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In this work, we study the effects of different forms of correlations of environments on the dynamics of open
systems’ entanglement and discord. We consider two two-level atoms A and B interacting, respectively with
two spatially separated modes a and b, each of which is in turn surrounded by a dissipative reservoir. The
two modes may initially be in an entangled or classically correlated or product state with their marginal state
being the same in all the cases. We compare the power of different environmental correlation forms in the revival
of the atoms’ entanglement and discord in the strong atom–mode coupling regime. We also show how the dynami-
cal behavior of the atoms’ entanglement and discord nontrivially change by the presence of initial environmental
correlation in the weak atom–mode coupling regime. Finally, we reveal that initial entanglement between the
modes can induce correlations between initially uncorrelated atoms. © 2013 Optical Society of America

OCIS codes: 270.5585, 270.5565.

1. INTRODUCTION
In realizing quantum information technologies, the unavoid-
able coupling to the environment(s), whether intentional or
accidental, is a serious obstacle because it always leads to
the loss of an open system’s information [1]. The useful quan-
tum properties of the system, such as coherence and entan-
glement, are sooner or later destroyed in such decoherence
processes. Therefore, the dynamics of entanglement (see,
e.g., [2–13]) and general quantum correlations (see, e.g.,
[14–20]) have attracted extensive studies in recent years.
One of the notable dynamical features of the system’s entan-
glement is that it may be terminated in a finite time, a phe-
nomenon called entanglement sudden death [21–24]. As for
the general quantum correlations in terms of quantum discord
[25,26], they are more robust than entanglement in the sense
that they never suffer from a sudden death.

The evolution of an open system can be well described in
Born and Markov approximations within which the dynamics
are given by a semi-group of completely positive dynamical
maps. The operatoric structure of the generator of such
semi-groups [27,28] establishes the well-known Lindblad
master equation, and the resulting dynamical behavior is
termed Markovian. Nevertheless, in practice there are many
scenarios in which memory effects play a crucial role. That
is, during the evolution there exist time windows within which
some information that was transferred from the system to the
environment flows back into the system. To describe such
processes a more general treatment called non-Markovian is
required. In recent years, a number of methods for capturing
the non-Markovian dynamics have been developed [29–32].

Usually a system of interest consists of several subsystems,
each of which is coupled to an independent environment

without any system–environment correlation. In this scenario
the strong coupling of a subsystem with its own environment
that is “turned on” as the total system’s evolution starts is a
source for non-Markovian dynamics. The assumption of inde-
pendent environments and zero initial system–environment
correlations is however too restrictive in realistic experiments
[33]. In fact, nonzero initial system–environment correlations
prove to be an important issue, both from theoretical and ex-
perimental points of view [34–39]. In particular, as has been
shown [40–44], such initial correlations can lead to the growth
of the trace distance between two quantum states of an open
system over its initial value as time goes on. This means that
an open system can acquire some information that was ini-
tially outside it. Recently, the trace-distance growth of open
systems’ states has been experimentally verified [45,46].

In this work, we shall explore the exploitation of environ-
ments’ initial information for the open system. Namely, we as-
sume that the environments may be correlated initially and
investigate the effect of such correlated environments on
the system’s dynamics of entanglement and discord. As re-
cently been shown [47,48], the correlations of generic dephas-
ing environments may generate global non-Markovian
dynamics even though all the local dynamics are Markovian.
That is, the information initially possessed by the environ-
ments can be exploited by the system in the course of evolu-
tion. Here, instead of the dephasing mechanism, we study the
dissipative one with energy exchange between the system and
the environment. To be concrete, we consider two two-level
atoms interacting with two damped modes of a radiation field
in two far-apart locations [1]. Within each location a two-level
atom (qubit) interacts via the Jaynes–Cummings Hamiltonian
with a radiation field mode, which is in turn subjected to
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damping to a continuous reservoir. Our aim is to reveal how
different forms of the modal correlations (quantum correla-
tion, classical correlation, and no correlation at all) influence
the atoms’ dynamics.

2. MODEL AND CORRELATION MEASURES
The model we choose to consider consists of two two-level
atoms (A and B), each interacting locally with a damping
mode (a and b). The time-dependent density operators
ρAa�t� and ρBb�t� of the subsystems Aa and Bb obey, respec-
tively, the Lindblad master equations [49]

dρAa�t�
dt

� −i�HAa; ρAa�t�� −
Γ
2
�a�aρAa�t�

− 2aρAa�t�a� � ρAa�t�a�a� (1)

and

dρBb�t�
dt

� −i�HBb; ρBb�t�� −
Γ
2
�b�bρBb�t�

− 2bρBb�t�b� � ρBb�t�b�b�; (2)

where

HAa � ω0σ̂
A�σ̂A− � ωcâ

�â� Ω�σ̂A
−
â� � σ̂A�â� (3)

and

HBb � ω0σ̂
B�σ̂B− � ωcb̂

�b̂�Ω�σ̂B
−
b̂� � σ̂B�b̂�: (4)

In the above equations HAa (HBb) is the interaction
Hamiltonian of the subsystem Aa (Bb), σ̂A�B�� are the raising
and lowering operators of atom A�B�, ω0 is the atomic transi-
tion frequency, a�b� and a†�b†� are the annihilation and crea-
tion operator of mode a�b� with frequency ωc, and Ω is the
atom–mode coupling constant. In Eqs. (1) and (2) Γ is the mo-
dal damping rate due to its interaction with a dissipative res-
ervoir. We focus on the resonant case, namely ω0 � ωc ≡ ω,
and discriminate between two atom–mode coupling regimes
in terms of Γ andΩ: Γ∕2 > Ω implies the weak coupling regime
and Γ∕2 < Ω the strong one [50]. Note that this master equa-
tion, often introduced on the basis of a phenomenological ap-
proach, can be microscopically justified for a zero-temperature
flat reservoir [51] relying on the Born–Markov approximation.
It then provides a description of the atom–mode dynamics on a
coarse-grained time scale, which does not resolve the decay
time of correlation functions of the damping reservoir.

For the purpose of quantum information processing, the
atoms A and B are usually prepared at t � 0 in an entangled
state ρAB�0� � jψ�0�iABhψ�0�j with

jψ�0�iAB � αjggiAB � βjeeiAB; (5)

where jαj2 � jβj2 � 1 and jgi (jei) denotes the atomic ground
(excited) state. Because of the dissipation due to the local
damping modes, the atoms’ correlations (entanglement and
discord) degrade as the system evolves. Naturally, the initial
conditions of the modes play a significant role in the atoms’
dynamics. A question of our concern here is: “how do different
forms of initial modal correlations characterized by a given
marginal state influence the dynamics of the open atoms’ sys-
tem?” To elucidate this question we consider and compare
three types of initial correlations between the modes a and

b as follows. The first type expresses the quantum correlation
specified by the density matrix

ρIab�0� � jϕ�0�iabhϕ�0�j; (6)

where

jϕ�0�iab � c1j01iab � c2j10iab (7)

with jc1j2 � jc2j2 � 1. The second type exhibits the classical
correlation specified by

ρIIab�0� � jc1j2j01iabh01j � jc2j2j10iabh10j; (8)

and the third type corresponds to totally uncorrelated modes
specified by

ρIIIab�0� � jc1c2j2j00iabh00j � jc1j4j01iabh01j � jc2j4j10iabh10j
� jc1c2j2j11iabh11j: (9)

The initial state of the total system can be expressed as

ρJABab�0� � ρAB�0� ⊗ ρJab�0� (10)

with J � I, II, and III corresponding to the form of initial mo-
dal correlations in Eqs. (6), (8), and (9), respectively. As can
be verified from Eqs. (6) through (9), all the three types for the
initial states of the modes have the same marginal states:
ρa�0� � ffjc1j2; 0g; f0; jc2j2gg and ρb�0� � ffjc2j2; 0g; f0; jc1j2gg.
Thus, the local dynamics of each atom are the same in these
three situations. However, as will be clarified, the global dy-
namics of the atoms’ system depend strongly on the concrete
situation. Putting it the other way around, the difference in the
atoms’ dynamical behaviors exclusively reflects the effects of
the different forms of the modes’ correlations.

To make clear the procedure of obtaining the evolved den-
sity matrices of the total system, let us illustrate as an example
the situation of J � I, for which we have explicitly

ρIAaBb�0� � jαc1j2jg0iAahg0j ⊗ jg1iBb
× hg1j � jαc2j2jg1iAahg1j ⊗ jg0iBb
× hg0j � jαj2c1c�2 jg0iAahg1j ⊗ jg1iBb
× hg0j � jαj2c2c�1 jg1iAahg0j ⊗ jg0iBb
× hg1j � jβc1j2je0iAahe0j ⊗ je1iBb
× he1j � jβc2j2je1iAahe1j ⊗ je0iBb
× he0j � jβj2c1c�2 je0iAahe1j ⊗ je1iBb
× he0j � jβj2c2c�1 je1iAahe0j ⊗ je0iBb
× he1j � αβ�jc1j2jg0iAahe0j ⊗ jg1iBb
× he1j � αβ�jc2j2jg1iAahe1j ⊗ jg0iBb
× he0j � αβ�c1c�2 jg0iAahe1j ⊗ jg1iBb
× he0j � αβ�c2c�1 jg1iAahe0j ⊗ jg0iBb
× he1j � βα�jc1j2je0iAahg0j ⊗ je1iBb
× hg1j � βα�jc2j2je1iAahg1j ⊗ je0iBb
× hg0j � βα�c1c�2 je0iAahg1j ⊗ je1iBb
× hg0j � βα�c2c�1 je1iAahg0j ⊗ je0iBb
× hg1j: (11)
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As is obvious from Eq. (11), each subsystem of Aa and Bbmay
contain zero, one, or two excitations. The trivial case of zero
excitation is invariant in time. For the case of one excitation,
we should solve the master equation in the basis fjg0i; jg1i;
je0ig. By means of a computer program, we work out the cor-
responding coefficients of evolved terms jg0ihg0j, jg1ihg1j,
je0ihe0j, jg0ihg1j, jg0ihe0j, jg1ihg0j, jg1ihe0j, je0ihg0j, je0ihg1j
with different initial conditions of the subsystem. For exam-
ple, the subsystem Aa or Bb may initially be in jg1ihg1j; we
then substitute the term jg1ihg1j in Eq. (11) for the evolved
terms and the corresponding time-dependent coefficients. It
is the same for the other initial conditions of the subsystem
with one excitation. For the case of two excitations, we
should solve the master equation in the basis fjg0i; jg1i;
je0i; je1ig. Following the same process, we can write the
evolved terms of Eq. (11) with two excitations initially. There-
fore, we can obtain the evolved states of the atoms plus the
modes for all the three cases. The interested density operator
ρJAB�t� of the atoms is derived by tracing out the total evolved
state over the modes. Note that ρJAB�t� always has the X form;
that is, its possible nonzero matrix elements in the basis fj1i �
jggi; j2i � jgei; j3i � jegi; j4i � jeeig are fρJ11�t�;ρJ22�t�;ρJ33�t�;
ρJ44�t�;ρJ14�t��ρJ�41 �t�;ρJ23�t��ρJ�32 �t�g, with ρJmn�t�≡hmjρJAB�t�jni.
The explicit time-dependent expressions of nonzero matrix
elements ρJmn�t� are collected in Appendix A. Generally, we
recognize that for t > 0,

ρInn�t� � ρIInn�t� ≠ ρIIInn�t�; (12)

jρI14�t�j � jρII14�t�j ≠ jρIII14�t�j; (13)

and

jρI23�t�j ≥ jρII23�t�j � jρIII23�t�j � 0: (14)

In the following, we use the concurrence and discord as
measures of atoms’ entanglement and general quantum corre-
lations. The concurrence CJAB�t� [52] measures the entangle-
ment amount of the atoms for the case J � I, II, or III,
which by virtue of Eqs. (12) through (14) reads

CIAB�t� � C1�t� � C2�t�; (15)

CIIAB�t� � C1�t�; (16)

and

CIIIAB�t� � C�t�; (17)

with

C1�t� � 2 max
�
0;
�
jρI14�t�j −

������������������������
ρI22�t�ρI33�t�

q ��
; (18)

C2�t� � 2 max
�
0;
�
jρI23�t�j −

������������������������
ρI11�t�ρI44�t�

q ��
; (19)

and

C�t� � 2 max
�
0;
�
jρIII14�t�j −

������������������������
ρIII22�t�ρIII33�t�

q ��
: (20)

As for the atoms’ discord DJ
AB�t�, we shall be interested in

the symmetric modal states with c1 � c2. Then DJ
AB�t� can

be expressed analytically as [15]

DJ
AB�t� � minfDJ

1�t�; DJ
2�t�g; (21)

where

DJ
1�t� � S�ρJA� − S�ρJAB� − ρJ11�t�log2

�
ρJ11�t�

ρJ11�t� � ρJ22�t�

�

− ρJ22�t�log2
�

ρJ22�t�
ρJ11�t� � ρJ22�t�

�

− ρJ44�t�log2
�

ρJ44�t�
ρJ22�t� � ρJ44�t�

�

− ρJ22�t�log2
�

ρJ22�t�
ρJ44�t� � ρJ22�t�

�
(22)

and

DJ
2�t� � S�ρJA� − S�ρJAB� −

1
2
�1� TJ�log2

�
1� TJ

2

�

−

1
2
�1 − TJ�log2

�
1 − TJ

2

�
; (23)

with TJ �
�����������������������������������������������������������������������������������
�ρJ11�t� − ρJ44�t��2 � 4�jρJ14�t�j � jρJ23�t�j�2

q
and S�·�

denoting the von Neumann entropy S�ρ� � −Tr�ρ log2 ρ�.

3. DYNAMICS OF ATOMS’ ENTANGLEMENT
AND DISCORD
First, we compare the time dependence of the atoms’ concur-
rences CJAB�t� (J � I, II, III) of Eqs. (15) through (17) in terms
of C1�t�, C2�t�, and C�t� defined by Eqs. (18)–(20), respec-
tively, in the strong atom–mode coupling regime for different
sets of α and β, keeping the same parameters of the initial
modes c1 � c2 �

��������
1∕2

p
; that is, each mode is initially in a max-

imally mixed state. The sets of α and β are classified into three
cases: (1) jα∕βj � 1, (2) jα∕βj < 1, and (3) jα∕βj > 1. As is com-
monly known, in the strong coupling regime the atoms’ entan-
glement dynamics usually exhibit a sequence of alternate
deaths and revivals. Generally, however, it is desirable to
figure out the origin of contribution to the revived entangle-
ment: whether it is due to a return of the decayed entangle-
ment initially stored in the atoms or it is due to a transfer
of the entanglement initially possessed by the modes. For
the classically correlated modes [Eq. (8)] and uncorrelated
modes [Eq. (9)], the revivals only come from the first sort of
contribution, while for the modes [Eq. (6)] with nonzero initial
entanglement, both these sorts contribute during the time evo-
lution. As recognized from Eqs. (18) and (19), for the initial
states of the atoms and the entangled modes specified by
Eqs. (5) and (6), we can use C1�t� and C2�t� to decompose
the atoms’ entanglement dynamics into two constituent parts:
C1�t� indicates the variations of atomic entanglement that are
stored initially by the atoms themselves and thus can signify
the first kind of contribution to entanglement revivals, while
C2�t� indicates the variations of atomic entanglement that are
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induced by the initial entangled modes and thus can denote
the second kind of contribution to entanglement revivals.
Note that these two kinds of contribution can be sharply

distinguished because in Eqs. (18) and (19) jρI14�23��t�j ≤������������������������������������
ρI11�22��t�ρI44�33��t�

q
at any time, so that C1�t� and C2�t� cannot

be positive simultaneously, implying that at any given time
only one of them, either C1�t� or C2�t�, contributes. Also,
we can observe from Eqs. (15) and (16), besides the additional
transfer of modes’ entanglement to the atoms, the dynamics of
atoms’ entanglement are identical with regard to the quan-
tumly and classically correlated modes. Therefore, as far as
the ability to return the decayed entanglement back to the
atoms, these two forms of correlations are equivalent but dif-
fer from the uncorrelated modes.

In Fig. 1 we plot C1, C2, and C, Eqs. (18) through (20), as
functions of the rescaled time Ωt in the strong atom–mode

coupling regime with Γ∕R � 0.1 for (1) α � β �
��������
1∕2

p
;

(2) α �
�����������
1∕10

p
, β �

�����������
9∕10

p
; and (3) α �

�����������
9∕10

p
, β �

�����������
1∕10

p
.

At the beginning C2 does not contribute, but C1 and C drop
quickly to zero at the same time, resulting in the first sudden
death of entanglement, regardless of the ratio jα∕βj. Yet the
dead entanglement can revive later for some time before
the second sudden death of entanglement occurs, and so
on. Roughly speaking, the interval between neighboring reviv-
als is shorter for larger ratio jα∕βj. For any α and β, the most
pronounced contribution to revivals comes from C2 (i.e., the
gain of initial entanglement of the modes). Although the con-
tribution of C1 (associated with correlated modes) to the en-
tanglement revivals may be more pronounced than that of C

(associated with uncorrelated modes), both the contributions
from C1 and C are less pronounced than that from C2 for
jα∕βj ≥ 1 [see Figs. 1(a) and 1(c)] and may disappear for small
enough jα∕βj [see Fig. 1(b)]. Remarkable is the fact that C2 can
be greater than the value of the initial atoms’ entanglement if
jα∕βj is large enough [see Fig. 1(c)]. This means that initially
entangled modes can amplify the atoms’ entanglement. Vice
versa, an amplification in atoms’ entanglement during the time
evolution, if any, would signify presence of initial quantum
correlations other than the atom–atom entanglement.

In Fig. 2 we show the dynamics of the atoms’ discord DJ
AB,

Eq. (21), using the same parameters as in Fig. 1. We can see
that the discord exhibits different dynamical behaviors for dif-
ferent forms of modes’ correlations. From Fig. 1(b) it was
learned that the dead entanglement of atoms cannot revive
if the initial weight of the excited state is much greater than
that of the ground state (i.e., jα∕βj is much less than 1) when
there is no entanglement between the modes at the very be-
ginning. However, as shown in Fig. 2(b), the atoms’ discord
can still be recovered after decaying to zero even when the
modes are initially classically correlated or totally indepen-
dent. Also, as Fig. 2(c) reveals, if initially the atomic ground
state weighs more than the excited state (i.e., jα∕βj > 1), then
the atoms’ discord can grow over its initial value in the time
evolution due to the transfer of discord from the modes to
the atoms.

Next, we turn to the weak atom–mode coupling regime. It is
expected and was confirmed by our numerical calculations
that, in this coupling regime, when the initial modes are clas-
sically correlated (case of J � II) or independent (case of
J � III), the atoms’ entanglement can suffer a sudden death,

Fig. 1. (Color online) C1, C2, and C, Eqs. (18) through (20), versus the rescaled time Ωt in the strong atom–mode coupling regime with Γ∕R � 0.1
for c1 � c2 �

��������
1∕2

p
and (a) α � β �

��������
1∕2

p
; (b) α �

�����������
1∕10

p
, β �

�����������
9∕10

p
; and (c) α �

�����������
9∕10

p
, β �

�����������
1∕10

p
. The atoms’ concurrences CJAB in terms of

C1, C2, or C are determined in the text through Eqs. (15) through (17).
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but after that it cannot revive any more, while the atoms’ dis-
cord just dies asymptotically. The atoms’ dynamical behavior,
however, changes remarkably when the initial modes are en-
tangled (case of J � I). Namely, in this case the atoms’ entan-
glement can revive after a sudden death, as shown in Fig. 3(a),
while the atoms’ discord can slow down the decay rate in a
nontrivial manner, as shown in Fig. 3(b). Note that the behav-
iors in Fig. 3 are striking because they signify the nonlocal ef-
fects of the modes that still significantly influence the
dynamics of atoms’ correlations despite the weakness of local
atom–mode couplings.

As the last concern in this paper, we expose another inter-
esting effect in the dynamics of an open system, which is a
consequence of the initial entanglement of parts of the
composite environment. Because global entanglement cannot
be created by local means, two independent atoms in two re-
mote locations can never be entangled in the future if the local
modes to which they are coupled are separable or uncorre-
lated. Nevertheless, the presence of initial entanglement be-
tween the modes can make uncorrelated atoms correlated
during the total system’s evolution, as we shall demonstrate
in what follows using the model and the correlation measures

Fig. 2. (Color online) Atoms’ discord DJ
AB, Eq. (21), versus the rescaled time Ωt in the strong atom–mode coupling regime with Γ∕R � 0.1 for

c1 � c2 �
��������
1∕2

p
and (a) α � β �

��������
1∕2

p
; (b) α �

�����������
1∕10

p
, β �

�����������
9∕10

p
; and (c) α �

�����������
9∕10

p
, β �

�����������
1∕10

p
.

(a) (b)

Fig. 3. (Color online) Atoms’ (a) entanglement and (b) discord versus the rescaled timeΩt in the weak atom–mode coupling regime with Γ∕R � 4
for c1 � c2 �

��������
1∕2

p
and α �

�������������
29∕30

p
and β �

�����������
1∕30

p
.
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described in Section 2. In the framework of our model the pos-
sibility to entangle the atoms is delicate in the sense that it
depends on both the initial atoms’ state and the atom–mode
coupling regime. For clarity we shall analyze the case when
initially the modes possess maximal entanglement specified
by the state described by Eq. (6) with c1 � c2 �

��������
1∕2

p
, while

the atoms are assumed to be in two possible situations: they
are both either in their ground states jggiAB or in their excited
states jeeiAB. As for the local atom–mode coupling regime, we
assume that it may be either weak or strong. The results of our
numerical calculations are summarized in Fig. 4. From the
figure the following features can be observed. Figures 4(a)
and 4(b) show that two atoms, both of which are initially
in their ground state jggiAB, can become correlated right after
the system evolves, no matter how strong the atom–mode cou-
pling is, that is, for an arbitrary ratio of Γ∕Ω. In this case the
role of the coupling regime is that when it is weak (Γ > 2Ω),
both the atoms’ entanglement and discord are going to vanish
after reaching a single maximum value, but when it is strong
(Γ < 2Ω), the atoms’ correlations undergo damped oscilla-
tions. Differently from the behaviors in Figs. 4(a) and 4(b),
two atoms, both of which are initially in their excited state
jeeiAB, cannot become entangled in the weak atom–mode cou-
pling regime [solid curve in Fig. 4(c)]; they can however be-
come entangled in the strong atom–mode coupling regime,
not as soon as the system’s evolution begins but with some
delay, and the atoms’ entanglement suffers several sudden
death-revivals before completely vanishing [solid curve in
Fig. 4(d)]. As for the atoms’ discord, in this case, it can still
be induced in both the weak and strong atom–mode coupling
regimes [dashed curves in Figs. 4(c) and 4(d)]. Especially if

the atom–mode coupling is strong, the atoms’ discord can
be robust and survive for a quite long time [dashed curve
in Fig. 4(d)].

4. CONCLUSION
The dynamics of an open multipartite system depend essen-
tially on the composite environment surrounding it. Different
parts of the composite environment that are coupled locally
with the corresponding subsystems of the multipartite system
can initially be independent or correlated in nature. To ex-
plore in detail the difference of correlation in comparison with
independence in the initial environment’s parts, we have
treated two qubits in terms of two two-level atoms A and B

as the open system of interest and two damped modes of
radiation field a and b as two parts of the composite environ-
ment. Atom A (B) and mode a (b) are in one location and in-
teract with each other as the evolution starts. The two modes
are assumed initially to be quantum correlated (entangled),
classically correlated, or uncorrelated, but their marginal
states are the same. The situations we considered in this paper
not only represent typical forms of correlations but also allow
us to compare their differences in affecting open-system dy-
namics given the same marginal states. It should be noted that
there can be another situation when the initial state of the
modes is separable but possesses nonzero discord. In this con-
nection, we notice that the authors of [53] studied the witness
for initial system–environment correlations in open-system
dynamics, taking into account the condition that initially
the system has a certain quantum correlation but null entan-
glement with the environment. In the following, we briefly
summarize the most pronounced signatures of the presence

Fig. 4. Atoms’ concurrence CIAB and discordDI
AB versus the rescaled timeΩtwhen initially the modes are entangled [Eq. (6)] with c1 � c2 �

��������
1∕2

p
,

the atoms are in product state (a), (b) jggiAB or (c), (d) jeeiAB, and the local atom–mode coupling is (a), (c) weak with Γ∕R � 4 or (b), (d) strong
with Γ∕R � 0.1.
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of initial entanglement between the parts of the composite
environment.

For initially entangled atoms identified by the state de-
scribed in Eq. (5), during the course of evolution the atoms’
entanglement and discord develop additional revival periods
and can be amplified over their initial values if the local atom–

mode couplings are strong (see Figs. 1 and 2). As for the weak
atom–mode couplings, the atoms’ entanglement can revive
after a sudden death, if any [see Fig. 3(a)], while the decay
rate of the atoms’ discord can be slowed down in a nontrivial
manner [see Fig. 3(b)], in clear opposition to the cases of clas-
sically correlated and uncorrelated composite environment.
Furthermore, the presence of initial entanglement between
modes of the composite environment can make independent
atoms in product state jggiAB become correlated in terms of
both entanglement and discord, no matter how strong are the
local atom–mode couplings [see Figs. 4(a) and 4(b)]. By con-
trast, the atoms in product state jeeiAB can be made correlated
in terms of discord in both weak and strong atom–mode cou-
pling regimes; however, their entanglement is induced only
when the local couplings are strong [see Figs. 4(c) and 4(d)].
An overall view based on our above-reported results is that
initial entanglement among parts of a composite environment
can be exploited as a useful source for nonlocal effects in the
global dynamics of an open multipartite system not only when
the local couplings are strong but also even when all the local
couplings are weak.

APPENDIX A: EXPRESSIONS FOR THE
ATOMS’ MATRIX ELEMENTS
In this Appendix we provide time-dependent expressions for
the atoms’ matrix elements ρJmn�t�, with J � I, II, III, in terms
of L−1fL�s�g, the inverse Laplace transform of L�s�.

ρI11�t� � ρII11�t�
� α2L−1fx1�s� � x2�s�g � β2L−1fx3�s� � x4�s�g

× L−1fx5�s� � x6�s� � x7�s�g; (A1)

ρI22�t� � ρII22�t� � jαc1j2L−1fx4�s�g
� jβc1j2L−1fx3�s� � x4�s�g × L−1fx8�s� � x9�s�g
� jβc2j2L−1fx5�s�
� x6�s� � x7�s�g × L−1fx10�s�g; (A2)

ρI33�t� � ρII33�t� � ρI22�t�jc1;2→c2;1
� ρII22�t�jc1;2→c2;1

; (A3)

ρI44�t� � ρII44�t� � β2L−1fx10�s�g × L−1fx8�s� � x9�s�g; (A4)

ρI14�t� � ρII14�t� � αβ�L−1fx11�s�g × L−1fx12�s� � x13�s�g; (A5)

ρI23�t� � jαj2c1c�2L−1fx14�s�g × L−1fx�14�s�g � jβj2c1c2L−1fx15�s�
� x16�s�g × L−1fx�15�s� � x�16�s�g; (A6)

ρIII11�t� � α2�jc1j4 � jc2j4�L−1fx1�s� � x2�s�g
� α2jc1c2j2 � α2jc1c2j2L−1fx1�s�
� x2�s�g × L−1fx1�s� � x2�s�g
� β2�jc1j4 � jc2j4�L−1fx3�s�
� x4�s�g × L−1fx5�s� � x6�s� � x7�s�g
� β2jc1c2j2L−1fx3�s� � x4�s�g × L−1fx3�s� � x4�s�g
� jβj2jc1c2j2L−1fx5�s� � x6�s�
� x7�s�g × L−1fx5�s� � x6�s� � x7�s�g; (A7)

ρIII22�t�� jαj2jc1j4L−1fx4�s�g
�jαj2jc1c2j2L−1fx1�s��x2�s�g×L−1fx4�s�g
�jβj2jc1j4L−1fx3�s��x4�s�g×L−1fx8�s��x9�s�g
�β2jc1c2j2L−1fx3�s��x4�s�g×L−1fx10�s�g
�β2jc1c2j2L−1fx5�s��x6�s��x7�s�g×L−1fx8�s��x9�s�g
�β2jc2j4L−1fx10�s�g×L−1fx5�s��x6�s��x7�s�g; (A8)

ρIII33�t� � ρIII22�t�jc1;2→c2;1
; (A9)

ρIII44�t��α2jc1c2j2L−1fx4�s�g×L−1fx4�s�g
�β2�jc1j4�jc2j4�L−1fx10�s�g×L−1fx8�s��x9�s�g
�β2jc1c2j2L−1fx10�s�g×L−1fx10�s�g
�β2jc1c2j2L−1fx8�s��x9�s�g×L−1fx8�s��x9�s�g; (A10)

ρIII14�t� � αβ�jc1j4 � jc2j4�L−1fx11�s�g × L−1fx12�s� � x13�s�g
� αβjc1c2j2L−1fx11�s�g × L−1fx11�s�g
� αβjc1c2j2L−1fx12�s�
� x13�s�g × L−1fx12�s� � x13�s�g: (A11)

In the above expressions, xn�s� with n � 1; 2;…; 16 are
given by

x1�s� �
Γ
h
1� s2

s�s�Γ��4Ω2

i
s�2s� Γ� ; (A12)

x2�s� �
s�2s� Γ� � 4Ω2

�2s� Γ��s�s� Γ� � 4Ω2� ; (A13)

x3�s� �
4ΓΩ2

s�2s� Γ��s�s� Γ� � 4Ω2� ; (A14)

x4�s� �
4Ω2

�2s� Γ��s�s� Γ� � 4Ω2� ; (A15)
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x5�s� �
4Γ2Ω2��2s� Γ��7s� 6Γ� � 24Ω2�

s�2s� Γ��2s� 3Γ��s�s� Γ� � 4Ω2���s� Γ��s� 2Γ� � 8Ω2� ; (A16)

x6�s� �
4ΓΩ2��2s� Γ��7s� 6Γ� � 24Ω2�

�2s� Γ��2s� 3Γ��s�s� Γ� � 4Ω2���s� Γ��s� 2Γ� � 8Ω2� ; (A17)

x7�s� �
8Ω2

�2s� 3Γ���s� Γ��s� 2Γ� � 8Ω2� ; (A18)

x8�s� �
Γ�4s4 � 20s3Γ � 35s2Γ2 � 25sΓ3 � 6Γ4 � 4s�2s� Γ�Ω2 � 96Ω4�

�2s� Γ��2s� 3Γ��s�s� Γ� � 4Ω2���s� Γ��s� 2Γ� � 8Ω2� ; (A19)

x9�s� �
�s� 2Γ��2s� 3Γ� � 8Ω2

�2s� 3Γ���s� Γ��s� 2Γ� � 8Ω2� ; (A20)

x10�s� �
�s� Γ��2s� Γ� � 4Ω2

�2s� Γ��s�s� Γ� � 4Ω2� ; (A21)

x11�s� �
2s� Γ − 2iω

�s − iω��2s� Γ − 2iω� � 2Ω2 ; (A22)

x12�s� �
Γ�2s� Γ − 2iω��2s� 3Γ − 2iω���s� Γ − iω��2s� Γ − 2iω� � 2Ω2� − 16ΓΩ4

��s − iω��2s� Γ − 2iω� � 2Ω2���s� Γ − iω�2��2s� Γ − 2iω��2s� 3Γ − 2iω� � 24Ω2� � 4Ω4� ; (A23)

x13�s� �
4s3 � 3Γ3 � 12s2�Γ − iω� − 11iΓ2ω� 2Γ�−6ω2 � 7Ω2� � 4i�ω3

− 3ωΩ2�
�s� Γ − iω�2�2s� Γ − 2iω��2s� 3Γ − 2iω� � 24�s� Γ − iω�2Ω2 � 4Ω4

� s�11Γ2
− 24iΓω� 12�−ω2 � Ω2��

�s� Γ − iω�2�2s� Γ − 2iω��2s� 3Γ − 2iω� � 24�s� Γ − iω�2Ω2 � 4Ω4 ; (A24)

x14�s� �
2iΩ

�s − iω��2s� Γ − 2iω� � 2Ω2 ; (A25)

x15�s� �
−2iΓΩ�4s3 � 3Γ3 � 12s2�Γ − iω� − 11iΓ2ω − 6Γ�2ω2 � 3Ω2� � 4i�ω3 � 5ωΩ2��

��s − iω��2s� Γ − 2iω� � 2Ω2���s� Γ − iω�2��2s� Γ − 2iω��2s� 3Γ − 2iω� � 24Ω2� � 4Ω4�

−

2iΓΩs�11Γ2
− 24iΓω − 4�3ω2 � 5Ω2��

��s − iω��2s� Γ − 2iω� � 2Ω2���s� Γ − iω�2��2s� Γ − 2iω��2s� 3Γ − 2iω� � 24Ω2� � 4Ω4� ; (A26)

x16�s� �
2iΩ�−�s� Γ − iω��2s� 3Γ − 2iω� � 2Ω2�

�s� Γ − iω�2�2s� Γ − 2iω��2s� 3Γ − 2iω� � 24�s� Γ − iω�2Ω2 � 4Ω4 : (A27)
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