ðT2 � T02

0 Þv2
� � E0Tv3

� þ �0
T

4
v4
�:

The minimum conditions are

Veffðv�0
Þ ¼ 0;

@Veffðv�Þ
@v�

ðv�0
Þ ¼ 0;

@2Veffðv�Þ
@v2

�

ðv�0
Þ ¼ m2

h2
ðv�Þjv�¼v�0

;

where

D0 ¼ 1

24v2
�0

f6m2
Uðv�Þ þ 3m2

Z2
ðv�Þ þ 6m2

Vðv�Þ þ 18m2
Qðv�Þ þ 2m2

h2
ðv�Þ þ 2m2

h�ðv�Þg;

T02
0 ¼ 1

D

�
1

4
m2

h2
ðv�Þ � 1

32	2v2
�0

ð6m4
Uðv�Þ þ 3m4

Z2
ðv�Þ þ 6m4

Vðv�Þ � 36m4
Qðv�Þ þm4

h2
ðv�Þ þ 2m4

h�ðv�ÞÞ
�
;
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E0 ¼ 1

12	v3
�0

ð6m3
Uðv�Þ þ 3m3

Z2
ðv�Þ þ 6m3

Vðv�Þ þm3
h2
ðv�Þ þ 2m3

h�ðv�ÞÞ;

�0
T ¼ m2

h2
ðv�Þ

2v2
�0

�
1� 1

8	2v2
�0
m2

h2
ðv�Þ

�
6m4

Vðv�Þ ln
m2

Vðv�Þ
bT2

þ 3m4
Z2
ðv�Þ ln

m2
Z2
ðv�Þ

bT2
þ 6m4

Uðv�Þ ln
m2

Uðv�Þ
bT2

� 36m4
Qðv�Þ ln

m2
Qðv�Þ
bFT

2
þm4

h2
ðv�Þ ln

m2
h2
ðv�Þ

bT2
þ 2m4

h�ðv�Þ ln
m2

h�ðv�Þ
bT2

��
:

The values of Veffðv�Þ at the two minima become equal at
the critical temperature,

T0
c ¼ T0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E02=D0�0

T0
c

q : (14)

The problem here is that there are three variables: the
masses of h2, h

��, andQ. However, for simplicity, follow-
ing the ansatz in Ref. [9], we assume mh2 ¼ X, mh�� ¼
mQ ¼ K, and mZ2ðv�Þ ¼ 4:821 TeV. Note that the contri-

butions from h2, h
��, and Z2 in this phase transition are X

or K, which is different from their contributions in the
phase transition SUð2Þ ! Uð1Þ. In order to have the first

phase transition, the phase transition strength must be

larger than unity, i.e.,
v�c

T0
c
� 1.

In Fig. 1 we plot K as a function of mh2ðv�Þ, with
mh2ðv�Þ> 1 TeV.

According to Fig. 1, if X is larger than 1 TeV, the heavy
particle masses must be in the range of a few TeV in order
to have a first-order phase transition. In addition, this phase
transition can be a strong first-order transition.

B. Phase transition SUð2Þ ! Uð1Þ
This phase transition dose not involve the exotic quarks

or the boson V�, and the contribution fromU�� is equal to
that from W�. The effective potential of the EWPT
SUð2Þ ! Uð1Þ is

Veffðv�Þ ¼ V0ðv�Þ þ 3

64	2

�
m4
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ðv�Þ ln
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þm4
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� 4m4
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þ 1
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ðv�Þ ln
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ðv�Þ ln
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ðv�Þ
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þ 2m4
hþþ ln

m2
hþþðv�Þ
Q2
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þ T4
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4	2
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T
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��
:

The minimum conditions are

Veffðv�0
Þ ¼ 0;

@Veff

@v�

ðv�0
Þ ¼ 0;

@2Veff

@v2
�

ðv�0
Þ ¼ m2

h1
þm2

h2
ðv�Þjv�¼v�0

:

From the above minimum conditions, we see that in this
EWPT m2

h2
ðv�Þ generates the masses of the last heavy

particles and m2
h1
generates the masses of the SM particles.

With the symmetry-breaking scale equal to Q � v�0
¼

v0 ¼ 246 GeV, the high-temperature expansion of this
potential has the form

VRM331
eff ¼ DðT2 � T2

0Þ:v2
� � ETjv�j3 þ �T

4
v4
�;

where
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FIG. 1. Here, X > 1 TeV. Solid contour: 2E0=�0
T0
c
¼ 1; dash-

dotted contour: 2E0=�0
T0
c
¼ 2; dotted contour: 2E0=�0

T0
c
¼ 3; and

dashed contour: 2E0=�0
T0
c
¼ 5.
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D ¼ 1

24v2
0

½6m2
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�
;

E ¼ 1
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Z1
ðv�Þ þ 3m3

Z2
ðv�Þ þm3

h1
ðv�Þ þm3

h2
ðv�Þ þ 2m3

h�ðv�ÞÞ;

�T ¼ m2
h1
ðv�Þ þm2

h2
ðv�Þ

2v2
0

�
1� 1

8	2v2
0ðm2

h1
ðv�Þ þm2

h2
ðv�ÞÞ

�
6m4

Wðv�Þ ln
m2

Wðv�Þ
bT2

þ 3m4
Z1
ðv�Þ ln

m2
Z1
ðv�Þ

bT2

þ 3m4
Z2
ðv�Þ ln
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m2
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� 12m4
t ðv�Þ ln

m2
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þm4

h1
ðv�Þ ln
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ðv�Þ ln
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h�ðv�Þ ln
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h�ðv�Þ
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��
: (15)

The effective potential has two minimum points: the first
minimum is at v� ¼ 0 and the second is at v�c

¼ 2ETc

�Tc
. In

the limit E ! 0, we have a second-order phase transition.
In order to have a first-order phase transition, the phase-
transition strength has to be larger than unity, i.e.,

v�c

Tc
� 1.

The critical temperature Tc is given by

Tc ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2=D�Tc

q : (16)

Equation (16) is self-consistent with the critical tempera-
ture because �Tc

is a function of Tc. According to the
results at the LHC, we take mh1 ¼ 125 GeV, and put
mh2ðv�Þ ¼ Z, mh��ðv�Þ ¼ Y and mZ2ðv�Þ ¼ 14:53 GeV.

In Fig. 2 we show the mass regions of h1 and hþþ where
the necessary condition for the first-order phase transition
is imposed. According to Fig. 2 and the results of numeri-
cal evaluation, the strength of the EWPT is in the range
1  2E=�Tc

< 5. Therefore, in the RM331 model we

always have a first-order phase transition, but it is weak
(i.e., at the v� scale).

The contributions from new particles (at the first sym-
metry breaking) generate the first-order phase transition,
which is absent in the standard model. However, there is
special feature: the heavy particles—such as U��, h2,
h��, and Z2—contribute only a small part from their total
masses.
As can be seen in Fig. 3, when the temperature ap-

proaches Tc the second minimum slowly forms, i.e., the
phase-transition nucleation appears. When the temperature
goes to Tc the symmetry-breaking phase is turned on, and
when temperature goes below Tc the system switches to the
symmetry-breaking phase.
To finish this section, we conclude that the effective

potential of this model is different from that of the
SM, and that the contributions from the heavy bosons
act as triggers for the first-order phase transition, with
mh1 ¼ 125 GeV.
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G
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FIG. 2. Solid contour: 2E=�Tc
¼ 1; dashed contour: 2E=�Tc

¼
1:1; dotted contour: 2E=�Tc

¼ 1:15; and dash-dotted contour:

2E=�T0
c
¼ 1:2.
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FIG. 3 (color online). The effective potential for 2E=�Tc
¼ 1,

with Y ¼ 342 GeV and Z ¼ 120:109 GeV. The critical point is
at Tc ¼ 149:549 GeV. Dashed line: T ¼ Tc; lines above the
dashed line: T > Tc; and lines under the line: T < Tc.
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C. Constraint on the mass of the charged Higgs boson

In this section, from the phase transition SUð2Þ ! Uð1Þ,
we have derived

200 GeV< Y ¼ mhþþðv�Þ< 1200 GeV

and

0< Z ¼ mh2ðv�Þ< 624 GeV:

Therefore, we get

ð200 GeVÞ2 < �4

2
v2
�0

< ð1200 GeVÞ2;

ð0 GeVÞ2 < �2
3

4�2

v2
�0

< ð624 GeVÞ2:
(17)

Taking into account the recent Higgs boson mass
(125 GeV) and combining the above with Eq. (5), we
also obtain �

�1 � �2
3

4�2

�
v2
�0

¼ ð125 GeVÞ2: (18)

Combining Eqs. (17) and (18) leads to

0<�1<6:692; 0<
�2
3

4�2

<6:434; 1:321<�4<47:59:

From Eq. (19), we see that �1, �2, and �4 must be
positive in order to satisfy the above boundary conditions
and 3:258 TeV<mhþþ < 19:549 TeV. Thus, since the

mass of the heavy Higgs must be a few TeV, the electro-
weak phase transition in this model is a first-order phase
transition. We hope that the heavy particles will uncover
many more examples of new physics.

V. CONCLUSION AND OUTLOOKS

We have used the effective potential at finite temperature
to study the structure of the electroweak phase transition in
the RM331 model. This phase transition is separated into
two phases. The first transition period is SUð3Þ ! SUð2Þ,
i.e., the symmetry breaking at the energy scale v�0

(in order

to generate masses for the heavy particles and the exotic
quarks). The second phase transition is SUð2Þ ! Uð1Þ at
v�0

, which generates masses for all of the usual fermions

and the SM gauge bosons. The electroweak phase transition
in this model (at the scale v�) may be a weak first-order

electroweak phase transition with mh1 ¼ 125 GeV if the

heavy boson masses are a few TeV. Therefore, this is strong
enough to study the baryon asymmetry.
If Z2 exists, its mass is a few TeV, so its contribution to

the electroweak phase transition is very large. Therefore,
the electroweak phase transition in this model is com-
pletely turned on. In other words, the baryon asymmetry
problem in this model is directly related to the mass of Z2.
The self-interactions of the Higgs in this model are more

complicated than in the SM because heavy particles are
involved in both phase transitions. Thus calculating the
quantum corrections can reveal many new physical phe-
nomena and open up new relations between cosmology and
particle physics. In addition, from the phase transitions we
can get some bounds on the Higgs self-couplings.
Although we only worked with the RM331 model, this

calculation can still apply to other 3-3-1 models, such as
the recent supersymmetric reduced minimal 3-3-1 model
[22] and the 3-3-1-1 model [23]. Furthermore, the 3-3-1
models can have specific advantages over the SM in
explaining the baryon asymmetry problem.
Our next works will calculate the sphaleron rate and CP

violations in 3-3-1 models in order to analyze electroweak
baryogenesis in greater detail. In addition, by using the
electroweak phase transition or baryogenesis problem, we
can predict the masses of the heavy particles beyond the
SM with these 3-3-1 models.
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