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Scheme for the generation of freely traveling optical trio coherent states
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Trio coherent states (TCSs) are non-Gaussian three-mode entangled states which can serve as a useful resource
for continuous-variable quantum tasks, so their generation is of primary importance. Schemes exist to generate
stable TCSs in terms of vibrational motion of a trapped ion inside a crystal. However, to perform quantum
communication and distributed quantum computation the states should be shared beforehand among distant
parties. That is, their modes should be able to be directed to different desired locations in space. In this work,
we propose an experimental setup to generate such free-traveling TCSs in terms of optical fields. Our scheme
uses standard physical resources, such as coherent states, balanced beam splitters, phase shifters, nonideal on-off
photodetectors, and realistic weak cross-Kerr nonlinearities, without the need of single photons or homodyne or
heterodyne measurements. We study the dependences of the fidelity of the state generated by our scheme with
respect to the target TCS and the corresponding generation probability for the parameters involved. In theory, the
fidelity could be nearly perfect for whatever weak nonlinearities τ and low photodetector efficiency η, provided
that the amplitude |α| of an input coherent state is large enough, namely, |α| � 5/(

√
ητ ).
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I. INTRODUCTION

Coherent states introduced by Glauber [1] and Sudarshan
[2] as minimum uncertainty states or eigenstates of the
field annihilation operator play a very significant role in
mathematical physics, quantum optics, and quantum informa-
tion sciences, from both theoretical and experimental points
of view, especially after the invention of lasers. Although
coherent states are themselves the most classical states, their
superposition may exhibit various interesting nonclassical
effects that have no counterparts in the classical world. Thus,
coherent-state superpositions quickly attracted a lot of inten-
sive attention [3]. The simplest single-mode superposition of
two distinguishable coherent states is perhaps the cat state,
a name coined from Schrödinger’s [4] paradox where a cat
could simultaneously be alive and dead. Information can be
encoded in cat states. However, for the encoding to be useful,
one should be capable of manipulating that kind of quantum
information; that is, one should be able to teleport or to
remotely prepare such cat states for the purpose of quantum
communication as well as to perform quantum logic gates on
them for the purpose of quantum computation. These require
special nonlocal resources by means of superpositions of
multimode coherent states, which are referred to as entangled
coherent states (ECSs) [5]. In fact, many types of ECSs exist,
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such as Einstein-Podolsky-Rosen [6], Greenberger-Horne-
Zeilinger [7], W [8,9], cluster [10,11], and so on. Among
other types of ECSs worthy of studying are the so-called pair
coherent state (PCS) [12–17] and trio coherent state (TCS)
[18,19], which provide attractive examples for non-Gaussian
nonclassical states of two- and three-mode continuous-variable
fields. PCSs have found applications in testing quantum
mechanics versus local realism [13], in quantum teleportation
[14], in entanglement swapping [15], in Heisenberg-limited
interferometry [16], etc. As for TCSs, they promise to be useful
in quantum tasks involving three parties, such as controlled
teleportation [20], quantum secret sharing [21], and joint
remote state preparation [22] in the discrete-variable context.
Before proposing possible quantum protocols using TCSs,
one needs to generate them. Actually, stable TCSs can be
produced for the vibrational motion of an ion trapped in a
three-dimensional isotropic harmonic potential [19]. However,
such vibrational TCSs are confined inside a crystal, giving no
benefit to performing global quantum information processing
and distributed quantum computing when the participating
parties are far apart from each other.

In this paper, we propose a feasible scheme to generate
optical TCSs whose modes can freely travel in space so
that any three distant parties are able to share them for a
subsequent desired cooperation. The actual physical inputs
are very simple: only four coherent states are needed, without
any single-photon sources. Furthermore, our scheme does
not require photon-number-resolving detectors or homodyne
or heterodyne measurements. As for linear optical devices,
four balanced beam splitters and several ordinary phase
shifters suffice. Also, four cross-Kerr media are necessary,
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but strong nonlinearities are not at all a prerequisite for
implementing the generation process. Taken altogether, our
scheme is within the reach of current technologies. In Sec. II,
we first recapitulate the definition of the TCS and describe
the experimental setup, then proceed to explain in detail how
our scheme works. We derive explicit analytic expressions for
the fidelity of the generated state with respect to the desired
TCS and the corresponding probability. The dependence of
these characteristics on the parameters involved is also studied.
Finally, we conclude in Sec. III.

II. OPTICAL TRIO COHERENT STATES
AND GENERATION SCHEME

A TCS |�p,q(ξ )〉123, with ξ being complex and p,q

being integers, is a three-mode entangled state which can be
represented by a continuous superposition of three coherent
states as

|�p,q(ξ )〉123 = Np,q(r)e3r2/2
∫ 2π

0

dϑ

2π

∫ 2π

0

dϑ ′

2π
e−i[qϑ+(q+p)ϑ ′]

× |ξeiϑ 〉1|ξeiϑ ′ 〉2|ξe−i(ϑ+ϑ ′)〉3, (1)

where |ξeiϑ 〉1, |ξeiϑ ′ 〉2, and |ξe−i(ϑ+ϑ ′)〉3 are three ordinary
coherent states, r = |ξ |, and

Np.q(r) =
( ∞∑

n=0

r2(3n+2q+p)

n!(n + q)!(n + q + p)!

)−1/2

. (2)

By definition [18] the TCS is the simultaneous eigenstate of
the three operators Â123 = â1â2â3, N̂21 = â

†
2â2 − â

†
1â1, and

N̂32 = â
†
3â3 − â

†
2â2, with â

†
i (âi) being the bosonic creation

(annihilation) operator of mode i = 1,2,3 of an optical field.
That is, |�p,q(ξ )〉123 is the solution of the following three
equations:

Â123|�p,q(ξ )〉123 = ξ 3|�p,q(ξ )〉123, (3)

N̂21|�p,q(ξ )〉123 = q|�p,q (ξ )〉123, (4)

N̂32|�p,q(ξ )〉123 = p|�p,q(ξ )〉123. (5)

Represented in Fock space, |�p,q(ξ )〉123 reads [18]

|�p,q(ξ )〉123 = Np,q (r)
∞∑

n=0

ξ 3n+2q+p

√
n!(n + q)!(n + q + p)!

× |n〉1 |n + q〉2 |n + q + p〉3 , (6)

where |m〉i denotes a number state of mode i containing
m photons. Nonclassical properties of TCSs, such as sub-
Poissonian statistics, violation of Cauchy-Schwarz inequal-
ities, antibunching, and squeezing, as well as extensions to
higher-order and multidimensional effects, were considered in
great detail [18]. As is evident from Eq. (6), if we detect either
one of the three modes and find a concrete number of photons,
then we immediately know with certainty how many photons
there are in the other two modes, without any ways to “touch”
those modes and independent of how far apart the modes are.
Such a spooky influence at distance signifies that |�p,q(ξ )〉123

are entangled states and could serve as nonlocal resources for
quantum communication and distributed quantum computing,
provided that they can be generated in practice and shared

FIG. 1. Schematic experimental setup for generation of free-
traveling optical TCSs. B1 to B4 are balanced beam splitters, a square
with, e.g., θ is a phase shifter P̂ (θ ), a shaded rectangle with ±χ is
a cross-Kerr medium with nonlinearities ±χ , and D1 and D2 are
nonideal on-off photodetectors. Inputs 1, 2, and 3 are coherent states
whose amplitude |ξ | is the same as that of the TCS to be prepared,
but the amplitude |α|√2 of input 4 must be large enough (see text),
while nothing is injected into the inputs 5 and 6. The circles on paths
1, 2, and 3 denote devices that synchronize the modes’ incoming to
the cross-Kerr media.

among remote parties. The schemes proposed in Ref. [19]
indeed generate TCSs which are, however, associated with
the bosonic field of the vibrational motion of a trapped ion
inside a crystal that cannot be distributed for global quantum
tasks. Here, we design an experimental setup to produce optical
TCSs whose modes, although entangled with each other, can
be guided to propagate to any location in open space.

Our experimental setup is schematically sketched in
Fig. 1. The linear optical devices we use are balanced (or
50:50) beam splitters and phase shifters. A balanced beam
splitter is described by a unitary operator B̂ij that transforms
two separable coherent states |α〉i |β〉j to two other separable
ones as follows:

B̂ij |α〉i |β〉j =
∣∣∣∣α + iβ√

2

〉
i

∣∣∣∣β + iα√
2

〉
j

. (7)

A phase shifter is described by a unitary operator P̂i(φ) that
induces a shift of a coherent state |α〉i in phase space as

P̂i(φ)|α〉i = |αeiφ〉i . (8)

Because, as is well known, it is impossible to produce entangle-
ment through linear optics alone, a kind of nonlinearity should
be demanded. We employ the cross-Kerr nonlinearity (CKN)
for our purpose. CKN has proven to be a powerful tool to
implement various interesting tasks in quantum information
processing and quantum computing. Namely, CKN was
extensively exploited for preparing Schrödinger’s cat states
[23], W -type ECSs [9], cluster-type ECSs [11], and hybrid
entanglement [25], for quantum nondemolition measurement
of photon numbers [24], for constructing quantum logic
gates [26], for entanglement distillation [27], for a Bell-state
analyzer [28], etc. As two optical beams do not talk to
each other in the vacuum, CKN plays a role. Its effect is
to bring about an interaction between the two beams when
they propagate at the same time through a nonlinear (Kerr)
medium. The self-Kerr effect of each beam can be ignored by
appropriately choosing resonances of the Kerr medium [29].
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Then, the action of CKN amounts to an evolution operator

K̂ij (χ ) = e−iχtâ
†
i âi â

†
j âj , (9)

with χ being the strength of nonlinearity and t be-
ing the time the two beams, i and j , interact with
each other inside the medium. If the two optical beams
are in coherent states |α〉i |β〉j , then K̂ij (χ )|α〉i |β〉j =
e−|α|2/2 ∑∞

n=0 αn|n〉i |βe−iχtn〉j /
√

n!. Of interest is the case
when the first beam is in a Fock state and the second beam is
in a coherent one, in which case we have a simple evolution:

K̂ij (χ ) |n〉i |β〉j = |n〉i |βe−iχtn〉j ; (10)

that is, the Fock state is uninfluenced but the coherent one
gains a phase, −χtn, after leaving the medium.

Usually, as in various quantum tasks, input states are single
photons, thus facing delicate problems. First, on-demand
single-photon sources are still challenging. Second, even more
serious, CKN at the single-photon level may not be helpful
if the causal, noninstantaneous behavior of the nonlinearities
are accurately taken into account [30]. Our scheme does not
confront us with those problems since we employ four coherent
states as the inputs: three of them, |ξ 〉1, |ξ 〉2, and |ξ 〉3, are the
same size as the TCS, |�p,q(ξ )〉123, to be generated, while
the fourth one, |√2α〉4, has a large size, |α| � 1. Hence, our
overall input state is (see Fig. 1)

|�in〉 = |ξ,ξ,ξ 〉123|
√

2α〉4|0〉5|0〉6, (11)

with |ξ,ξ,ξ 〉123 ≡ |ξ 〉1 |ξ 〉2 |ξ 〉3 and |0〉i being the vacuum
state. Since it is convenient to use formula (10), we reexpress
Eq. (11) as

|�in〉 =
∞∑

n,m,k=0

anmk|n,m,k〉123|
√

2α〉4|0〉5|0〉6, (12)

where |n,m,k〉123 ≡ |n〉1|m〉2|k〉3 and anmk = anamak , with

al = e−r2/2 ξ l

√
l!

(13)

coming from the Fock representation of a coherent state,
|ξ 〉i = ∑∞

l=0 al|l〉i .
After passing the first balanced beam splitter B1 and phase

shifter P̂5(θ ), |�in〉 is transformed to

|�1〉 =
∞∑

n,m,k=0

anmk|n,m,k〉123|α〉4|iαeiθ 〉5|0〉6, (14)

which, after the second balanced beam splitter B2 and phase
shifter P̂6(φ), becomes

|�2〉 =
∞∑

n,m,k=0

anmk|n,m,k〉123|α〉4

∣∣∣∣ iαeiθ

√
2

〉
5

∣∣∣∣ − αei(θ+φ)

√
2

〉
6

.

(15)

The lengths of the optical path of beams 1, 2, and 3 should
be controlled so that they enter the Kerr media with the
nonlinearity χ at the same time as beams 4, 5, and 6 do. Then,
after passing through the three Kerr media K̂14(χ ), K̂36(χ ),

and K̂25(χ ), the total system state emerges in the form

|�3〉 =
∞∑

n,m,k=0

anmk |n,m,k〉123 |αe−iχtn〉4

∣∣∣∣ iαe−i(χtm−θ)

√
2

〉
5

×
∣∣∣∣−αe−i(χtk−θ−φ)

√
2

〉
6

. (16)

Setting

χt = τ � 1, θ = τq, φ = τp (17)

in Eq. (16) yields

|�3〉 =
∞∑

n,m,k=0

anmk |n,m,k〉123 |αn〉4

∣∣∣∣ iαm−q√
2

〉
5

∣∣∣∣−αk−q−p√
2

〉
6

,

(18)
with

αl = αe−iτ l . (19)

Next, mode 5 is superposed first with mode 6 on the third
balanced beam splitter B3 and then with mode 4 on the
fourth balanced beam splitter B4. Note that mode 5 should go
through a sequence of three phase shifters, P̂5(π ) → P̂5(π ) →
P̂5(π/2), as shown in Fig. 1. As a result, state |�3〉 is brought
to

|�4〉 =
∞∑

n,m,k=0

anmk |n,m,k〉123

∣∣∣∣2αn − αm−q − αk−q−p

2
√

2

〉
4

×
∣∣∣∣−2αn + αm−q + αk−q−p

2
√

2

〉
5

∣∣∣∣αm−q − αk−q−p

2

〉
6

.

(20)

Afterwards, modes 1 and 5 are guided to simultaneously prop-
agate through the fourth Kerr medium with the nonlinearity
−χ, which outputs the overall state

|�out〉 =
∞∑

n,m,k=0

anmk |n,m,k〉123 |βnmk〉4 |γnmk〉5 |λnmk〉6 ,

(21)
with βnmk, γnmk , and λnmk given explicitly by

βnmk = αe−iτn

2
√

2

(
2 − eiτ (n−m+q) − eiτ (n−k+q+p)

)
, (22)

γnmk = − α

2
√

2

(
2 + eiτ (n−m+q) + eiτ (n−k+q+p)

)
, (23)

λnmk = αe−iτn

2

(
eiτ (n−m+q) − eiτ (n−k+q+p)

)
. (24)

At the final stage, we arrange two photodetectors, D1 and
D2, to detect modes 4 and 6, respectively. Assuming ideal
photodetectors (i.e., they are able to resolve photon numbers),
the detection of mode j amounts to performing a complete set
of measurement operators,

M̂
nj

j = |nj 〉j 〈nj |, nj = 0,1,2, . . . (25)

Because M̂
nj +
j M̂

nj

j = (M̂
nj

j )2 = M̂
nj

j , this is a projective
measurement projecting the mode onto a certain number state
in Fock space. Let the measurement outcomes be {n4,n6} (i.e.,
n4 photons of mode 4 and n6 photons of mode 6 are detected),
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which occurs with a probability Pn4n6 . Then |�out〉 in Eq. (21)
is collapsed into

|�n4n6〉 = |�n4n6〉√
Pn4n6

, (26)

where

|�n4n6〉 = M̂
n4
4 ⊗ M̂

n6
6 |�out〉 = |φn4n6〉1235 |n4〉4 |n6〉6 , (27)

with

|φn4n6〉1235 =
∞∑

n,m,k=0

anmk〈n4|βnmk〉

× 〈n6|λnmk〉|n,m,k〉123 |γnmk〉5 , (28)

and

Pn4n6 = 〈�n4n6 |�n4n6〉 =
∞∑

n,m,k=0

|anmk〈n4|βnmk〉〈n6|λnmk〉|2.
(29)

We are concerned with modes 1, 2, and 3, whose state is
characterized by a reduced density matrix of the form

ρ
n4n6
123 = 1

Pn4n6

Tr5|φn4n6〉1235〈φn4n6 |

= 1

Pn4n6

∞∑
n,m,k,n′,m′,k′=0

a∗
n′m′k′anmk〈n4|βnmk〉〈βn′m′k′ |n4〉

×〈γn′m′k′ |γnmk〉〈n6|λnmk〉
× 〈λn′m′k′ |n6〉|n,m,k〉123〈n′,m′,k′|, (30)

where Tr5 denotes the trace over mode 5. The fidelity of state
ρ

n4n6
123 with respect to the target state |�p,q(ξ )〉123, Fn4n6 =

123〈�p,q (ξ )|ρn4n6
123 |�p,q(ξ )〉123, can be calculated as

Fn4n6 = e−3r2

Pn4n6N 2
p,q (r)

|〈n4 |0〉 〈n6 |0〉|2 . (31)

Due to the factors |〈n4 |0〉 〈n6 |0〉|2 in Eq. (31), it is transparent
that a nonzero fidelity is obtained only for n4 = n6 = 0. If so,
the fidelity of the so-generated state ρ00

123 is

F = F00 = e−3r2

P00N 2
p,q(r)

. (32)

As for the corresponding generation probability P00, we put
n4 = n6 = 0 in Eq. (29) and then use the equality 〈0 |ζ 〉 =
exp(−|ζ |2/2) to obtain

P = P00 =
∞∑

n,m,k=0

|anmk|2e−(|βnmk |2+|λnmk |2), (33)

which, after some transformations using Eqs. (13), (22), (23),
and (24), has the explicit expression

P = e−3r2
∞∑

n,m,k=0

r2(n+m+k)

n!m!k!

× e− |α|2
4 {5−2 cos[(m−n−q)τ ]−2 cos[(k−n−p−q)τ ]−cos[(k−m−p)τ ]}.

(34)

2 4 6
r

0.2

0.4

0.6

0.8

1
P

2 4 6
r

0.2

0.4

0.6

0.8

1
F

FIG. 2. (Color online) (top) The fidelity F , Eq. (32), of the
generated state ρ00

123 with respect to the target TCS, Eq. (6), and
(bottom) the corresponding generation probability P , Eq. (34), vs
r = |ξ | for p = q = 0, τ = 10−3, and |α| = 103, 2 × 103, 3 × 103,
and 5 × 103.

The above analysis indicates that we fail whenever any finite
number of photons is detected by D1 and/or D2. This means
that photon-number resolving turns out to not be necessary,
and what we actually need is just on-off photodetectors that
are silent for zero photons and click otherwise.

We plot in Fig. 2 the fidelity F, Eq. (32), and the
probability P, Eq. (34), as functions of r = |ξ | for p = q = 0,

τ = 10−3, and several values of |α|. The fidelity improves as
the size of the coherent state in input mode 4 increases, at
the expense of reduced success probability. As a numerical
illustration, for τ = 10−3, r = 0.5, and |α| = 103 (3 × 103,

5 × 103), the fidelity is F  60.74% (97.59%, 99.99%),
and the corresponding probability is P  0.7898 (0.4916,

0.4798).
Recall that we have assumed photodetectors D1 and D2 to

be ideal, and in order to succeed we have to have no clicks at
either of them; that is, no photons at all should be detected.
Nevertheless, in realistic circumstances photodetectors are not
ideal in the sense that they may still be silent (i.e., not produce
a click) even when there are some photons coming in. To
account for such effects we introduce the detector’s efficiency
η (0 < η < 1) and describe nonideal on-off photodetection by
the two following measurement operators:

�̂on
j =

∞∑
nj =0

√
f on

nj
(η)|nj 〉j 〈nj |, f on

nj
(η) = 1 − (1 − η)nj

(35)
and

�̂off
j =

∞∑
nj =0

√
f off

nj
(η)|nj 〉j 〈nj |, f off

nj
(η) = (1 − η)nj , (36)

which correspond to a “click” (on) and “no clicks” (off)
of a nonideal photodetector, respectively. It is simple to
verify that f on

m (η) and f off
m (η) are probabilities of the
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outcomes on and off for a state containing m photons.
Note, in particular, that f off

m (η) > 0 even for m > 0. Al-
though �̂on+

j �̂on
j + �̂off+

j �̂off
j = Îj (Îj is the identity operator

for mode j ), �̂on+
j �̂on

j = (�̂on
j )2, and �̂off+

j �̂off
j = (�̂off

j )2,

as it should, the following inequalities hold: �̂on
j �̂off

j �= 0,

(�̂on
j )2 �= �̂on

j , and (�̂off
j )2 �= �̂off

j . Thus, this is not a projective
measurement but in fact belongs to a two-element positive
operator-valued measure (POVM) specified by {Êon

j ,Êoff
j },

with Êon
j = �̂on+

j �̂on
j and Êoff

j = Îj − Êon
j .

Let the outcome of measuring mode 4 be x = on or off
and the outcome of measuring mode 6 be y = on or off. Then,
the possible outcomes of measuring modes 4 and 6 by two
nonideal photodetectors D1 and D2 with the same efficiency
η are {x,y} = {on,on}, {on, off}, {off, on}, or {off, off}, for
which |�out〉 in Eq. (21) becomes

|�x,y(η)〉 = |�x,y(η)〉√
Px,y(η)

, (37)

where

|�x,y(η)〉 = �̂x
4 ⊗ �̂

y

6 |�out〉

=
∞∑

n,m,k,n4,n6=0

anmk

√
f x

n4
(η)f y

n6 (η)〈n4|βnmk〉

× 〈n6|λnmk〉|n,m,k〉123|n4〉4|γnmk〉5|n6〉6 (38)

and

Px,y(η) =〈�x,y(η)|�x,y(η)〉

=
∞∑

n,m,k,n4,n6=0

f x
n4

(η)f y
n6

(η)|anmk〈n4|βnmk〉〈n6|λnmk〉|2.

(39)

After obtaining the outcomes {x,y} the reduced density matrix
characterizing modes 1, 2, and 3 takes the form

ρ
x,y

123(η) = Tr456|�x,y(η)〉〈�x,y(η)|

= 1

Px,y(η)

∞∑
n′,m′,k′,n,m,k,n4,n6=0

f x
n4

(η)f y
n6

(η)a∗
n′m′k′anmk

×〈n4|βnmk〉〈βn′m′k′ |n4〉〈γn′m′k′ |γnmk〉
×〈n6|λnmk〉〈λn′m′k′ |n6〉|n,m,k〉123〈n′,m′,k′|, (40)

where Tr456 denotes the trace over modes 4, 5, and 6. Now we
can calculate the fidelity of ρ

x,y

123(η) with respect to |�p,q (ξ )〉123,
which after some transformations can be expressed explicitly
as

Fx,y(η) = e−3r2

Px,y(η)N 2
p,q(r)

∞∑
n4,n6=0

f x
n4

(η)f y
n6

(η)|〈n4|0〉〈n6|0〉|2

= e−3r2

Px,y(η)N 2
p,q(r)

f x
0 (η)f y

0 (η). (41)

Returning to Eqs. (35) and (36), we realize that f x
0 (η)f y

0 (η)
vanishes unless x = y = off, in which case f off

0 (η)f off
0 (η) = 1.

Thus, we would succeed iff both of the nonideal photode-
tectors, D1 and D2, are silent. Then, the fidelity of the

so-generated state ρ
off,off
123 (η) is

F (η) = Foff,off(η) = e−3r2

Poff,off(η)N 2
p,q(r)

. (42)

As for the corresponding generation probability Poff,off(η), we
put x = y = off in Eq. (39) and then use the equality 〈m |ζ 〉 =
exp(−|ζ |2/2)ζm/

√
m! to obtain

P (η) = Poff,off(η) =
∞∑

n,m,k,n4,n6=0

f off
n4

(η)f off
n6

(η)
|βnmk|2n4

n4!

× |λnmk|2n6

n6!
|anmk|2e−(|βnmk |2+|λnmk |2), (43)

which, after some transformations using Eqs. (13), (22), (23),
(24), and (36), has the explicit expression

P (η)= e−3r2
∞∑

n,m,k=0

r2(n+m+k)

n!m!k!

×e− η|α|2
4 {5−2 cos[(m−n−q)τ ]−2 cos[(k−n−p−q)τ ]−cos[(k−m−p)τ ]}.

(44)

We plot in Fig. 3 the fidelity F (η), Eq. (42), and the
corresponding probability P (η), Eq. (44), as functions of
r = |ξ | for p = q = 0, fixed values of τ and |α|, and
different values of η. As the photodetector efficiency in-
creases, the fidelity gets better while the probability remains
almost unchanged. For τ as small as 10−3 and |α| as large
as 5 × 103, the fidelity F (η) already exceeds 99.9% for
η � 0.7. As a numerical illustration, for the data used in
Fig. 3, when η = 0.2, 0.3,0.5, and 0.7, we have, at r = 0.5,

F (η) = 89.23%, 95.74%, 99.37%, and 99.91%, while P (η) =
53.76%, 50.11%, 48.28%, and 48.02%, respectively.
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FIG. 3. (Color online) (top) The fidelity F, Eq. (42), of the
generated state ρ00

123 with respect to the target TCS, Eq. (6), and
(bottom) the corresponding generation probability P, Eq. (44), vs
r = |ξ | for p = q = 0, τ = 10−3, |α| = 5 × 103, and η = 0.2, 0.3,

0.5, and 0.7.
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FIG. 4. (Color online) (top) The fidelity F, Eq. (32), of the
generated state ρ00

123 with respect to the target TCS, Eq. (6), and
(bottom) the corresponding generation probability P, Eq. (34), vs τ

for p = q = 0, r = |ξ | = 1, and |α| = 103, 2 × 103, 3 × 103, and
5 × 103.

The influence of the CKN’s strength can be clearly seen
from Fig. 4, which plots F, Eq. (32), and P, Eq. (34), as
functions of τ for a fixed value of r = |ξ | and different values
of |α|. As expected, for given values of |α| and r, the fidelity
F (the probability P ) increases (decreases) with the CKN’s
strength τ, which is reasonable. In this context a comment on
Ref. [17], which dealt with the generation of PCS, is worth
mentioning. According to that reference, the generated state
(given by Eq. (19) in [17]) gets closer to the target PCS (given
by Eq. (2) in [17]) for a bigger N. However, as seen from the
setting preceding Eq. (9) in [17], the strength of nonlinearity
decreases with increasing N. This means that their scheme
would have worked better for a smaller strength of nonlinearity.
Particularly, the result claimed by the authors of [17], that
“in the limit of K → ∞, which implies N → ∞, the state
Eq. (19) returns to the Eq. (2),” i.e., the fidelity tends to 100% in
the limit N → ∞ (τ → 0), is implausible. The unreasonable
point rests in their setting χt = π/N , which renders CKN an
N dependence.

Before concluding we would like to establish an interesting
combined dependence on the parameters involved. Making use
of the fact that the CKN is generally very weak (i.e., τ � 1),
we can, to a good approximation, express the probability P (η)
of Eq. (44) in the form

P (η)  e−3r2
∞∑

n,m,k=0

r2(n+m+k)

n!m!k!

×e− η|α|2τ2

4 [ 1
2 (m−k+p)2+(n−m+q)2+(n−k+p+q)2]. (45)

This formula reveals that the probability P (η) and thus the
fidelity F (η) depend collectively on the product η|α|2τ 2 rather
than individually on each of η, |α|, and τ. From Fig. 5, which
shows the dependence of the fidelity and the corresponding
probability on the collective parameter Z = √

η|α|τ for
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FIG. 5. (Color online) (top) The fidelity F, Eq. (42), of the
generated state ρ00

123 with respect to the target TCS, Eq. (6), and
(bottom) the corresponding generation probability P , Eq. (45), vs
Z = √

η|α|τ for p = q = 0 and r = 0.5, 0.7, 1.0, and 3.0.

various values of r, we can recognize that the fidelity is
almost 100% when Z � 5. The inequality Z = √

η|α|τ � 5 is
meaningful. It signifies that our scheme still works well even
for weak CKN and low photodetector efficiency if the coherent
beam injected into mode 4 is intense enough. For instance,
for η as low as 0.8, a weak CKN of the order of τ = 10−4

would require a coherent state with |α| � 5.59 × 104. Hence,
a realistic pump having on average 1012 photons per pulse
(corresponding to |α| ∼ 106) would compensate for CKNs
as weak as with τ ∼ 1.1 × 10−5 (7.9 × 10−6,6.4 × 10−6) if
η = 0.2 (0.4, 0.6).

III. CONCLUSION

In conclusion, we have designed an experimental setup for
generating TCSs in terms of three light fields that can freely
be directed to any intended locations in open space. The set
of physical resources comprises four coherent states, standard
linear optical elements, and four cross-Kerr media. Among the
four input coherent states, three are of the size of O(1), the
same as that of the target TCS, and one is of a much larger size.
The optical elements include ordinary balanced beam splitters,
phase shifters, and nonideal on-off photodetectors. As for
CKNs, their natural strength is tiny (of the order of τ ∼ 10−18

[31]), while direct use of them would demand τ ∼ π, which is
extremely difficult to achieve. Here the use of CKNs is com-
bined with a large-size coherent state supplied by an intense
laser source. The fidelity of the state generated by our scheme
with respect to the desired TCS depends approximately upon
the product η|α|2τ 2 and reaches almost 100% for

√
η|α|τ � 5.

Hence, even with an inefficient on-off photodetector with
η ∼ 0.8, a laser pulse with about a 106 mean photon number
[i.e., |α| ∼ O(103)] would offset the smallness of CKNs with
τ ∼ O(10−3). Such weak (but not tiny) CKNs can potentially
be engineered in practice within present technologies using
various means, such as doped optical fibers, cavity quantum
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electrodynamics, electromagnetically induced transparency,
etc. (see, e.g., [32]). Therefore, strong CKNs are not at all
a compulsory precondition, and weak CKNs are thought
to promise a bright perspective for quantum information
processing and quantum computing [33]. The fact that our
scheme is nondeterministic causes no problems, for the TCSs
we generate will be supplied off-line for a subsequent given
quantum task. Furthermore, unlike in many other schemes and
protocols for quantum-state engineering, we require neither
homodyne or heterodyne measurements nor single-photon
sources, which would raise the delicate issues associated with
single-photon-level Kerr nonlinearities [30]. In our scheme
we instead used coherent states as inputs to cross-Kerr media.

An advantage of using coherent states over single photons
is obvious since the rate of single-photon generation is very
small, which through parametric down conversion is about
one in a million. However, whether coherent-state inputs can
overcome the problems pointed out in Ref. [30] remains an
open question. If they can, our scheme would be feasible.
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