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We study entanglement dynamics of two and three atoms stored in a common nonperfect cavity together
with some other nonentangled atoms. It is guessed at first thought that the presence of nonentangled
atoms would favor the decoherence process of the interested entangled atoms. We show, on the contrary,
that it is not so. Namely, as results of a rigorous nonperturbative analysis, disentanglement rate of the
interested atoms decreases with the increase of the number of nonentangled atoms. If the number
of nonentangled atoms is sufficiently large, the entanglement of interested atoms could be protected
efficiently.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ‘spooky-action-at-distance’ feature of special quantum
states was disliked by Einstein who, however, exploited it in an
attempt to convince the incompleteness of quantum mechan-
ics in 1935 [1]. Later in the same year, in a gedanken experi-
ment aiming at a possible demonstration of how the microscopic
and macroscopic worlds can directly be coupled to each other
[2], Schrödinger coined that ‘spooky’ feature entanglement (ver-
schränkung in German) and the states possessing it entangled
states. Nowadays, it is ubiquitous that entanglement offers a vi-
tal shared resource allowing to perform various quantum network
protocols only by means of local operations and classical commu-
nication (see, e.g., [3]). After production and before distribution
to remote authorized parties, entangled states are often stored for
some time in a register. But during the storage process entangled
states are degrading and tend to be separable for a sufficiently
long time. Therefore, protecting entanglement for a later use is of
paramount importance.

In this Letter we are interested in bipartite and tripartite en-
tangled states of two-level atoms (served as qubits) stored in a
common nonperfect cavity together with some N additional atoms
which are not entangled with the interested atoms as well as with
each other. At first thought one might guess that the presence of
such additional atoms would cause a negative affect on the quality
of the atomic entangled states when all the atoms evolve due to
interaction with the cavity modes. We shall develop exact theory
of the dynamics of a general class of multiatom states and then
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base on it to explicitly show that the entanglement degradation of
EPR-type and W-type states turns out to slow down as the number
of the additional atoms increases. Theoretically, the entanglement
quality could be invariant in the large-N limit.

2. EPR-type entanglement

In Ref. [4] the authors analyzed the exact entanglement dynam-
ics of two two-level atoms initially prepared in an EPR-type state∣∣epr(0)

〉
12 = (

a1(0)|10〉 + a2(0)|01〉)12, (1)

with |a1(0)|2 + |a2(0)|2 = 1 (which reduces to an EPR state [1]
when |a1(0)| = |a2(0)|) and |0〉 (|1〉) the atom ground (excited)
state, inside a common lossy (i.e., nonperfect) cavity at zero-
temperature with the Lorentzian spectral density

J (ω) = R2

π

Γ

(ω − ωc)2 + Γ 2
, (2)

where ωc is the frequency of the mode supported by the cavity, Γ 2

describes the leakage probability of the cavity mode through the
nonideal walls and R measures the atom–cavity coupling strength.
The result obtained is that the entanglement degree measured by
concurrence [6] decreases quickly with time in both the bad (i.e.,
weak coupling or Markovian regime) and good (i.e., strong cou-
pling or non-Markovian regime) cavity limits. To fight against the
entanglement deterioration the authors proposed a method by us-
ing the quantum Zeno effect, that requires a series of frequent
specific nonselective measurements on the collective atomic sys-
tem. Alternatively, atomic entanglement can also be protected by
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weak measurements combined with quantum measurement rever-
sals [5]. Here, we propose another method that does not need any
measurements. Instead, we add some N auxiliary atoms in the
ground state and let all the atoms evolve inside the cavity. That is,
at t = 0 the total atom–cavity system state is∣∣ψ(0)

〉
s = ∣∣epr(0)

〉
12|00 . . . 0〉34...N |0〉c, (3)

where N = N + 2 and |0〉c = ⊗
j |0 j〉c with |0 j〉c the cavity state

containing zero photon in mode j.
To see how the total system state (3) evolves in time, let us

study a more general problem as follows. Consider a nonperfect
cavity at zero-temperature with the spectral density (2) that con-
tains in it an N-atom (N � 3) state of the form∣∣Φ(0)

〉
12...N = (

a1(0)|10 . . . 0〉 + a2(0)|01 . . . 0〉 + · · ·
+ aN(0)|00 . . . 1〉)12...N , (4)

with
∑N

n=1 |an(0)|2 = 1. Extending the case of N = 2 in Ref. [4] to
an arbitrary N , the total atom–cavity system Hamiltonian is (h̄ = 1)

Ĥ = Ĥ0 + Ĥint, (5)

with

Ĥ0 =
N∑

n=1

Ωσ̂+
n σ̂n +

∑
j

ω jâ
+
j â j (6)

and

Ĥint =
N∑

n=1

∑
j

αn
(

g jσ̂
+
n â j + g∗

j σ̂nâ+
j

)
. (7)

In the above equations σ̂n = |0〉n〈1|, Ω is the atomic transition
frequency, while ω j and â j (â+

j ) are the frequency and the an-
nihilation (creation) operator of the cavity mode- j photon. The
interaction between the nth atom and the mode- j photon is de-
scribed by αn g j , with αn a real positive dimensionless constant
whose value depends on the value of the cavity field at the atom
position and can be effectively adjusted, say, by tuning the atomic
transition thanks to dc Stark effect [4]. In what follows, as in

Ref. [4], α =
√∑N

n=1 α2
n and rn = αn/α (so that

∑N
n=1 r2

n = 1) are
introduced for convenience.

The total system state at t = 0 is then∣∣Ψ (0)
〉
s = ∣∣Φ(0)

〉
12...N |0〉c . (8)

Since
∑

j â+
j â j + ∑N

n=1 σ̂+
n σ̂n commutes with Ĥ , at time t > 0 the

state (8) evolves into∣∣Ψ (t)
〉
s = e−iΩt

∣∣Φ(t)
〉
12...N |0〉c

+
∑

j

b j(t)e−iω j t |00 . . . 0〉12...N |1 j〉c, (9)

with |1 j〉c the cavity state containing only one photon in mode j.
The time-dependent coefficients an(t) and b j(t) can be derived
from the equation of motion governed by Ĥ :

i
dan(t)

dt
= αn

∑
j

g je
−i(ω j−Ω)tb j(t), (10)

i
db j(t)

dt
= g∗

j ei(ω j−Ω)t
N∑

n=1

αnan(t). (11)

Solving Eq. (11) for b j(t) with the initial condition b j(0) = 0 then
substituting it into Eq. (10) yields
dan(t)

dt
= −

t∫
0

∫
dω J (ω)e−i(ω−Ω)(t−t′)αn

N∑
m=1

αmam
(
t′)dt′. (12)

By Laplace transforming both sides of Eq. (12) we obtain an al-
gebraic closed set of equations for {ãn(z) = L[an(t)]}. Solving this
equation set and inverse Laplace transforming the solutions gives

an(t) = an(0) − rn F (t)
N∑

m=1

rmam(0) (13)

where

F (t) = 1 − e−(Γ +iΔ)t/2
[

cosh

(
t

2

√
(Γ + iΔ)2 − 4α2 R2

)

+ Γ + iΔ√
(Γ + iΔ)2 − 4α2 R2

× sinh

(
t

2

√
(Γ + iΔ)2 − 4α2 R2

)]
, (14)

with Δ = ωc −Ω . Defining the single-photon collective normalized
state of the cavity field as

|1〉c = eiωct

b(t)

∑
j

b j(t)e−iω j t |1 j〉c, (15)

with

b(t) =
√√√√1 −

N∑
n=1

∣∣an(t)
∣∣2

, (16)

we obtain the explicit expression for |Ψ (t)〉s:∣∣Ψ (t)
〉
s = e−iΩt[a1(t)|10 . . . 0〉 + a2(t)|01 . . . 0〉 + · · ·

+ aN(t)|00 . . . 1〉]12...N |0〉c

+ e−iωctb(t)|00 . . . 0〉12...N |1〉c, (17)

with an(t) and b(t) determined by Eqs. (13) and (16), respectively.
Returning now to the atoms’ state of interest, i.e., state

|epr(0)〉12|00 . . . 0〉34...N with |epr(0)〉12 given by Eq. (1). It can be
verified that state |epr(0)〉12|00 . . . 0〉34...N is a particular case of the
states |Φ(0)〉12...N in Eq. (4) with a3(0) = a4(0) = · · · = aN (0) = 0.
So the above analytical results for the general case apply to the
dynamics of EPR-type endamagement which we are interested in
in this section. Concretely, according to the general results derived
above, at any t > 0 state (3) evolves into state (17) with

an(t) = an(0) − rn F (t)
(
r1a1(0) + r2a2(0)

)
. (18)

The atomic state ρ12...N(t) is obtained by tracing out over the field
modes:

ρ12...N(t) = Trc
∣∣Ψ (t)

〉
s

〈
Ψ (t)

∣∣
= ∣∣Φ(t)

〉
12...N

〈
Φ(t)

∣∣ + ∣∣b(t)
∣∣2|00 . . . 0〉12...N〈00 . . . 0|.

(19)

The state of the two interested atoms 1 and 2 is then described
by the reduced density matrix ρ12(t) = Tr34...N ρ12...N (t). After the
necessary tracing procedure we arrive at

ρ12(t) =
(∣∣b(t)

∣∣2 +
N∑

m=3

∣∣am(t)
∣∣2

)
|00〉12〈00|

+ (
a1(t)|10〉 + a2(t)|01〉)12

(
a∗

1(t)〈10| + a∗
2(t)〈01|).

(20)
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Fig. 1. Concurrence C , Eq. (21), of the two-atom EPR-type entangled state (1) versus
the scaled time Γ t for a1(0) = a2(0) = 1/

√
2, Δ = 0, rn = 1/

√
N (N = N + 2) and

different values of N in (a) the Markovian regime with 2Rα/Γ = 0.8 and (b) the
non-Markovian regime with 2Rα/Γ = 8.0. In both (a) and (b) the curves from bot-
tom to top correspond to N = 0 (dashed) and N = 1, 3, 6, 15, 30 and 60 (solid).

As is clear from Eq. (20), ρ12(t) is of X form in which the only
nonzero elements are ρ12

00,00(t), ρ12
10,10(t), ρ12

10,01(t), ρ12
01,10(t) and

ρ12
01,01(t). Hence, the concurrence C(t) [6] of ρ12(t) is easy to cal-

culate. Explicitly in terms of the parameters involved it reads

C(t) = 2
∣∣a1(0)a2(0) − (

r1a2(0) + r2a1(0)
)

× (
r1a1(0) + r2a2(0)

)
F (t)

+ r1r2
(
r1a1(0) + r2a2(0)

)2
F 2(t)

∣∣, (21)

with F (t) defined in Eq. (14).
Fig. 1 plots the concurrence C , Eq. (21), as a function of Γ t

for different numbers N of the nonentangled atoms that are put
into the cavity in addition to the two interested entangled atoms
1 and 2. The dashed curve is for N = 0, while the solid ones are
for N � 1. We see that independent of the atom–cavity coupling
strength (i.e., in both the Markovian and non-Markovian regimes)
the concurrence decreases with time slower for N � 1 than for
N = 0. The oscillatory behavior of C in the non-Markovian regime
(Fig. 1b) is due to the well-known memory effect. It is worth em-
phasizing that for N = 0 the dead and revival phenomenon of
entanglement is well pronounced at the initial stage of evolution
but then the entanglement is rapidly vanishing. It is in clear con-
trast to the case of N > 0 for which the entanglement may survive
all the time (i.e., never be dead); it just suffers some oscillation at
the beginning and then saturates to a finite value, as confirmed in
Fig. 1b for N � 3. Of general significance is the better protection of
entanglement for a greater value of N . The decay of entanglement,
in theory, could be suppressed in the limit of large N .

3. W-type entanglement

A symmetric three-qubit entangled state called W state was
originally introduced in Ref. [7] which is more robust than oth-
ers in the sense that if either of the three qubits is lost the two
remaining ones are still entangled. W states have found useful ap-
plications in quantum information processing [8]. Useful are also
asymmetric versions of W state of the form
|w〉123 = (
a1|100〉 + a2|010〉 + a3|001〉)123,

3∑
n=1

|an|2 = 1, (22)

which are referred to as W-type states [9]. In Ref. [10] entan-
glement dynamics of W-type state (22) of three two-level atoms
embedded in a common structured cavity was examined in de-
tail and several methods to control the atoms’ entanglement were
suggested. In this section we shall study the influence of N � 1
nonentangled atoms on the evolution of the atomic W-type state.
These N auxiliary atoms are put into the cavity and evolve to-
gether with the three entangled atoms of interest. That is, at t = 0
we have the following state for the whole atom–cavity system∣∣χ(0)

〉
s = (

a1(0)|100〉 + a2(0)|010〉 + a3(0)|001〉)123

× |00 . . . 0〉45...N |0〉c . (23)

Note that the N-atom state (a1(0)|100〉 + a2(0)|010〉 +
a3(0)|001〉)123|00 . . . 0〉45...N is nothing else but the state (4) when
a4(0) = a5(0) = · · · = aN (0) = 0. This allows us to employ the gen-
eral theory developed in the previous section. Actually, at t > 0
state (23) evolves into state (17) in which now the coefficients
an(t) are determined by

an(t) = an(0) − rn F (t)
(
r1a1(0) + r2a2(0) + r3a3(0)

)
. (24)

The three interested atoms 1, 2 and 3, after a time duration t of
evolution together with the N atoms 4,5, . . . , N are described by
the reduced density matrix ρ123(t) = Trc45...N |Ψ (t)〉s〈Ψ (t)|. As a
result of calculations we obtain

ρ123(t) =
(∣∣b(t)

∣∣2 +
N∑

m=4

∣∣am(t)
∣∣2

)
|000〉123〈000|

+ (
a1(t)|100〉 + a2(t)|010〉 + a3(t)|001〉)123

× (
a∗

1(t)〈100| + a∗
2(t)〈010| + a∗

3(t)〈001|). (25)

To assess entanglement degree analytically the so-called lower
bound of concurrence (LBC) [11,12] can be used. Although van-
ishing LBC does not necessarily imply separability, a positive LBC
reveal entanglement with certainty. Thus, use of LBC for the ten-
dency of entanglement dynamics is acceptable. The LBC of a three-
qubit mixed state ρ123 is defined by

LBC
(
ρ123)

=

√√√√√1

3

6∑
j=1

[(
C12|3

j

(
ρ123

))2 + (
C31|2

j

(
ρ123

))2 + (
C23|1

j

(
ρ123

))2]
,

(26)

where

Ckl|m
j

(
ρ123) = max

{
0,

√
λ

kl|m
j,1 −

∑
n>1

√
λ

kl|m
j,n

}
(27)

and λ
kl|m
j,n are the eigenvalues, in decreasing order, of the non-

Hermitian matrix ρ(Lkl
j ⊗ σm

y )ρ∗(Lkl
j ⊗ σm

y ) with {Lkl
j ; j = 1,

2, . . . ,6} the six generators of group SO(4) [13] acting on qubits
k, l and σm

y the y-Pauli matrix acting on qubit m. For the density
matrix (25) we have explicitly

LBC =
{

8

3

[∣∣a1(0)a2(0) − (
r1a2(0) + r2a1(0)

)
× (

r1a1(0) + r2a2(0) + r3a3(0)
)

F (t)
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Fig. 2. Lower bound concurrence LBC, Eq. (28), of the three-atom W-type entangled
state (22) versus the scaled time Γ t for a1(0) = a2(0) = a3(0) = 1/

√
3, Δ = 0, rn =

1/
√

N (N = N + 3) and different values of N in (a) the Markovian regime with
2Rα/Γ = 0.8 and (b) the non-Markovian regime with 2Rα/Γ = 8.0. In both (a)
and (b) the curves from bottom to top correspond to N = 0 (dashed) and N = 1,
3, 6, 15, 30 and 60 (solid).

+ r1r2
(
r1a1(0) + r2a2(0) + r3a3(0)

)2
F 2(t)

∣∣2]
+ [∣∣a1(0)a3(0) − (

r1a3(0) + r3a1(0)
)

× (
r1a1(0) + r2a2(0) + r3a3(0)

)
F (t)

+ r1r3
(
r1a1(0) + r2a2(0) + r3a3(0)

)2
F 2(t)

∣∣2]
+ [∣∣a2(0)a3(0) − (

r2a3(0) + r3a2(0)
)

× (
r1a1(0) + r2a2(0) + r3a3(0)

)
F (t)

+ r2r3
(
r1a1(0) + r2a2(0) + r3a3(0)

)2
F 2(t)

∣∣2]}1/2

. (28)

The dynamics of W-type entanglement displayed in Fig. 2
is similar to that of EPR-type entanglement, consolidating the
efficiency of our proposed method to protect atoms’ entangle-
ment in a common lossy environment. Generally, as visual from
Fig. 2, LBC(N ′) > LBC(N ) for N ′ > N and LBC(t) → LBC(0) in the
large-N limit.

4. Conclusion

To summarize, we have suggested a method to cope with
degradation of EPR-type and W-type entanglement of atoms im-
mersed in a common nonperfect cavity by adding a number of
auxiliary atoms prepared in their ground states. All the atoms in-
teract with the common cavity modes and evolve together. We
have analytically solved the problem in a rigorous nonperturba-
tive manner so that the results are valid in both the Markovian
and non-Markovian regimes. Although during their evolution all
the atoms get entangled with each other, we have shown that the
entanglement of the interested atoms’ state obtained by tracing
out over the added atoms decays slower than it would do with-
out the added atoms. And, the entanglement protection is more
efficient when the number of added atoms increases. So the en-
tanglement degradation of the interested atoms could be remark-
ably suppressed by adding sufficiently many auxiliary atoms. Our
method requires neither cavity detuning nor repeated projective
measurements using the quantum Zeno effect as proposed previ-
ously in Refs. [4,5,10]. Similar idea was touched upon in Ref. [14]
to provide more entanglement of a special class of state of two
qubits within the same environment.
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