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Correlation-driven phase transition in a Chern insulator
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The phase transition driven by electron correlations in a Chern insulator is investigated within the dynamical
mean-field theory. The Chern insulator is described by the Haldane model and the electron correlations are
incorporated by introducing the short-range interaction between the itinerant electrons and localized fermions.
In the preservation of the inversion symmetry, the electron correlations drive the system from the Chern insulator
to a renormalized pseudogap metal, and then to the topologically trivial Mott insulator. When the inversion
symmetry is broken, a charge ordering and a nontrivial Chern topological invariant coexist.
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I. INTRODUCTION

Recently, the theoretical prediction and experimental dis-
covery of the topological insulator with the time-reversal
symmetry, the Z2 topological insulator, has attracted a lot
of attention in condensed matter physics.1–4 The topological
phase is beyond the Landau phase concept and character-
ized by nontrivial topological invariants that lead the spin
Hall conductance to be nonzero quantized. The topological
insulators are gapped in the bulk but have gapless edge
state protected by the time-reversal symmetry. The concept
of the topological insulator has also been expanded into the
lattice symmetry protected topological phases which exhibit
topological invariants as long as the symmetries are not
broken.5

Before the discovery of the Z2 topological insulator,
the quantum Hall states were the well-known realization
of the topological phases. They exhibit the quantized Hall
conductance. However, the quantum Hall states do not have
the time-reversal symmetry as well as the lattice translational
symmetry. In addition, the quantum Hall states require an
external magnetic field that forms the Landau levels. Haldane
theoretically proposed a lattice model that also exhibits an
integer Hall conductance, but in the absence of external
magnetic fields and the Landau levels.6 It turns out that
the integer Hall conductance is just the Chern topological
invariant.7 Such topological states are usually called the Chern
insulator. In the Chern insulator, the time-reversal symmetry
is broken. There were several proposals to realize the Chern
topological phase following the Haldane idea. They include
the proposals of the realization of the Haldane model by
loading ultracold atoms into optical lattices.8–10 Recently, the
Chern insulator was discovered in thin films of Cr-doped
(Bi,Sb)2Te3,11 following the theoretical prediction.12 In the
thin films, the ferromagnetic order breaks the time-reversal
symmetry, and this effect is essentially described by electron
correlations.

The theory of both the Z2 and Chern topological insulators
is based on the energy band theory, where electron correlations
are weak. The effect of electron correlations on the topological
phases has also attracted much attention.13 One may expect
that weak electron correlations do not change the topological
properties of the topological insulators. However, strong elec-
tron correlations can give rise to qualitative changes of their

properties. Most studies have focused on the correlation effects
in the Z2 topological insulators. The electron correlations can
drive the topological insulating phase to the Mott or Slater
insulating phases. The Slater transition is accompanied by a
long-range order, whereas in the Mott transition spontaneous
symmetry breaking is absent.14 In particular, when the local
Coulomb interaction is included in the Kane-Mele model of
the Z2 topological insulator,15 it drives the band topological
insulating state into a spin-density-wave state, where the
time-reversal symmetry is broken.16–20 Depending on the
model parameters, the phase transition may go through a
spin-liquid phase.17–20 However, there are still debates over
the existence of the spin-liquid state.13

In contrast to the Z2 topological insulators, the effects of
electron correlations on the Chern insulators have received
less attention. Originally, the Haldane model, which describes
a Chern insulator, was a spinless fermion model. Most
studies have introduced nonlocal nearest-neighbor Coulomb
interactions into the Haldane model and investigated their
effects on the topological properties.21–23 The nearest-neighbor
interactions drive the system into a charge-ordered insulating
phase. The charge-ordered phase is topologically trivial, and
the phase transition is of first order.21,22 While the time-reversal
symmetry is broken in both the Chern-insulating and the
charge-ordered phases, the inversion symmetry, which is
preserved in the Chern-insulating phase, is lost in the charge-
ordered phase. This situation is similar to the Slater transition
in the Z2 topological insulators, where the transition is accom-
panied by symmetry breaking. However, it is still not clear
what happens to the Mott transition, which is not accompanied
by any symmetry breaking, in the topological insulators.

In the present paper we study the effects of electron corre-
lations in a Chern insulator that is described by the Haldane
model. In contrast to the previous studies,21–23 we incorporate a
local interaction into the Haldane model. The local interaction
is the short-range Coulomb interaction between the itinerant
electrons and additional localized spinless fermions. This
interaction is essentially the type of the local interaction in
the Falicov-Kimball model.24 The Haldane model with the
Falicov-Kimball interaction can also be considered as an
asymmetric version of the Kane-Mele-Hubbard model, where
electrons with a fixed spin component are frozen. The time
reversal symmetry is preserved in the Kane-Mele-Hubbard
model, but it is broken in the Haldane-Falicov-Kimball model.
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It is well known that the Falicov-Kimball model describes
well the correlation-induced phase transitions with and without
inversion-symmetry breaking.24–27 One may expect that with
the local Coulomb interaction the introduced model is suitable
for studying the topological phase transitions due to electron
correlations with and without inversion-symmetry breaking in
Chern insulators. We employ the dynamical mean-field theory
(DMFT) to study the phase transition. The DMFT was widely
and successfully used to study electron correlations.28,29 In
particular, the Falicov-Kimball model was intensively studied
within the DMFT.30–33 We find that when the inversion
symmetry is preserved, electron correlations drive the system
from the topological Chern insulator to a pseudogap metallic
state, and then to the topologically trivial Mott insulator. The
metallic state is non-Fermi-liquid with the renormalized mass
and velocity of Weyl fermions. It always exists between the
Chern and the Mott insulators. When the inversion symmetry is
broken, electron correlations form a charge-ordering gap, and
at the same time they drive the system from the topological
charge-ordered state to the topologically trivial charge-ordered
state. Both the topological invariant and the long-range charge
order coexist in the topological charge-ordered state.

The present paper is organized as follows. In Sec. II we
introduce the Falicov-Kimball type of the local interaction to
the Haldane model. In this section we also present the DMFT
for the proposed model. The Mott transition is presented in
Sec. III, while the charge-ordering transition is presented in
Sec. IV. Finally, in Sec. V we present the conclusion.

II. THE HALDANE MODEL WITH LOCAL INTERACTION

In this section we introduce a local interaction into the
Haldane model. The Haldane model describes the hopping of
noninteraction spinless electrons with zero net magnetic flux
in a honeycomb lattice.6 In addition to the itinerant electrons,
we introduce localized spinless fermions. Without interaction,
the localized fermions do not affect the topological properties
of the itinerant electrons. A local interaction which is the
Coulomb interaction between the spinless itinerant electrons
and localized fermions is also introduced. The total model is
described by the Hamiltonian

H = −t
∑

<i,j>

c
†
i cj + it2

∑
�i,j�

νij c
†
i cj + H.c.

+Ef

∑
i

f
†
i fi + U

∑
i

c
†
i cif

†
i fi, (1)

where ci (fi) are the annihilation operators for itinerant
(localized) spinless fermions at site i of a honeycomb lattice. t
is the parameter of the nearest-neighbor hoppings, whereas
t2 is the one of the next-nearest-neighbor hoppings. νij =
±1 for the clockwise (anticlockwise) next-nearest-neighbor
hoppings. Ef is the energy level of the localized fermions. U

is the strength of the local interaction between the itinerant and
localized fermions. When U = 0, the Hamiltonian in Eq. (1)
describes the Haldane model with the Peierls phase π/2,
and zero staggered energy shift of the two sublattices of the
honeycomb lattice.6 The ground state is essentially topological
with the Chern number C = ±1, depending on the sign of
t2.6 When t2 = 0, the Hamiltonian in Eq. (1) is the standard

Falicov-Kimball model on a bipartite lattice.24 It is well
known that the Falicov-Kimball model on a bipartite lattice
exhibits the metal-insulator transition for the homogeneous
states, where the inversion symmetry is preserved, and charge
ordering where the inversion symmetry is broken.24–27 In the
other limit, when t = 0, the proposed model is equivalent
to two independent triangular lattices of the Falicov-Kimball
model. The triangular lattice is geometrically frustrated; thus,
the regular charge ordering as the one in the square lattice
does not occur at low temperatures.34–37 Instead, striped or
bounded phases are formed.34–37 However, one might expect
that the next-nearest-neighbor hopping t2 is always smaller
than the nearest-neighbor hopping t , and for small values
of t2 the frustrations of the individual sublattices do not
break the bipartite structure of the whole honeycomb lattice.
In the rest of paper we only consider the regime t2 < t .
The introduced model in Eq. (1) can also be considered as
an asymmetric version of the Kane-Mele-Hubbard model,13

where the electrons with a fixed spin component are frozen.
The asymmetry can occur as a consequence of the extreme
mass imbalance of the two spin components. Electrons with
a fixed spin component are extremely heavy, and come
to be localized. Due to the asymmetry the time-reversal
symmetry is explicitly broken. However, the Hall conductance
is still quantized in the noninteraction case. Incorporating
the Haldane idea of the topological phase into the Falicov-
Kimball model, it gives rise to a possibility of studying
the correlation-driven topological phase transition with and
without inversion-symmetry breaking.

We use the DMFT to investigate the correlation-driven
phase transition in the introduced model in Eq. (1). Within
the DMFT, the self-energy only depends on frequency. It is
exact in infinite dimensions. However, in two-dimensional
systems it is an approximation. The approximation neglects
nonlocal correlations, but keeps the local dynamical corre-
lations. The DMFT applied to the Hubbard model in the
honeycomb lattice overestimates the critical point of the Mott
transition.38–40 The Falicov-Kimball model was also studied
within the DMFT.30–33 Since the honeycomb lattice is bipartite,
for convenience, we divide the lattice into two penetrating
sublattices A and B, like the DMFT of the Falicov-Kimball
model on hypercubic lattices.30–33,41–43 In the momentum
space, the hopping part of the Hamiltonian in Eq. (1) written
in the two sublattice indexes is a 2 × 2 matrix

ĥ0(k) =
(

t2f2(k) −tf1(k)

−tf ∗
1 (k) −t2f2(k)

)
, (2)

where

f1(k) = ei 1
2 kx cos

(√
3

2
ky

)
+ e−ikx ,

f2(k) = 2 sin

(
3

2
kx +

√
3

2
ky

)
− 2 sin

(
3

2
kx −

√
3

2
ky

)
−2 sin(

√
3ky).

Within the DMFT, the Green’s function of the itinerant
electrons can be written via the Dyson equation

Ĝ(k,z) = [z + μ − ĥ0(k) − �̂(z)]−1, (3)
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where μ is the chemical potential, and

�̂(z) =
(

�A(z) 0

0 �B(z)

)
is the self-energy. The self-energy is determined from a chosen
single site embedded in an effective mean-field medium which
represents the interactions of all other sites among themselves
and with the chosen site. The action of the effective single
site is

Sα =
∫

dτdτ ′c†α(τ )G−1
α (τ − τ ′)cα(τ ′)

+ (Ef − μ)f †
αfα + Uc†αcαf †

αfα, (4)

where α = A,B is the sublattice index. Gα(τ ) is the Green’s
function that represents the effective medium. It can be written
via G−1

α (z) = z + μ − λα(z), where λα(z) can be considered as
a dynamical Weiss mean field. The self-energy of the effective
single site satisfies the Dyson equation

G−1
α (z) = z + μ − λα(z) − �α(z). (5)

The self-consistent condition requires that the Green’s function
obtained from the effective site and the local Green’s function
of the lattice are identical; i.e.,

Gα(z) = 1

N

∑
k

Ĝαα(k,z), (6)

where N is the number of sublattice sites.
Effective action in Eq. (4) can analytically be solved, since

f †f is a good quantum number. We obtain the partition
function

Zα = Trf

∫
D[c†,c]e−Sα [c†,c,f †,f ]

= 2 exp

[ ∑
n

ln

(
iωn + μ − λα(iωn)

iωn

) ]
+ e−β(Ef −μ)

× 2 exp

[ ∑
n

ln

(
iωn + μ − λα(iωn) − U

iωn

) ]
, (7)

where ωn = (2n + 1)πT is the Matsubara frequency. From the
partition function in Eq. (7) we obtain the Green’s function

Gα(z) = 1 − nf α

z + μ − λα(z)
+ nf α

z + μ − λα(z) − U
, (8)

where

nf α = 1

1 + exp[β(Ẽf α − μ)]
,

Ẽf α = Ef + T
∑

n

ln

(
iωn + μ − λα(iωn)

iωn + μ − λα(iωn) − U

)
.

(9)

One can check that nf α is exactly the average number of
localized fermions in sublattice α. When nf A = nf B the
two sublattices are equivalent, and the inversion symmetry
is preserved. When nf A �= nf B , a charge ordering occurs and
the inversion symmetry is broken. From Eq. (9) one can see
that at zero temperature nf α can accept only three values:
0, 1/2, and 1. For half filling two nonequivalent possibilities
can occur: (i) nf A = nf B = 1/2; (ii) nf A = 1, nf B = 0 (or

nf A = 0, nf B = 1). In the first case, the renormalized energy
level Ẽf a of the localized electrons is pinned to the Fermi
level,44 while in the second case it is lower (or higher) the Fermi
level. We numerically solve the self-consistent equations of the
DMFT in both real and imaginary frequencies by iterations.
At zero temperature the imaginary frequencies are understood
as the Matsubara frequencies with a fictitious temperature.

III. MOTT TRANSITION

We consider the half-filling case. It turns out μ = U/2.
When nf A = nf B = 1/2 the Mott transition occurs. In Fig. 1
we plot the density of states (DOS) ρ(ω) = −ImGα(ω +
i0+)/π for various values of U . It shows that with increasing
U the DOS first exhibits a band gap, then the gap closes,
and finally it opens again. These behaviors indicate the phase
transition from an insulating phase to a metallic phase, and
then to an insulating phase again. Since when U = 0 the
system is a Chern insulator, and the region of small values of U

adiabatically connects with U = 0, one can expect that the first
insulating phase is a Chern insulator. In this region, the DOS
clearly shows two separated subbands. The subband separation
increases with U . However, the actual gap, where the DOS van-
ishes, decreases with increasing U . While electron correlations
try to separate the two subbands, they actually also reduce
the gap of the Chern insulator. At critical value Uc1 the gap
closes, and the system becomes metallic. We verify the
topology of the first insulating phase by calculating directly the
Chern number. In the interaction case the Chern number C can
be calculated via the Green’s function at zero frequency:45–47

C = 1

2π

∫
d2kFxy, (10)

where Fij = ∂iAj − ∂jAi , Ai = −i
∑′

ν〈kν|∂ki
|kν〉, and the

sum is taken over all orthonormalized eigenstates |kν〉 of
matrix Ĝ−1(k,i0) with positive eigenvalues. In numerical
calculations we use the efficient method of discretization of
the Brillouin zone to calculate the Chern number in Eq. (10).48

In particular, we use a fine mesh of 128 × 128 points for the
elementary cell of the reciprocal lattice. Indeed, we obtain
C = 1 when U < Uc1. The first insulator-metal transition is
also the topological phase transition. The gap closes at the

FIG. 1. (Color online) The DOS for various values of U (t = 1,
t2 = 0.5).
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FIG. 2. (Color online) The imaginary part of the self-energy
Im�(iω) for various values of U (t = 1, t2 = 0.1).

same point where the Chern number stops to be quantized. The
metallic phase, where the DOS is finite at the Fermi energy,
occurs for U ran from Uc1 up to Uc2. At Uc2 the gap opens
again. Although the actual gap closes in the metallic phase, the
DOS clearly exhibits a pseudogap; in particular, a narrow dip
exists around ω = 0. The last insulating phase occurs for strong
correlations U > Uc2, and it is naturally a Mott insulator. We
can distinguish the phases by considering the behavior of the
self-energy at low frequencies. In Fig. 2 we plot the imaginary
part of the self-energy Im�(iω) for various values of U . In the
Chern-insulator phase the imaginary part of the self-energy
vanishes, Im�(i0) = 0, which leads to the DOS also vanishing
at ω = 0. In the metallic phase Im�(i0) is finite. This indicates
that the metallic phase is a non-Fermi-liquid. The slope of
Im�(iω) at ω → 0 is identical to the slope of Re�(ω + i0+)
at ω → 0. Then we can use the slope of Im�(iω) at ω → 0 to
determine the renormalized factor

Z =
[

1 − ∂Re�(ω + i0+)

∂ω

]−1

ω=0

. (11)

In Fig. 3 we plot the absolute value of the renormalized factor
|Z| as a function of U . It shows that in the metallic phase
the renormalized factor diverges when ∂Im�(iω)/∂ω = 1 at

FIG. 3. The absolute value of the renormalized factor |Z| as a
function of U (t = 1, t2 = 0.1).

ω = 0. Away from the divergence point, |Z| decreases, and
it vanishes at both Uc1 and Uc2. However, when U < Uc1,
the renormalized factor remains finite. This indicates that
the Chern-insulator phase remains the band insulator like the
noninteraction case. The renormalized factor always vanishes
when U > Uc2. This mimics the Brinkman-Rice scenario of
the Mott transition.49 The dip feature of the DOS around zero
energy in the metallic phase is due to the special property
of the honeycomb lattice. When t2 = 0 and U = 0, at the
corners of the first Brillouin zone electrons become the Weyl
fermions with linear dispersion εk = vk, which leads to the
DOS linearly vanishing at zero energy.50 With finite hopping
t2, electrons acquire a mass at the corners of the first Brillouin
zone. They also get a finite lifetime when electron correlations
are in effect. The electron correlations also renormalize both
the mass and the velocity of electrons at the corners of the
the first Brillouin zone through the renormalized factor Z.
In consequence, the DOS exhibits the dip around the Fermi
energy, but its value is always finite. In the Mott-insulator
phase the imaginary part of the self-energy Im�(iω) diverges
like 1/ω. Due to this divergence we cannot use Eq. (10)
to calculate the Chern number in the Mott-insulator phase.
However, due to the local feature of the self-energy, the
Chern number can be determined through a frequency domain
winding number (FDWN);51 i.e.,

C = γC0, C0 =
∫

d2k

4π
εabch̄

a
k∂kx

h̄b
k∂ky

h̄c
k, (12)

where εabc is the total antisymmetric tensor, and h̄a
k are three

normalized components of the noninteraction Hamiltonian
in the base of the Pauli matrices; i.e., ĥ0(k) = ∑

a ha
kσa ,

σa are the Pauli matrices, h̄a
k = ha

k/|hk|, |hk|2 = ∑
a |ha

k|2.
γ is the so-called FDWN. It describes the winding number
of the atomic Green’s function G−1

at (iω) = iω + μ − �(iω)
on the complex plane. C0 is just the Chern number of
the noninteraction Hamiltonian.45 When the self-energy only
depends on frequency, all correlation effects on the Chern
number are encoded in the FDWN γ . One can notice that
in the Chern-insulator phase ImG−1

at (iω) crosses the axes
ω one time, whereas in the Mott-insulator phase it never
crosses, which leads to γ = 1 in the Chern-insulator phase,
and γ = 0 in the Mott insulator.51 Thus, the Mott insulator is
topologically trivial. Note that the feature Im�(iω) ∼ 1/ω

for low frequencies in the Mott-insulator phase is purely
a particularity of infinite-dimensional systems.52 For finite-
dimensional systems, the DMFT is just an approximation
and it losses nonlocal correlations. The nonlocal correlations
reduce the singularity of the self-energy at low frequencies.
We also check whether nonlocal correlations change the Chern
number in the insulating phases. We employ an extension of the
DMFT, the cellular dynamical mean-field theory (CDMFT),53

for calculating the Chern number in both Chern- and Mott-
insulator phases. We choose a hexagonal cluster of six sites of
the honeycomb lattice and perform the CDMFT calculations.54

Within the CDMFT the self-energy matrix is well defined at
zero frequency even in the Mott-insulator phase, and we can
use Eq. (10) to calculate the Chern number. We obtain C = 1
in the Chern-insulator phase and C = 0 in the Mott-insulator
phase. This also shows that the topological invariant is robust
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against the nonlocal correlations. The topological invariant can
well be determined within the DMFT, even the DMFT neglects
nonlocal correlations. However, the nonlocal correlations
reduce the values of Uc1 and Uc2, but the metallic phase
always exists between the two insulator phases. Note that the
Hartree-Fock mean-field approximation cannot describe the
Mott transition, since it loses dynamical local fluctuations.
The DMFT is perhaps the simplest approximation that can
capture both the Mott transition and the topological invariant,
at least in the proposed Haldane model with local interaction.
It is worth checking the applicability of the DMFT to other
strong correlation models of topological insulators.

Within the DMFT we can derive explicit equations for
determining the critical value Uc1 and Uc2. The derivation
is based on the linearized DMFT.55 Due to the particle-
hole symmetry at half filling the Green’s function is purely
imaginary G(i0+) = −iπρ(0) at the Fermi level. At U = Uc1,
the self-energy is purely real, and ��(ω + i0+) ≡ �(ω +
i0+) − U/2 becomes negligibly small at ω → 0, because

G(i0+) = − 1

N

∑
k

��(i0+)

[��(i0+)]2 − t2
2 f 2

2 (k) − t2|f1(k)|2
(13)

approaches to zero. From Eqs. (5) and (8) we obtain

G(i0+) = − ��(i0+)U 2/4

[��(i0+)]2 U 2/4 − (U 2/4)2
. (14)

At U = Uc1, ��(i0+) vanishes, hence from Eqs. (13)-(14) we
obtain the equation for determining Uc1

1

N

∑
k

1

t2
2 f 2

2 (k) + t2|f1(k)|2 = 4

U 2
c1

. (15)

At U = Uc2 the self-energy �(i0+) diverges; however the
Weiss mean field λ(i0+) vanishes, since from Eqs. (5) and
(8), one can show that ��(i0+) = −U 2/λ(i0+)/4. Together
with Eq. (6) we obtain

G(i0+) = 1

N

∑
k

λ(i0+)U 2/4

(U 2/4)2 − λ2(i0+)
[
t2
2 f 2

2 (k) + t2|f1(k)|2] .

(16)

On the other hand, from Eq. (8) the local Green’s function at
zero energy is

G(i0+) = λ(i0+)

U 2/4 − λ2(i0+)
. (17)

At U = Uc2, λ(i0+) vanishes; hence from Eqs. (16) and (17)
we obtain the equation for determining Uc2:

1

N

∑
k

[
t2
2 f 2

2 (k) + t2|f1(k)|2] = U 2
c2

4
. (18)

In Fig. 4 we plot the critical values Uc1 and Uc2 as a function
of t2. We always obtain Uc1 < Uc2. Thus, between the Chern-
and the Mott-insulator phases, there is a finite region of the
pseudogap metallic phase. There is no direct transition from
the topological Chern insulator to the topologically trivial Mott
insulator. One can notice that the phase transition from the
Chern insulator to the Mott insulator through the pseudogap

FIG. 4. The phase diagram of inversion symmetry states at half
filling. CI denotes the Chern-insulating phase, and MI denotes the
Mott-insulating phase. The pseudogap metallic phase exists between
the two phases (t = 1).

metallic phase does not change the symmetries of the system.
All the phases preserve the inversion symmetry.

So far we have studied the correlation-driven phase
transition of the homogeneous phases, where the inversion
symmetry is preserved. However these phases are instable
to the charge ordering at low temperatures. They are only
stable at high temperatures, where the charge long-range order
vanishes. At finite temperature, the Hall conductance can be
calculated by the Kubo formula56

σxy = e2

h̄
Im

∂

∂ω
K(ω + i0+), (19)

K(iω) = − T

N

∑
k,iν

Tr[Jx(k)Ĝ(k,iω + iν)

× Jy(k)Ĝ(k,iν)], (20)

where J(k) is the current operator. The Hall conductance is not
quantized at finite temperature. However, at zero temperature
the Kubo formula in Eqs. (19) and (20) is reduced to the Chern
formula in Eq. (10), and the Hall conductance is a multiple of
e2/h.56 At half filling the homogeneous phases do not depend
on temperature, and we can consider the Chern invariant as the
zero-temperature limit of the Hall conductance calculated by
the homogeneous Green’s function. The phase diagram which
is plotted in Fig. 4 is the high-temperature phase transition with
the topological invariant determined by the zero-temperature
limit of the Hall conductance. It can also be considered as
a reference in comparison with the low-temperature charge
ordering, as well as in comparison with the paramagnetic phase
transition in the correlated Z2 topological insulators.

IV. CHARGE ORDERING

At half filling there is another solution nf A = 1, nf B = 0
(or equivalently nf A = 0, nf B = 1). Actually, this solution is
stable at zero temperature. It is charge ordering, which occurs
for any finite value of U . The charge ordering breaks the
inversion symmetry. This charge ordering at half filling is
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similar to the one of the Falicov-Kimball model on bipartite
lattices.30–33,41–43 From Eq. (8) we obtain

GA(z) = 1

G−1
A (z) + �A(z) − U

, (21)

GB(z) = 1

G−1
B (z) + �B(z)

. (22)

We immediately obtain �A(z) = U and �B(z) = 0. This
solution is exactly the Hartree mean-field solution. In infinite
dimensions the Hartree mean field becomes exact for the
Falicov-Kimball type of the local interaction and at zero
temperature. At finite temperatures the self-energies are no
longer the Hartree mean-field values, and they actually
depend on frequency. With �A(z) = U and �B(z) = 0, the
matrix −Ĝ−1(i0) is exactly the Haldane Hamiltonian with
the staggered energy level shift M = U/2.6 There is a
topological phase transition from the topological insulator to
the topologically trivial insulator at Mc = 3

√
3t2.6 Thus, for

U < 6
√

3t2 the charge-ordered state is topological with the
Chern number C = 1, and for U > 6

√
3t2 it is topologically

trivial with C = 0. At U = 6
√

3t2 the ground state is helical
semimetal, where electrons at the corners of the first Brillouin
zone are Weyl fermions. We want to emphasis that both the
topological insulator and the topologically trivial insulator
have the long-range order that is due to electron correlations.
Both the phases are charge ordered, but topologically different.
Both the phases break the inversion symmetry. The line
U = 0 is the Chern-insulator phase; however it preserves the
inversion symmetry. Therefore the topological charge-ordered
phase does not adiabatically connect to the Chern insulator
at U = 0. In the topological charge-ordered phase both the
topological invariant and the charge long-range order coexist.
This contrasts to the case of the same Chern insulator, but with
nearest-neighbor interactions, where the charge-ordered phase
is topologically trivial.22,23

V. CONCLUSION

We have studied the electron correlation driven phase
transition in the Haldane model with the local Coulomb
interaction at half filling. The phase transition depends on the

inversion symmetry. With the preservation of the inversion
symmetry electron correlations drive the system from the
topological Chern insulator, to a pseudogap metal, and then to
the topologically trivial Mott insulator. The pseudogap metal is
non-Fermi-liquid with renormalized mass and velocity of Weyl
fermions. It always exists between the two insulating phases.
When the inversion symmetry is broken, electron correlations
induce the long-range charge order that opens a gap at the
Fermi energy. They drive the system from the topological
charge-ordered state to topologically trivial charge-ordered
state. The topological invariant and the long-range charge
order can coexist due to the effect of electron correlations
in the Chern insulator.

The proposed Haldane-Falicov-Kimball model can also
be considered as an asymmetry version of the Kane-Mele-
Hubbard model, where the time-reversal symmetry is broken.
One might expect that when the time-reversal symmetry is
broken and the inversion symmetry is preserved, the Z2

topological insulators would exhibit the correlation-driven
phase transition from the topological insulator to topologically
trivial Mott insulator, and a pseudogap metallic phase would
exist between these two insulating phases. When both the
time-reversal and the inversion symmetries are broken, there is
a possibility of the coexistence of the topological invariant and
long-range order. Electron correlations also drive the system
from a topological spin-density-wave state to a topologically
trivial spin-density-wave state. The time-reversal symmetry in
the Z2 topological insulators can be broken by magnetic fields
or a mass imbalance of the two spin components. The thin
films of Cr-doped (Bi,Sb)2Te3

11,12 may relate to this category
of topological insulators, where the ferromagnetism plays the
role of a magnetic field, and the electron correlations are weak.
It is worthwhile to study the possible phase transitions in these
thin films by tuning the repulsive Coulomb interaction with
and without inversion-symmetry breaking.
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