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Abstract
We use the Einstein–Podolsky–Rosen pairs as the quantum channel and adopt the adaptive
measurement strategy to allow M > 1 separate parties to cooperatively prepare an arbitrary
two-qubit state for a remote receiver, without leakage of the state’s full information. Our
protocol is flexible and convenient in the sense that the receiver can be assigned even after the
distribution of the qubits of the shared quantum channel and once assigned he/she only needs
to perform a simple recovery operation. In addition, our protocol always succeeds and is
applicable to a certain realistic situation for which other protocols are not suited.

PACS numbers: 03.67.HK, 03.65.Ud

1. Introduction

Since the first protocol for quantum communication brought
out by Bennett et al [1] and known as quantum teleportation
(QT), research on quantum information processing has grown
by degrees. This original protocol with the use of an
Einstein–Podolsky–Rosen (EPR) pair as the quantum channel
combined with traditional communication in terms of two
subsidiary classical bits gives an intriguing way to teleport
an unknown qubit state. Gradually, Lo [2] and Pati [3],
among others, proposed another protocol called remote state
preparation (RSP) which deals with the case when the qubit
state is known beforehand. The difference between QT and
RSP is that, while in QT the requirement for physical
resources (both quantum and classical) is fixed, in RSP
one can trade off between the degree of entanglement and
the classical communication cost. In recent years, RSP has
attracted much attention. Various generalizations of RSP, such
as RSP at multiple locations [4], RSP of mixed states [5, 6],
high-dimension RSP [7, 8], oblivious RSP [9], continuous
variable RSP [10, 11], etc, have been put forward. Of more
interest is the fact that some RSP protocols were accomplished
experimentally [12–14].

As was designed, RSP involves only one sender,
so all the information about the state to be prepared
is disclosed to him/her. To avoid such full leakage of

information, joint remote state preparation (JRSP) protocols
were proposed [15–17]. In JRSP there are two or more senders
(later we call them preparers), possibly at different locations,
and the information of the to-be-prepared state is secretly
split among the preparers in such a way that neither an
individual preparer nor a subgroup of them can infer the
state. This feature is vital for the transfer of confidential
communication between agencies. Most JRSP protocols are
probabilistic (see, e.g., [15–24]). However, deterministic
JRSP protocols [25–27] have also been suggested very
recently. It is interesting that the deterministic protocols
employ the same physical resources as in the probabilistic
ones, but the ways to perform them are diverse, as should
be. Of course, deterministic protocols are most beneficial
from the viewpoint of the resources consumed. In [25],
Greenberg–Horne–Zeilinger (GHZ) states were used as the
quantum channel. However, EPR pairs can be used as well
and are even more preferable since, being the simplest kind
of entanglement, they can be more easily produced and
distributed than the GHZ ones. Deterministic JRSP protocols
using EPR pairs have been designed in [26] in which the
receiver role is quite hard. Namely, the receiver has to not
only apply proper recovery operators at the end but also carry
out some measurements, controlled-NOT gates and classical
communication at the beginning. Such demands make the
protocols in [26] unfulfillable if the receiver’s laboratory is
not sufficiently well equipped.
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Figure 1. The qubits’ distribution for the JRSP of an arbitrary
two-qubit state via four EPR pairs in our protocol. Dots represent
qubits, while solid lines connect the entangled qubits.

Very recently, Bich et al [27] have modified the JRSP of
a single-qubit state in [26] so as to considerably release the
receiver’s function: only the application of recovery operators
at the end remains. In addition to that, the protocol in [27]
also possesses a flexibility in the sense that assignment of the
receiver can be postponed until after the EPR pairs have been
distributed, a feature not available in those of [26].

Since two-qubit states also play an important role in
quantum information processing, the JRSP of such states
deserves explicit consideration. This motivates us in this paper
to extend the original idea of [27] to the case of arbitrary
two-qubit states so as to retain all the advantageous aspects.
That is, the protocol we shall propose should be deterministic,
flexible and just requires a passive receiver. In section 2
we consider in detail the case of two preparers. Section 3
deals with M > 2 preparers. Finally, the conclusion drawn is
presented in section 4.

2. The case with two preparers

Let the state of two qubits C1 and C2, which will be remotely
prepared for Charlie, have the form

|9〉C1C2 =

3∑
n=0

an ei θn |n〉C1C2 , (1)

where an and θn are arbitrary real numbers satisfying the
normalization condition

∑3
n=0 a2

n = 1, while |0〉XY , |1〉XY ,

|2〉XY and |3〉XY are short for |00〉XY , |01〉XY , |10〉XY and
|11〉XY , respectively. Obviously, the state (1) is fully identified
by the data set S = {an, θn}, which can be split into two
subsets S1 = {an} and S2 = {θn}. In this section, we consider
the case with two preparers Alice and Bob. To achieve the
deterministic JRSP of |9〉C1C2 , the subset S1 is given to Alice
and S2 to Bob. Clearly, neither Alice nor Bob alone can infer
|9〉C1C2 . Like in [26], here we also use four EPR pairs as the
quantum channel, but unlike in [26], we distribute the qubits in
a different manner as shown in figure 1. That is, the quantum
channel state is

|q〉 = |EPR〉A1 B1 ⊗ |EPR〉A2 B2

⊗ |EPR〉A3C1 ⊗ |EPR〉A4C2 , (2)

where |EPR〉 = (|0〉 + |3〉)/
√

2 with qubits {A1, A2, A3, A4},

{B1, B2} and {C1, C2} held by Alice, Bob and Charlie,
respectively.

To be deterministic, our protocol proceeds in three steps
as follows.

Step 1. Alice chooses the basis {|µk〉A1 A2 A3 A4; k =

0, 1, . . . , 15}, which is related to the computational basis
{|0000〉, |0101〉, |0001〉, |0110〉, |0010〉, |0111〉, |0011〉,

|0100〉, |1001〉, |1110〉, |1000〉, |1101〉, |1011〉, |1100〉,

|1010〉, |1111〉}A1 A2 A3 A4 ≡ {|00〉, |11〉, |30〉, |01〉, |20〉,

|31〉, |10〉, |21〉, |32〉, |03〉, |02〉, |13〉, |12〉, |23〉, |22〉,

|33〉}A1 A2 A3 A4 as
|µ0〉A1 A2 A3 A4

|µ1〉A1 A2 A3 A4

...

|µ15〉A1 A2 A3 A4

 = U


|00〉A1 A2 A3 A4

|11〉A1 A2 A3 A4

...

|33〉A1 A2 A3 A4

 , (3)

where U is a 16 × 16 matrix of the form

U =


U0 O O O O O O U1

O U0 O O O O U1 O
O O U0 O O U1 O O
O O O U0 U1 O O O

 , (4)

with

U0 =


a0 a1

a1 −a0

a2 −a3

a3 a2

 , U1 =


a2 a3

a3 −a2

−a0 a1

−a1 −a0

 ,

O =


0 0
0 0
0 0
0 0

 .

(5)

Since Alice knows S1 = {a0, a1, a2, a3}, she is able to manage
measuring her qubits in the basis {|µk〉A1 A2 A3 A4}. Taking the
states |µk〉A1 A2 A3 A4 into consideration, we rearrange state (2)
as

|q〉 =
1

4

15∑
k=0

|µk〉A1 A2 A3 A4 |8k〉B1 B2C1C2 , (6)

where

|80〉B1 B2C1C2 = (a0|00〉 + a1|11〉

+ a2|22〉 + a3|33〉)B1 B2C1C2 , (7)

|81〉B1 B2C1C2 = (a1|00〉 − a0|11〉

+ a3|22〉 − a2|33〉)B1 B2C1C2 , (8)

|82〉B1 B2C1C2 = (a2|00〉 − a3|11〉

− a0|22〉 + a1|33〉)B1 B2C1C2 , . . . (9)

and

|815〉B1 B2C1C2 = (a3|10〉 + a2|21〉

− a1|32〉 − a0|03〉)B1 B2C1C2 . (10)

As follows from equation (6), when carrying out the collective
four-qubit measurement Alice obtains a state |µk〉A1 A2 A3 A4

2



Phys. Scr. 87 (2013) 025005 Q-Q Chen et al

Table 1. The collapsed state |9km〉C1C2 of Charlie’s qubits C1, C2 and the corresponding recovery operators Rkm related to the measurement
outcomes (k, m) from Alice and Bob. I is the identity operator and X (Z) the Pauli bit (phase) flip operator.

(k, m) |9km〉C1C2 Rkm

(0, 0)(4, 0)(8, 0)(12, 0) a0ei θ0 |0〉 + a1ei θ1 |1〉 + a2ei θ2 |2〉 + a3ei θ3 |3〉 I ⊗ I
(0, 1)(4, 1)(8, 1)(12, 1) a0ei θ0 |0〉 − a1ei θ1 |1〉 + a2ei θ2 |2〉 − a3ei θ3 |3〉 I ⊗ Z
(0, 2)(4, 2)(8, 2)(12, 2) a0ei θ0 |0〉 − a1ei θ1 |1〉 − a2ei θ2 |2〉 + a3ei θ3 |3〉 Z ⊗ Z
(0, 3)(4, 3)(8, 3)(12, 3) a0ei θ0 |0〉 + a1ei θ1 |1〉 − a2ei θ2 |2〉 − a3ei θ3 |3〉 Z ⊗ I
(1, 0)(5, 0)(9, 0)(13, 0) −a0ei θ0 |1〉 + a1ei θ1 |0〉 − a2ei θ2 |3〉 + a3ei θ3 |2〉 I ⊗ X Z
(1, 1)(5, 1)(9, 1)(13, 1) a0ei θ0 |1〉 + a1ei θ1 |0〉 + a2ei θ2 |3〉 + a3ei θ3 |2〉 I ⊗ X
(1, 2)(5, 2)(9, 2)(13, 2) a0ei θ0 |1〉 + a1ei θ1 |0〉 − a2ei θ2 |3〉 − a3ei θ3 |2〉 Z ⊗ X
(1, 3)(5, 3)(9, 3)(13, 3) −a0ei θ0 |1〉 + a1ei θ1 |0〉 + a2ei θ2 |3〉 − a3ei θ3 |2〉 Z ⊗ X Z
(2, 0)(6, 0)(10, 0)(14, 0) −a0ei θ0 |2〉 + a1ei θ1 |3〉 + a2ei θ2 |0〉 − a3ei θ3 |1〉 X Z ⊗ Z
(2, 1)(6, 1)(10, 1)(14, 1) −a0ei θ0 |2〉 − a1ei θ1 |3〉 + a2ei θ2 |0〉 + a3ei θ3 |1〉 X Z ⊗ I
(2, 2)(6, 2)(10, 2)(14, 2) a0ei θ0 |2〉 + a1ei θ1 |3〉 + a2ei θ2 |0〉 + a3ei θ3 |1〉 X ⊗ I
(2, 3)(6, 3)(10, 3)(14, 3) a0ei θ0 |2〉 − a1ei θ1 |3〉 + a2ei θ2 |0〉 − a3ei θ3 |1〉 X ⊗ Z
(3, 0)(7, 0)(11, 0)(15, 0) −a0ei θ0 |3〉 − a1ei θ1 |2〉 + a2ei θ2 |1〉 + a3ei θ3 |0〉 X Z ⊗ X
(3, 1)(7, 1)(11, 1)(15, 1) a0ei θ0 |3〉 − a1ei θ1 |2〉 − a2ei θ2 |1〉 + a3ei θ3 |0〉 X Z ⊗ X Z
(3, 2)(7, 2)(11, 2)(15, 2) −a0ei θ0 |3〉 + a1ei θ1 |2〉 − a2ei θ2 |1〉 + a3ei θ3 |0〉 X ⊗ X Z
(3, 3)(7, 3)(11, 3)(15, 3) a0ei θ0 |3〉 + a1ei θ1 |2〉 + a2ei θ2 |1〉 + a3ei θ3 |0〉 X ⊗ X

randomly (i.e. with an equal probability of 1/16). Alice
then publicly broadcasts k by means of 4 bits, letting Bob
and Charlie be aware of the projection of their qubits onto
a corresponding state |8k〉B1 B2C1C2 = A1 A2 A3 A4〈µk |q〉. Note
that the initial pairwise entanglements disappear and a new
quadpartite entanglement appears among the qubits B1, B2,

C1 and C2. This phenomenon was referred to as entanglement
swapping (see, e.g., [28, 29]).

Step 2. This step is important for achieving complete success.
Bob is supposed to measure his two qubits B1 and B2 in
a delicately chosen basis. That is to say, Bob not only
utilizes the subset S2 = {θn}, which was given to him
a priori, but also should take into account Alice’s
measurement outcome in terms of k. After careful
consideration we have figured out eight choices
(Ck = 0, 1, 2, . . . , 7) for Bob’s measurement basis as a
function of the value of k, namely

Ck =



0 if k = 0 or 10,

1 if k = 1 or 11,

2 if k = 2 or 8,

3 if k = 3 or 9,

4 if k = 4 or 14,

5 if k = 5 or 15,

6 if k = 6 or 12,

7 if k = 7 or 13.

(11)

Explicitly, the basis {|v(Ck )
m 〉B1 B2 ; Ck = 0, 1, . . . , 7; m =

0, 1, 2, 3} for Bob’s measurement is given by
|v

(Ck )
0 〉B1 B2

|v
(Ck )
1 〉B1 B2

|v
(Ck )
2 〉B1 B2

|v
(Ck )
3 〉B1 B2

 =
1

2
V (Ck )(θn)


|0〉B1 B2

|1〉B1 B2

|2〉B1 B2

|3〉B1 B2

 , (12)

with

V (0)(θn) =


e−i θ0 e−i θ1 e−i θ2 e−i θ3

e−i θ0 −e−i θ1 e−i θ2 −e−i θ3

e−i θ0 −e−i θ1 −e−i θ2 e−i θ3

e−i θ0 e−i θ1 −e−i θ2 −e−i θ3

 , (13)

V (1)(θn) =


e−i θ1 e−i θ0 e−i θ3 e−i θ2

e−i θ1 −e−i θ0 e−i θ3 −e−i θ2

e−i θ1 −e−i θ0 −e−i θ3 e−i θ2

e−i θ1 e−i θ0 −e−i θ3 −e−i θ2

 , (14)

V (2)(θn) =


e−i θ2 e−i θ3 e−i θ0 e−i θ1

e−i θ2 −e−i θ3 e−i θ0 −e−i θ1

e−i θ2 −e−i θ3 −e−i θ0 e−i θ1

e−i θ2 e−i θ3 −e−i θ0 −e−i θ1

 , . . . (15)

and

V (7)(θn) =


e−i θ2 e−i θ1 e−i θ0 e−i θ3

e−i θ2 −e−i θ1 e−i θ0 −e−i θ3

e−i θ2 −e−i θ1 −e−i θ0 e−i θ3

e−i θ2 e−i θ1 −e−i θ0 −e−i θ3

 . (16)

For each specific Ck, the states {|v(Ck )
m 〉B1 B2} comprise an

orthonormal complete set in a four-dimensional Hilbert
space. It can be checked that the states |8k〉B1 B2C1C2 in
equations (7)–(10) can be expressed as

|8k〉B1 B2C1C2 =
1

2

3∑
m=0

|v(Ck )
m 〉B1 B2 |9km〉C1C2 . (17)

Equation (17) indicates a disentanglement of Charlie’s
qubits from Bob’s if Bob measures his qubits in the basis
{|v(Ck )

m 〉B1 B2}. When Bob finds a state |v(Ck )
m 〉B1 B2 (with a

probability of 1/4 for any m ∈ {0, 1, 2, 3}), he publicly
broadcasts m by means of 2 bits.

Step 3. This is the last step which only Charlie takes
part in. Upon hearing k and m from Alice and Bob, Charlie
is sure that her qubits C1 and C2 have collapsed into state
|9km〉C1C2 which are listed in table 1. Analyzing these states
Charlie can quickly decide what operator should be applied
on which qubit to convert them to the intended state (1). The
recovery operators Rkm (i.e. those that satisfy the equation
Rkm |9km〉C1C2 = |9〉C1C2) are also listed in the last column of
table 1. By representing k as k = 8p + 4q + 2r + s and m as
m = 2d + f with p, q, r, s, d, f ∈ {0, 1}, the operators Rkm

take the general form

Rkm = X s Zd⊕s
⊗ X r Zd⊕ f ⊕r⊕s, (18)

with ⊕ an addition mod 2.

3
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Figure 2. The qubits’ distribution for JRSP of an arbitrary
two-qubit state via 2M EPR pairs in our protocol. Dots represent
qubits, while solid lines connect the entangled qubits.

As is clear from steps 1 and 2, the probability for Alice
to find state |µk〉A1 A2 A3 A4 is P (A)

k = 1/16 ∀k and that for Bob
to find state |v(Ck )

m 〉B1 B2 is P (B)
m = 1/4 ∀m. So, the probability

for a combined outcome {k, m} is Pkm = P (A)
k P (B)

m = 1/64.

Because, as seen from table 1, for each of the 64 pairs
{k, m} there always exists a recovery operator Rkm, the total
success probability of our protocol is 1 as we want. We would
like to emphasize that, unlike the protocol in [26] where
Charlie holds four qubits, here only two qubits are distributed
to her, thus relaxing Charlie from any measurements and
Controlled-NOT gates. Also, as seen from figure 1, the
positions of Bob and Charlie are symmetric so that either
Bob or Charlie can be assigned the receiver after the qubits’
distribution has been completed. The present protocol is
flexible in this sense.

3. The case with M > 2 preparers

To raise the security level of JRSP more than two preparers
are to be involved. The greater the number of preparers the
higher the level of security. In this section we study the case
of M > 2 preparers. The execution is more complicated, yet
the protocol we shall propose remains flexible, deterministic
and with a passive receiver.

Suppose that Alice, Bob1, Bob2, . . . and BobM−1 are the
preparers. The number of EPR pairs is now 2M which are
shared among the participants as depicted in figure 2.

Take M = 3 for an explicit demonstration. The quantum
channel |Q〉 is then served by six EPR pairs in the following
way:

|Q〉 = |EPR〉A1 B1
1
⊗ |EPR〉A2 B1

2
⊗ |EPR〉A3 B2

1

⊗ |EPR〉A4 B2
2
|EPR〉A5C1 ⊗ |EPR〉A6C2 . (19)

Qubits {An; n = 1–6} belong to Alice, qubits {B j
1 , B j

2 ; j =

1, 2} belong to Bob j and qubits {Cm; m = 1, 2} belong to
Charlie, the receiver.

The basis for Alice to measure her qubits in the first step
spans a Hilbert space of dimension 64, which is denoted by
{|µk〉A1 A2 A3 A4 A5 A6; k = 0, 1, . . . , 63}:

|µ0〉A1 A2 A3 A4 A5 A6 = a0|000〉〈000| + a1|111〉〈111|

+ a2|222〉〈222| + a3|333〉〈333|, (20)

|µ1〉A1 A2 A3 A4 A5 A6 = a1|000〉〈000| − a0|111〉〈111|

+ a3|222〉〈222| − a2|333〉〈333|, (21)

|µ2〉A1 A2 A3 A4 A5 A6 = a2|000〉〈000| − a3|111〉〈111|

− a0|222〉〈222| + a1|333〉〈333|, . . . (22)

and

|µ63〉A1 A2 A3 A4 A5 A6 = a3|300〉〈300| + a2|211〉〈211|

− a1|122〉〈122| − a0|033〉〈033|, (23)

where, for simplicity, we adopt the identification
|000〉 ≡ |000〉A1 A2 A3 A4 A5 A6 ≡ |000000〉A1 A2 A3 A4 A5 A6 , |001〉 ≡

|001〉A1 A2 A3 A4 A5 A6 ≡ |000001〉A1 A2 A3 A4 A5 A6 , . . . and |333〉 ≡

|333〉A1 A2 A3 A4 A5 A6 ≡ |111111〉A1 A2 A3 A4 A5 A6 . In terms of the 64
basic states, we can rewrite |Q〉 in the form

|Q〉 =
1

8

63∑
k=0

|µk〉A1 A2 A3 A4 A5 A6 |8k〉B1
1 B1

2 B2
1 B2

2 C1C2
. (24)

Obviously, with an equal probability of 1/64, Alice’s
measurement projects her qubits onto a state |µk〉A1 A2 A3 A4 A5 A6 ,

with k ∈ {0, 1, . . . , 63}. This leaves the remaining six
unmeasured qubits in a state |8k〉B1

1 B1
2 B2

1 B2
2 C1C2

, which are
collected in table 2 for all 64 possible values of k.

In the next step, the Bobs begin their action after hearing
the outcome k broadcasted by Alice. Because there are two
Bobs, the data subset S2 = {θn} is divided into two pieces
S1

2 = {θ1
n } and S2

2 = {θ2
n } such that θ1

n + θ2
n = θn. S1

2 is given
to Bob1, and S2

2 to Bob2. Each Bob independently measures
his own qubits in a basis chosen according to k. Namely, the
basis for Bob1 is {|v

(k)
l1

〉B1
1 B1

2
; l1 = 0, 1, 2, 3},

|v
(k)
0 〉B1

1 B1
2

|v
(k)
1 〉B1

1 B1
2

|v
(k)
2 〉B1

1 B1
2

|v
(k)
3 〉B1

1 B1
2

 =
1

2
V (k)(θ1

n )


|0〉B1

1 B1
2

|1〉B1
1 B1

2

|2〉B1
1 B1

2

|3〉B1
1 B1

2

 , (25)

while that for Bob2 is {|w
(k)
l2

〉B2
1 B2

2
; l2 = 0, 1, 2, 3},

|w
(k)
0 〉B2

1 B2
2

|w
(k)
1 〉B2

1 B2
2

|w
(k)
2 〉B2

1 B2
2

|w
(k)
3 〉B2

1 B2
2

 =
1

2
V (k)(θ2

n )


|0〉B2

1 B2
2

|1〉B2
1 B2

2

|2〉B2
1 B2

2

|3〉B2
1 B2

2

 , (26)

where 1
2 V (k)(θ

j
n ) with j = 1, 2 is a 4 × 4 unitary matrix. For

example, if k = 1, then

V (1)(θ j
n ) =


e−i θ j

1 e−i θ j
0 e−i θ j

3 e−i θ j
2

e−i θ j
1 −e−i θ j

0 e−i θ j
3 −e−i θ j

2

e−i θ j
1 −e−i θ j

0 −e−i θ j
3 e−i θ j

2

e−i θ j
1 e−i θ j

0 −e−i θ j
3 −e−i θ j

2

 . (27)

4
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Table 2. The collapsed state |8k〉B1
1 B1

2 B2
1 B2

2 C1C2
for the outcome k broadcasted by Alice in the case of M = 3 preparers.

k |8k〉B1
1 B1

2 B2
1 B2

2 C1C2
k |8k〉B1

1 B1
2 B2

1 B2
2 C1C2

0 a0|000〉 + a1|111〉 + a2|222〉 + a3|333〉 32 a0|020〉 + a1|131〉 + a2|202〉 + a3|313〉

1 −a0|111〉 + a1|000〉 − a2|333〉 + a3|222〉 33 −a0|131〉 + a1|020〉 − a2|313〉 + a3|202〉

2 −a0|222〉 + a1|333〉 + a2|000〉 − a3|111〉 34 −a0|202〉 + a1|313〉 + a2|020〉 − a3|131〉

3 −a0|333〉 − a1|222〉 + a2|111〉 + a3|000〉 35 −a0|313〉 − a1|202〉 + a2|131〉 + a3|020〉

4 a0|210〉 + a1|001〉 + a2|332〉 + a3|123〉 36 a0|130〉 + a1|021〉 + a2|312〉 + a3|203〉

5 −a0|001〉 + a1|210〉 − a2|123〉 + a3|332〉 37 −a0|021〉 + a1|130〉 − a2|203〉 + a3|312〉

6 −a0|332〉 + a1|123〉 + a2|210〉 − a3|001〉 38 −a0|312〉 + a1|203〉 + a2|130〉 − a3|021〉

7 −a0|123〉 − a1|332〉 + a2|001〉 + a3|210〉 39 −a0|203〉 − a1|312〉 + a2|021〉 + a3|130〉

8 a0|220〉 + a1|331〉 + a2|002〉 + a3|113〉 40 a0|100〉 + a1|311〉 + a2|022〉 + a3|233〉

9 −a0|331〉 + a1|220〉 − a2|113〉 + a3|002〉 41 −a0|311〉 + a1|100〉 − a2|233〉 + a3|022〉

10 −a0|002〉 + a1|113〉 + a2|220〉 − a3|331〉 42 −a0|022〉 + a1|233〉 + a2|100〉 − a3|311〉

11 −a0|113〉 − a1|002〉 + a2|331〉 + a3|220〉 43 −a0|233〉 − a1|022〉 + a2|311〉 + a3|100〉

12 a0|330〉 + a1|221〉 + a2|112〉 + a3|003〉 44 a0|310〉 + a1|201〉 + a2|132〉 + a3|023〉

13 −a0|221〉 + a1|330〉 − a2|003〉 + a3|112〉 45 −a0|201〉 + a1|310〉 − a2|023〉 + a3|132〉

14 −a0|112〉 + a1|003〉 + a2|330〉 − a3|221〉 46 −a0|132〉 + a1|023〉 + a2|310〉 − a3|201〉

15 −a0|003〉 − a1|112〉 + a2|221〉 + a3|330〉 47 −a0|023〉 − a1|132〉 + a2|201〉 + a3|310〉

16 a0|010〉 + a1|101〉 + a2|232〉 + a3|323〉 48 a0|030〉 + a1|121〉 + a2|212〉 + a3|303〉

17 −a0|101〉 + a1|010〉 − a2|323〉 + a3|232〉 49 −a0|121〉 + a1|030〉 − a2|303〉 + a3|212〉

18 −a0|232〉 + a1|323〉 + a2|010〉 − a3|101〉 50 −a0|212〉 + a1|303〉 + a2|030〉 − a3|121〉

19 −a0|323〉 − a1|232〉 + a2|101〉 + a3|010〉 51 −a0|030〉 − a1|121〉 + a2|212〉 + a3|303〉

20 a0|200〉 + a1|011〉 + a2|322〉 + a3|133〉 52 a0|120〉 + a1|031〉 + a2|302〉 + a3|213〉

21 −a0|011〉 + a1|200〉 − a2|133〉 + a3|322〉 53 −a0|031〉 + a1|120〉 − a2|213〉 + a3|302〉

22 −a0|322〉 + a1|133〉 + a2|200〉 − a3|011〉 54 −a0|302〉 + a1|213〉 + a2|120〉 − a3|031〉

23 −a0|133〉 − a1|322〉 + a2|011〉 + a3|200〉 55 −a0|213〉 − a1|302〉 + a2|031〉 + a3|120〉

24 a0|230〉 + a1|321〉 + a2|012〉 + a3|103〉 56 a0|110〉 + a1|301〉 + a2|032〉 + a3|223〉

25 −a0|321〉 + a1|230〉 − a2|103〉 + a3|012〉 57 −a0|301〉 + a1|110〉 − a2|223〉 + a3|032〉

26 −a0|012〉 + a1|103〉 + a2|230〉 − a3|321〉 58 −a0|032〉 + a1|223〉 + a2|110〉 − a3|301〉

27 −a0|103〉 − a1|012〉 + a2|321〉 + a3|230〉 59 −a0|223〉 − a1|032〉 + a2|301〉 + a3|110〉

28 a0|320〉 + a1|231〉 + a2|102〉 + a3|013〉 60 a0|300〉 + a1|211〉 + a2|122〉 + a3|033〉

29 −a0|231〉 + a1|320〉 − a2|013〉 + a3|102〉 61 −a0|211〉 + a1|300〉 − a2|033〉 + a3|122〉

30 −a0|102〉 + a1|320〉 + a2|231〉 − a3|013〉 62 −a0|122〉 + a1|300〉 + a2|211〉 − a3|033〉

31 −a0|013〉 − a1|102〉 + a2|231〉 + a3|320〉 63 −a0|033〉 − a1|122〉 + a2|211〉 + a3|300〉

Table 3. The collapsed state |91l1l2 〉C1C2 of Charlie’s qubits C1, C2 and the corresponding recovery operators R1l1l2 related to the
measurement outcomes (l1, l2) from Bob1 and Bob2. I is the identity operator and X (Z) the Pauli bit (phase) flip operator.

(l1, l2) |91l1l2 〉C1C2 R1l1l2

(0, 0)(1, 1)(2, 2)(3, 3) a1ei θ1 |0〉 − a0ei θ0 |1〉 + a3ei θ3 |2〉 − a2ei θ2 |3〉 I ⊗ X Z
(0, 1)(1, 0)(2, 3)(3, 2) a1ei θ1 |0〉 + a0ei θ0 |1〉 + a3ei θ3 |2〉 + a2ei θ2 |3〉 I ⊗ X
(0, 2)(1, 3)(2, 0)(3, 1) a1ei θ1 |0〉 + a0ei θ0 |1〉 − a3ei θ3 |2〉 − a2ei θ2 |3〉 Z ⊗ X
(0, 3)(1, 2)(2, 1)(3, 0) a1ei θ1 |0〉 − a0ei θ0 |1〉 − a3ei θ3 |2〉 + a2ei θ2 |3〉 Z ⊗ X Z

For a given k, the outcome of Bob1 is l1 if he finds
|v

(k)
l1

〉B1
1 B1

2
, while that of Bob2 is l2 if he finds |w

(k)
l2

〉B2
1 B2

2
. The

values of {l1, l2} should be published publicly by the Bobs. In
terms of the preparers’ basic states |Q〉 can be written as

|Q〉 =
1

32

63∑
k=0

3∑
l,m=0

|µk〉A1 A2 A3 A4 A5 A6

× |v
(k)
l1

〉B1
1 B1

2
|w

(k)
l2

〉B2
1 B2

2
|9kl1l2〉C1C2 . (28)

In the last step, Charlie is able to determine a right
operator conditioned on {k, l1, l2} to apply on her qubits C1

and C2 to obtain the desired state, i.e. to bring |9kl1l2〉C1C2

into |9〉C1C2 of equation (1). Straightforward calculations
have shown that any trio {k, l1, l2} is associated with a
recovery operator Rkl1l2 , guaranteeing complete success. As
an illustration, |91l1l2〉C1C2 and R1l1l2 with all possible l1 and l2

are tabulated in table 3.
The case with an arbitrary M > 3 is cumbersome.

However, the general outline goes as follows. 2M EPR

pairs are needed for the quantum channel with the qubits’
distribution shown in figure 2. The data set S = {an, θn}

should be split into M subsets S1 = {an} and S j
2 = {θ

j
n }, with

j = 1, 2, . . . , M − 1 and
∑M−1

j=1 θ
j

n = θn. S1 is given to Alice

and S j
2 to Bob j . First, Alice measures 2M qubits A1, A2,

. . . , A2M−1 and A2M in a basis suitably determined by S1,

with an outcome k ∈ {0, 1, . . . , 22M
− 1} to be announced

publicly. Next, each Bob j independently measures qubits B j
1

and B j
2 in a judiciously chosen basis, dependent on both

S j
2 and k, obtaining an outcome l j ∈ {0, 1, 2, 3}, which is

also announced publicly. Finally, upon hearing k, l1, l2, . . . ,
lM−1, Charlie can always construct a right recovery operator
Rkl1l2...lM−1 to be applied on qubits C1 and C2 to complete the
protocol.

4. Conclusion

In conclusion, we have proposed a useful protocol for joint
remote preparation of an arbitrary two-qubit state using only
EPR pairs, the simplest kind of entanglement, as the quantum
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channel. In practice, depending on the need, assignment of the
receiver may be decided after sharing the quantum channel
and the receiver may not be sufficiently well equipped. Our
protocol works deterministically in such situations because
it is designed to be flexible and requires only a passive
receiver.

Concretely, we have explicitly shown a protocol for
M > 1 separate parties (Alice, Bob1, Bob2, . . . , BobM−1)

to remotely cooperate for preparing an arbitrary two-qubit
state |9〉, equation (1), for a distant receiver (Charlie). The
complete information of |9〉 is split into M independent
pieces, each held by a preparer, forbidding any subset of the
preparers to fully infer |9〉. We employ 2M EPR pairs as
the quantum channel and distribute 2M qubits to Alice but
just two qubits to each of Bob j and Charlie (see figure 2).
Distribution of qubits in this manner between Bob and Charlie
makes our protocol flexible in the sense that either a Bob j or
Charlie can be assigned the receiver even after entanglement
sharing. The use of this distribution greatly reduces the role
of the receiver in comparison with that in [26]. Key to achieve
complete success is the adoption of the adaptive measurement
strategy: measurements of Bob j should be made after that of
Alice and, more importantly, in a basis conditioned by Alice’s
outcome. Needless to say, the merit of the protocol we propose
in this work rests on the fact that it is uniquely applicable to
a certain realistic situation, which is not the case for other
existing protocols.
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