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We propose a feasible and efficient scheme to generate N-atom W -class states in spatially separated cavities with-
out using any classical driving pulses. We adopt the model in which the couplings between different atoms are
mediated only by virtual excitations of the cavity and fiber fields, so the scheme is insensitive to the cavity decay
and fiber photon leakage. We carry out both theoretical investigation in a decoherence-free subspace and numeri-
cal calculation accounting for decoherence due to the atomic spontaneous emission as well as the decay of cavity
and fiber modes. The theoretical and numerical results agree in the large atom-cavity detuning regime. Our scheme
proves to be useful in scalable distributed quantum networks. © 2013 Optical Society of America
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1. INTRODUCTION
Entanglement, a fundamental feature in quantum mechanics,
is a key resource for quantum information processing (QIP)
[1,2], such as quantum teleportation [3], quantum dense cod-
ing [4], quantum cryptography [5], and quantum computation
[6]. If a composite system is entangled, the whole system can-
not be split into independent subsystems. Typical entangled
states are the Bell states [7], the Greenberger–Horne–
Zeilinger-class states [8,9] and the W -class states [10]. A state
is called an N -qubit W -class state if it is of the form
x1j10 � � � 0i � x2j01 � � � 0i � � � � � xN j00 � � � 1iwith

PN
n�1 jxnj2 �

1 and j0i, j1i being two orthonormal vectors in the two-
dimensional (2D) Hilbert space of the qubit. The N -qubit W
state corresponds to x1 � x2 � � � � � xN � 1∕

�����
N

p
. Compared

with other types of entangled states, W -class state constitutes
a very important family of states possessing a high degree of
robustness against the qubit loss as they maintain some
entanglement when more than two qubits remained [11,12].
Furthermore, deterministic protocols for teleportation and
superdense coding [13] have been designed by utilizing
W -class entanglements [14]. An asymmetrical N -partite
W -class state is also an essential quantum channel for quan-
tum information splitting [15,16] and can be converted to an-
other N -partiteW -class state via local operations and classical
communications [17]. Therefore, the generation of N -partite
W -class states has proved to be an urgent task for the QIP.

However, to our knowledge, there are few studies for
the given operationally experimental configurations with
multipartite entanglement classes. Bastin et al. proposed an
experimental setup to produce arbitrary symmetric long-lived
multiqubit W states in the internal ground levels of photon
emitters [18]. An and Wang et al. presented protocols to

generate N -partyW -class states in a single optical microcavity
[14,19]. The W -class states in the above protocols are gener-
ated locally. For the distributed QIP, Pellizzari [20] first sug-
gested a scheme to realize the reliable transfer of quantum
information between two distant cavities connected by an
optical fiber in 1997, providing an effective tool for long-
distant quantum communication schemes in recent years
[21–26]. Here, by using a single-mode integrated optical 1 × N
star coupler [27], we propose a scheme to generate N -atom
W -class states in a distributed network, which is nonlocally
correlative [28] even in the presence of noise. Another distinct
feature of our scheme is that all the bosonic field modes are
only virtually populated to overcome the decoherence caused
by cavity decays and fiber photon leakages. The excitation ex-
change among the atoms is caused by the dispersive coupling
between the atoms and multiple delocalized bosonic field
modes. Therefore, the atom-fiber-cavity system reduces to
an effective model that couples only the atomic states while
suppresses the states containing real bosonic modes. In addi-
tion, no classical pulses are needed so that the scheme is
easy to operate. All these features make the scheme very
promising for the generation of N -atom W -class states in spa-
tially separated cavities.

2. MODEL
We consider N�N ≥ 3� identical atoms trapped in N distant
cavities which are connected by a single-mode integrated
optical 1 × N star coupler [29–31], as shown in Fig. 1(a). The
optical star coupler is made up of N identical optical fiber
channels and only one resonant field mode interacts simulta-
neously withN cavity modes with a (real) coupling constant ν.
Each atom is a two-level one playing the role of a qubit with
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j0i≡ jgi, the ground state, and j1i≡ jei, the excited state. The
atomic transition frequency Ω is detuned from the cavity
mode frequency ω by a certain amount Δ � Ω − ω, as shown
in Fig. 1(b). Thus, the atomic transition jgi↔jei is dispersively
coupled to the corresponding cavity mode with a (real) cou-
pling constant f . The interaction Hamiltonian of the whole
atom-cavity-fiber system under the rotating-wave approxima-
tion can be written as (ℏ � 1)

H � H1 �H2; (1)

H1 �
XN
l�1

ν�a†l b� b†al�; (2)

H2 �
XN
l�1

f �a†l S−

l e
−iΔt � S�

l ale
iΔt�; (3)

where a†l �al� is the creation (annihilation) operator of the lth
cavity mode, b†�b� is the creation (annihilation) operator of
the fiber mode, and S�

l � jelihglj�S−

l � jglihelj� denotes the
rasing (lowering) operator of the lth atom.

We introduce new bosonic operators cα defined by a linear
superposition of al�l � 1; 2;…; N� and b

cα �
XN
l�1

tα;lal � tα;N�1b; (4)

where tα;β with α, β ∈ f1; 2;…; N � 1g are the elements of a
�N � 1� × �N � 1� real unitary matrix T of the form

T �

0
BBBBBBBBBBBBBBBBB@

�������
N−1

p ���
N

p −1�������������
N�N−1�

p −1�������������
N�N−1�

p � � � −1�������������
N�N−1�

p −1�������������
N�N−1�

p −1�������������
N�N−1�

p 0

0
�������
N−2

p�������
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p −1�������������������
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p � � � −1�������������������
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�������
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The inverse transformations of Eq. (4) are

al �
XN�1

α�1

χl;αcα; (6)

b �
XN�1

α�1

χN�1;αcα; (7)

where χα;β are the elements of a �N � 1� × �N � 1� real unitary
matrix

X � T−1 � TT : (8)

In terms of the new delocalized bosonic operators in Eq. (4),
H1 and H2 read

H1 � −

�����
N

p
ν�c†NcN − c†N�1cN�1� (9)

and

H2 �
XN
l�1

XN�1

α�1

f χ l;α�S�
l cαe

iΔt � c†αS−

l e
−iΔt�: (10)

Switching to the interaction representation, ℋ � ℋ0 �ℋint,
with ℋ0 � H1, we have

ℋint �
XN
l�1

XN�1

α�1

f χl;α�S�
l cαe

iΔαt � c†αS−

l e
−iΔαt�; (11)

where

Δα �
8<
:
Δ for α � 1; 2;…; N − 1
Δ�

�����
N

p
ν for α � N

Δ −

�����
N

p
ν for α � N � 1

: (12)

We assume that all the cavities and the fibers are empty and
only one atom is excited initially. Then, in the large detuning
regime: Δ, jΔ�

�����
N

p
νj ≫ f , the atoms are forbidden to ex-

change energy with the bosonic fields, but they can exchange
energy with each other via virtual field modes. So during the
system’s evolution no real bosonic modes appear at all, but
the atomic excitation can still propagate from atom to atom.
The underlying dynamics is thus governed by the effective in-
teraction Hamiltonian

(a)

∆
e

g

Ω ω

(b)
Fig. 1. (a) Experimental setup. The black dots denote the atoms,
which are trapped in N distant cavities, and these cavities are con-
nected by a 1 × N single-mode integrated optical star coupler. (b) Level
configuration for each atom.
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ℋeff �
XN
l;m�1

ξlmS
�
l S

−

m; (13)

with

ξlm � f 2
XN�1

α�1

χl;αχm;α

Δα
: (14)

Using the equalities χl;α � tα;l due to Eq. (8), the unitarity of

T∶
PN�1

α�1 tα;βtα;δ � δβδ, and the properties −tN;β � tN�1;β �
1∕

�������
2N

p
for β ∈ f1; 2;…; Ng, we can verify that

ξlm �
8<
:

f 2

N

�
N−1
Δ � Δ

Δ2
−Nν2

�
� ξN for l � m

−
f 2

N

�
1
Δ −

Δ
Δ2

−Nν2

�
� −ηN for l ≠ m

: (15)

Now we turn to the generation of N -atomW -class states via
the effective interaction Hamiltonian in Eq. (13). In the sub-
space having only one excited atom and no real bosonic
modes, the atoms’ state at any time t can be represented
by a linear superposition of N basic states fjϕni;n �
1; 2;…; Ng as

jΦN �t�i �
XN
n�1

C�N�
n �t�jϕni; (16)

where jϕni � j…en…i denotes a state in which only the nth
atom is excited while all the other N − 1 atoms are in their
ground states. From the equation of motion i∂jΦN�t�i∕∂t �
ℋeff jΦN �t�i, the time-dependent coefficients C�N�

n �t� must
satisfy the differential equations

i
∂C�N�

n �t�
∂t

� ξNC
�N�
n �t� − ηN

XN
l�1;l≠n

C�N�
l �t� (17)

for n � 1; 2;…; N . Without loss of generality, we assume
that at t � 0 the atoms are in the state jϕ1i � je1g2…gN i
[i.e., under the initial conditions C�N�

1 �0� � 1, C�N�
2 �0� �

C�N�
3 �0� � � � � � C�N�

N �0� � 0]. Then, the solution of Eqs. (17)
can be found in the form

C�N�
1 �t� � 1

N
e−i�ξN�ηN �t�eiNηN t � N − 1�; (18)

C�N�
2 �t� � C�N�

3 �t� � � � � � C�N�
N �t� � 1

N
e−i�ξN�ηN �t�eiNηN t − 1�:

(19)

As is evident from Eqs. (18) and (19), at t ≠ �2kπ∕NηN �
(k � 0; 1; 2;…) all the coefficients C�N�

n �t� ≠ 0 (n � 1; 2;…; N)
and thus the state jΦN �t�i of Eq. (16) is an N -atom W -class
state. In particular, omitting an unimportant common phase
factor, states of the form

jΨNi �
1
N
��N − 2�jϕ1i − 2

XN
n�2

jϕni� (20)

are generated at

t � �2k� 1�π
NηN

: (21)

3. NUMERICAL ANALYSIS
In order to verify the validity of the above theoretical result,
we analyze the system’s dynamics by numerically solving the
Schrödinger equation with the full Hamiltonian H in Eq. (1).
Suppose that we aim at generating the N -atom W -class
state jΨN i given in Eq. (20). In Fig. 2 we plot the fidelity
FN � hΨN jρN�t�jΨN i of the atoms’ state ρN �t� obtained from
the numerical calculation with respect to the state jΨN i
for various values of N and the parameters chosen as
Δ∕f � ν∕f � 10. Figure 2(a) shows FN versus dimensionless
time τ � NηNt, showing that FN ≃ 1 at τ � �2k� 1�π for any
N , which is in agreement with the theoretical result of
Eq. (21). Alternatively, we also plot FN versus another dimen-
sionless time f t in Fig. 2(b), from which it follows that the
time for FN to reach 1 is longer if N is larger. This also agrees
with the theoretical result of Eq. (21), because NηN , with ηN
defined by Eq. (15), decreases with increasing N . The slow
oscillation of FN in Fig. 2 is due to the “hopping” of atomic
excitation among the atoms due to the virtual excitation of
the field modes, as theoretically predicted by Eqs. (18) and
(19) when the effective Hamiltonian (13) is used. As for the
fast oscillation in the fidelity FN , it results from the atom-
cavity energy exchange based on the use of the full
Hamiltonian (1).

0
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0.4

0.6

0.8

1

τ

F
N

N=3
N=4
N=5
N=6

0.5π π 1.5π 2π 3π 3.5π2.5π 4π

(a)

0 10 20 30 40 50 60
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(b)
Fig. 2. Fidelity FN versus dimensionless time (a) τ � NηNt and
(b) f t, with Δ∕f � Δ∕ν � 10 for N � 3, 4, 5, and 6.
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To be more concrete, let us deal with a specific situation for
N � 4 and t � π∕4η4, i.e., the target W -class state is

jΨ4i �
1
2
�je1g2g3g4i − jg1e2g3g4i − jg1g2e3g4i − jg1g2g3e4i�:

(22)

It is necessary to consider the influence of different detunings
on the fidelity F4 � hΨ4jρ4�t�jΨ4i. For N � 4, the condition
Δ∕ν < 2 should be satisfied according to Eq. (21). Thus, we
assume ν and Δ such that ν � 10f and 2f < Δ < 12f for plot-
ting the fidelity F4 against different Δ in Fig. 3, where the
oscillatory behavior is mainly caused by the energy exchange
between the atoms and the fields. The numerical result shows
that the average fidelity becomes closer to 1 for a larger de-
tuning Δ. That is, a larger detuning suits the scheme better
under an ideal environment. However, a quantum system
interacts with the noisy environment inevitably, which indu-
ces unwanted disturbance to the target entangled state. The
decoherence originates from physical factors, such as the
atomic spontaneous emission, the cavity decay, and the fiber
decay. To account for these decoherence factors, we employ
the master equation for the density matrix ρ of the whole
system, which is of the well-known form

_ρ � −i�H; ρ� −
XN
l�1

Γl

2
�S�

l S
−

l ρ − 2S−

l ρS
�
l � ρS�

l S
−

l �

−

XN
l�1

γl
2
�a†l alρ − 2alρa

†
l � ρa†l al�

−

κ

2
�b†bρ − 2bρb† � ρb†b�; (23)

where Γl is the spontaneous emission rate from the excited
state jei to the ground state jgi of the lth atom, γl is the decay
rate of the lth cavity, and κ is the decay rate of the optical star
coupler. Assuming Γl � Γ and γl � γ for simplicity, the
dependence of the fidelity F4 on Δ∕f and Δ∕ν in Fig. 4 can
be obtained by numerically solving the master Eq. (23). For
0.8 < Δ∕ν < 2 and Δ∕f being a constant, we find that the fidel-
ity decreases quickly when Δ∕ν → 2, in which case the large
detuning condition jΔ −

���
4

p
νj ≫ f is not satisfied. This implies

that use of the effective Hamiltonian in Eq. (13) is not valid in
this case. With the decreasing of Δ∕ν, the large detuning

condition is getting satisfied and the dynamics of the whole
system will evolve in accordance with that governed by the
effective Hamiltonian. As seen from Fig. 4(a), the fidelity
drops slowly when Δ∕ν ≤ 1 and Γ∕f � 0.01. This is because
the interaction time needed to achieve the target entangled
state prolongs according to Eq. (21), causing more
decoherence from atomic spontaneous emission since the
probability of population in the atomic excited state is larger.
The fidelity in Figs. 4(b) (4(c)) keeps very high even when
Δ∕ν ≤ 1 and γ∕f � 0.3 (κ∕f � 0.3), revealing robustness of
the fidelity against the cavity decay and fiber decay due to
the fact that the probabilities of real population in the cavity
and the fiber are negligible in the effective Hamiltonian (13)
that contains no interaction terms among those field modes.
Keeping the ratio Δ∕ν fixed in Fig. 4, we can consider the
effect of different Δ on the fidelity. From Fig. 4, we can see
that the increase of Δ will decrease the fidelity with an oscil-
latory behavior. This is because although Δ is large the inter-
action time prolongs with the increasing of Δ in accordance
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Fig. 3. Fidelity F4 at t � π∕4η4 versus Δ∕f when ν∕f � 10.
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Fig. 4. Fidelity F4 at t � π∕4η4 versus Δ∕f and Δ∕ν when
(a) Γ∕f � 0.01 and γ � κ � 0; (b) Γ � κ � 0 and γ∕f � 0.3, and
(c) Γ � γ � 0 and κ∕f � 0.3.
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with Eq. (21), where the decoherence dominates the system
dynamics. Therefore, the range 0.8 < Δ∕ν < 1.2 is the appro-
priate choice in our scheme. It also shows that the fidelity is
robust against the possible imprecision of the atom-cavity de-
tuning and the coupling strength between the bosonic modes.

Next, by choosing an appropriate values Δ∕f � ν∕f � 10 in
Figs. 5(a)–(5(b)), we plot the fidelity versus the ratios Γ∕f and
γ∕f (Γ∕f and κ∕f ). These figures indicate that the atomic spon-
taneous emission dominates the reduction of fidelity, while
the decay rates of the photon leaking out off each cavity
and the optical fiber channels just slightly influence F4, which
is 0.93(0.97) even when γ∕f � 0.3 (κ∕f � 0.3). Hence, the
scheme is remarkably robust against cavity and fiber decays,
which can be understood by the virtual excitation of all the
bosonic field modes.

Finally, we briefly discuss the basic elements that may be a
candidate for further experiments. The requirements of our
scheme are the two-level atoms and the cavities resonantly
connected by an optical fiber star coupler. The single-mode
integrated optical fiber 1 × N star coupler used as a distrib-
uted strain sensor in a white-light interferometer has been re-
ported [31] and realized by using a 2D arrangement, by using
the two confocal arrays of the radial waveguides, which
performs with an efficiency 100% under ideal conditions when
the waveguides’mutual coupling strange is strong [32]. A near-
perfect fiber-cavity coupling with an efficiency larger than
99.9% can be realized using fiber-taper coupling to high-Q
silica microspheres [33]. The atomic configuration can be
achieved with cesium: state jgi corresponds to fF � 4;m �
3g hyperfine state of 62S1∕2 electronic ground state and state
jei corresponds to fF � 4;m � 3g hyperfine state of 62P1∕2
electronic state. Each single atom can be made localized at
a fixed position in each cavity with high Q for a long time
[34–36]. In recent experiments [37], the parameters
f � 2π × 750 MHz, Γ � 2π × 2.62 MHz, and γ � 2π × 3.5 MHz
with the wavelength in the region 630 ∼ 850 nm is predicted
achievable. The optical fiber decay at a 852 nm wavelength is
about 2.2 dB∕km [38], which corresponds to fiber decay rate
0.152 MHz. By substituting these experimental parameters
into Eq. (23), we obtain a fidelity higher than 0.9, making
our scheme possible to be realized in experiment. The gener-
ation of W -class states involving more atoms is also efficient
by changing the corresponding experimental parameters.

4. CONCLUSION
We have considered a model consisting of any N ≥ 3 identical
two-level atoms trapped in N spatially separated cavities.
Each cavity has one active mode which is off-resonant with
the atomic transition but resonant with a single mode of an
integrated optical 1 × N star coupler (see Fig. 1), so all the
atoms are indirectly coupled to each other even though they
are far apart. We deduce an effective Hamiltonian in the large
atom-cavity mode detuning regime and use it to theoretically
study the dynamics of the atoms’ system under the initial con-
dition that only one atom is excited while all the cavities and
the fiber are empty. The theoretical result shows that as the
system evolves the atoms generally appear in an N -atom W -
class state. Of interest are the multiatom entangled states of
the form in Eq. (20), which are generated periodically at time
moments determined by Eq. (21). The proposed scheme for
generating N -atom W -class states does not require any exter-
nal classical laser pulses and is insensitive to the cavity decay
rate and the rate of photon leakage from the fiber because
during the whole evolution no real bosons are to be created
due to the large detuning between the atomic transition and
the cavity mode. We have also carried out numerical calcula-
tions taking into account the effects of decoherence caused by
various dissipation mechanisms. The numerical result agrees
well with the theoretical one if the atom-cavity detuning
is large enough, confirming the validity of the effective
Hamiltonian with respect to the full one. Therefore, the
present entanglement generation scheme proves to be per-
spective for wide applications in the scalable distributed quan-
tum networks.
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